Design, Synthesis, and Evaluation of Inhibitors of Steroid Sulfatase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 ICR-Geneset Gene List
ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004 -
Curriculum Vitae
Professor Barry V L Potter Publications (1979 - 2015) Papers in refereed journals, patents, reviews and book chapters JOURNAL PAPERS 1. The effect of 17O and the magnitude of the 18O isotope shift in 31P nuclear magnetic resonance spectroscopy. G Lowe, B V L Potter, B S Sproat and W E Hull, J Chem Soc Chem Commun (1979) 733- 735. 2. Bacteriostatic properties of fluoro-analogues of 5(2-hydroxyethyl)-4-methyl thiazole, a metabolic intermediate in thiamine biosynthesis. G Lowe and B V L Potter, J Chem Soc Perkin Trans I (1980) 9, 2026-2028. 3. The synthesis, absolute configuration and circular dichroism of the enantiomers of fluorosuccinic acid. G Lowe and B V L Potter, J Chem Soc Perkin Trans I (1980) 9, 2029-2032. 4. Evidence against a step-wise mechanism for the fumarase-catalysed dehydration of (2S)- malate. V T Jones, G Lowe and B V L Potter, Eur J Biochem (1980) 108, 433-437. 5. A stereochemical investigation of the cyclisation of D-glucose-6[16O,17O,18O]-phosphate and adenosine 5'[16O,17O,18O]-phosphate. R L Jarvest, G Lowe and B V L Potter, J Chem Soc Chem Commun (1980) 1142-1145. 6. The stereochemistry of phosphoryl transfer. G Lowe, P M Cullis, R L Jarvest, B V L Potter and B S Sproat, Phil Trans Roy Soc Lond Ser B (1981) 293, 75-92. 7. The stereochemistry of 2-substituted-2-oxo-4,5-diphenyl-1,3,2-dioxaphospholanes and the related chiral [16O,17O,18O]-phosphate monoesters. P M Cullis, R L Jarvest, G Lowe and B V L Potter, J Chem Soc Chem Commun (1981) 245- 246. -
Version Introducing VHIO Foreword
2017SCIENTIFIC REPORT Vall d'Hebron Institute of Oncology (VHIO) CELLEX CENTER C/Natzaret, 115 – 117 08035 Barcelona, Spain Tel. +34 93 254 34 50 www.vhio.net Direction: Amanda Wren Design: Parra estudio Photography: Katherin Wermke Vall d'Hebron Institute of Oncology (VHIO) | 2018 VHIO Scientific Report 2017 Index Scientific Report INTRODUCING VHIO CORE TECHNOLOGIES 02 Foreword 92 Cancer Genomics Group 08 2017: marking the next chapter of 94 Molecular Oncology Group VHIO's translational story 96 Proteomics Group 18 Scientific Productivity: research articles VHIO'S TRANSVERSAL CLINICAL 19 Selection of some of the most relevant TRIALS CORE SERVICES & UNITS articles by VHIO researchers published in 2017 100 Clinical Trials Office 25 A Golden Decade: reflecting on the 102 Research Unit for Molecular Therapy past 10 years of VHIO's translational of Cancer (UITM) – ”la Caixa” success story 104 Clinical Research Oncology Nurses 106 Clinical Research Oncology Pharmacy PRECLINICAL RESEARCH Unit 49 From the Director 50 Experimental Therapeutics Group RECENTLY INCORPORATED GROUPS 52 Growth Factors Group 110 Cellular Plasticity & Cancer Group 54 Mouse Models of Cancer Therapies 112 Experimental Hematology Group Group 114 Tumor Immunology 56 Tumor Biomarkers Group & Immunotherapy Group 116 Applied Genetics of Metastatic Cancer TRANSLATIONAL RESEARCH Group 61 From the Director 118 Chromatin Dynamics in Cancer Group 62 Gene Expression & Cancer Group 120 Prostate Cancer Translational Research Group 64 Stem Cells & Cancer Group 122 Radiomics Group CLINICAL -
Pushing Estrogen Receptor Around in Breast Cancer
Page 1 of 55 Accepted Preprint first posted on 11 October 2016 as Manuscript ERC-16-0427 1 Pushing estrogen receptor around in breast cancer 2 3 Elgene Lim 1,♯, Gerard Tarulli 2,♯, Neil Portman 1, Theresa E Hickey 2, Wayne D Tilley 4 2,♯,*, Carlo Palmieri 3,♯,* 5 6 1Garvan Institute of Medical Research and St Vincent’s Hospital, University of New 7 South Wales, NSW, Australia. 2Dame Roma Mitchell Cancer Research Laboratories 8 and Adelaide Prostate Cancer Research Centre, University of Adelaide, SA, 9 Australia. 3Institute of Translational Medicine, University of Liverpool, Clatterbridge 10 Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, 11 Liverpool, UK. 12 13 ♯These authors contributed equally. *To whom correspondence should be addressed: 14 [email protected] or [email protected] 15 16 Short title: Pushing ER around in Breast Cancer 17 18 Keywords: Estrogen Receptor; Endocrine Therapy; Endocrine Resistance; Breast 19 Cancer; Progesterone receptor; Androgen receptor; 20 21 Word Count: 5620 1 Copyright © 2016 by the Society for Endocrinology. Page 2 of 55 22 Abstract 23 The Estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) 24 that is expressed in approximately 75% of breast cancers. Therapies that modulate 25 ER action have substantially improved the survival of patients with ER-positive breast 26 cancer, but resistance to treatment still remains a major clinical problem. Treating 27 resistant breast cancer requires co-targeting of ER and alternate signalling pathways 28 that contribute to resistance to improve the efficacy and benefit of currently available 29 treatments. -
Steroid Sulfatase of Human Leukocytes and Epidermis and the Diagnosis of Recessive X-Linked Ichthyosis
Steroid sulfatase of human leukocytes and epidermis and the diagnosis of recessive X-linked ichthyosis. E H Epstein Jr, M E Leventhal J Clin Invest. 1981;67(5):1257-1262. https://doi.org/10.1172/JCI110153. Research Article Patients with recessive X-linked ichthyosis, one of the inherited types of excessive stratum corneum cohesion, have deficient steroid sulfatase in fibroblasts grown from their dermis. Because of the expense and long period required to grow such cells, we have assayed this enzyme in peripheral blood leukocytes and found it to be undetectable in those from patients with this type of ichthyosis, but normal in those from patients with other hereditary or acquired types of ichthyosis. In addition, steroid sulfatase activity is less in leukocytes from women who are carriers of this disease than normal women, and this assay can be used to detect such carriers. Despite previous studies demonstrating that the gene for this enzyme escapes the inactivation of other x-chromosome genes, normal women have leukocyte steroid sulfatase activity only 1.3 times that of normal men, suggesting that some gene dosage compensation occurs. Normal human epidermis, the tissue most affected clinically, also expresses steroid sulfatase activity. The epidermal enzyme is similar in its subcellular localization, its molecular size, and kinetically to that of placenta, leukocytes, and fibroblasts. Find the latest version: https://jci.me/110153/pdf Steroid Sulfatase of Human Leukocytes and Epidermis and the Diagnosis of Recessive X-linked Ichthyosis ERVIN H. EPSTEIN, JR., and MARY E. LEVENTHAL, Dermatology Unit of the Medical Service, San Francisco General Hospital Medical Center, Department of Dermatology, University of California, San Francisco, California 94110 A B S T R A C T Patients with recessive X-linked pearance especially on the side of the neck, and the ichthyosis, one of the inherited types of excessive subsequently described comeal stippling (2). -
(12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown Et Al
US 20030082511A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082511 A1 Brown et al. (43) Pub. Date: May 1, 2003 (54) IDENTIFICATION OF MODULATORY Publication Classification MOLECULES USING INDUCIBLE PROMOTERS (51) Int. Cl." ............................... C12O 1/00; C12O 1/68 (52) U.S. Cl. ..................................................... 435/4; 435/6 (76) Inventors: Steven J. Brown, San Diego, CA (US); Damien J. Dunnington, San Diego, CA (US); Imran Clark, San Diego, CA (57) ABSTRACT (US) Correspondence Address: Methods for identifying an ion channel modulator, a target David B. Waller & Associates membrane receptor modulator molecule, and other modula 5677 Oberlin Drive tory molecules are disclosed, as well as cells and vectors for Suit 214 use in those methods. A polynucleotide encoding target is San Diego, CA 92121 (US) provided in a cell under control of an inducible promoter, and candidate modulatory molecules are contacted with the (21) Appl. No.: 09/965,201 cell after induction of the promoter to ascertain whether a change in a measurable physiological parameter occurs as a (22) Filed: Sep. 25, 2001 result of the candidate modulatory molecule. Patent Application Publication May 1, 2003 Sheet 1 of 8 US 2003/0082511 A1 KCNC1 cDNA F.G. 1 Patent Application Publication May 1, 2003 Sheet 2 of 8 US 2003/0082511 A1 49 - -9 G C EH H EH N t R M h so as se W M M MP N FIG.2 Patent Application Publication May 1, 2003 Sheet 3 of 8 US 2003/0082511 A1 FG. 3 Patent Application Publication May 1, 2003 Sheet 4 of 8 US 2003/0082511 A1 KCNC1 ITREXCHO KC 150 mM KC 2000000 so 100 mM induced Uninduced Steady state O 100 200 300 400 500 600 700 Time (seconds) FIG. -
Steroid Sulfatase Stimulates Intracrine Androgen Synthesis and Is a Therapeutic Target for Advanced Prostate Cancer
Author Manuscript Published OnlineFirst on September 14, 2020; DOI: 10.1158/1078-0432.CCR-20-1682 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Steroid sulfatase stimulates intracrine androgen synthesis and is a therapeutic target for advanced prostate cancer Cameron M. Armstrong1*, Chengfei Liu1*, Liangren Liu1,2*, Joy C. Yang1, Wei Lou1, Ruining Zhao1,3, Shu Ning1, Alan P. Lombard1, Jinge Zhao1, Leandro S D'Abronzo1, Christopher P. Evans1,4, Pui-Kai Li5, Allen C. Gao1, 4, 6,7 Running title: Targeting steroid sulfatase for advanced prostate cancer Key words: Prostate cancer, steroid sulfatase, resistance, intracrine androgen synthesis, adrenal androgens 1Department of Urologic Surgery, University of California Davis, CA, USA 2Present address: Department of Urology, West China Hospital, Sichuan University, China 3Present address: Department of Urology, General Hospital of Ningxia Medical University, China 4UC Davis Comprehensive Cancer Center, University of California Davis, CA, USA 5Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA 6VA Northern California Health Care System, Sacramento, CA, USA 7Corresponding author: Allen Gao, University of California Davis, 4645 2nd Avenue, Sacramento, CA 95817, USA. Phone: 916-734-8718, email: [email protected] *These authors contributed equally to the work. Conflict of interest: PKL and ACG are co-inventors of a patent application of the selected small molecule inhibitors of steroid sulfatase. 1 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on September 14, 2020; DOI: 10.1158/1078-0432.CCR-20-1682 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. -
Effect of Tamoxifen Or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer
ANTICANCER RESEARCH 31: 1367-1372 (2011) Effect of Tamoxifen or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer S.J. STANWAY1, C. PALMIERI2, F.Z. STANCZYK3, E.J. FOLKERD4, M. DOWSETT4, R. WARD2, R.C. COOMBES2, M.J. REED1† and A. PUROHIT1 1Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, U.K.; 2Cancer Research UK Laboratories, Department of Oncology, Hammersmith Hospital, London W12 0NN, U.K.; 3Reproductive Endocrine Research Laboratory, University of Southern California, Keck School of Medicine, Women’s and Children’s Hospital, Los Angeles, CA, U.S.A.; 4Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, U.K. Abstract. Background: In postmenopausal women sulfate and dehydroepiandrosterone levels. Results: Neither estrogens can be formed by the aromatase pathway, which anastrozole nor tamoxifen had any significant effect on STS gives rise to estrone, and the steroid sulfatase (STS) route activity as measured in PBLs. Anastrozole did not affect which can result in the formation of estrogens and serum androstenediol concentrations. Conclusion: androstenediol, a steroid with potent estrogenic properties. Anastrozole and tamoxifen did not inhibit STS activity and Aromatase inhibitors, such as anastrozole, are now in serum androstenediol concentrations were not reduced by clinical use whereas STS inhibitors, such as STX64, are still aromatase inhibition. As androstenediol has estrogenic undergoing clinical evaluation. STX64 was recently shown properties, it is possible that the combination of an to block STS activity and reduce serum androstenediol aromatase inhibitor and STS inhibitor may give a therapeutic concentrations in postmenopausal women with breast cancer. -
REVIEW Steroid Sulfatase Inhibitors for Estrogen
99 REVIEW Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers Atul Purohit and Paul A Foster1 Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK 1School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK (Correspondence should be addressed to P A Foster; Email: [email protected]) Abstract Estrogens and androgens are instrumental in the maturation of in vivo and where we currently stand in regards to clinical trials many hormone-dependent cancers. Consequently,the enzymes for these drugs. STS inhibitors are likely to play an important involved in their synthesis are cancer therapy targets. One such future role in the treatment of hormone-dependent cancers. enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, Novel in vivo models have been developed that allow pre-clinical and dehydroepiandrosterone sulfate to estrone and dehydroe- testing of inhibitors and the identification of lead clinical piandrosterone respectively. These are the precursors to the candidates. Phase I/II clinical trials in postmenopausal women formation of biologically active estradiol and androstenediol. with breast cancer have been completed and other trials in This review focuses on three aspects of STS inhibitors: patients with hormone-dependent prostate and endometrial 1) chemical development, 2) biological activity, and 3) clinical cancer are currently active. Potent STS inhibitors should trials. The aim is to discuss the importance of estrogens and become therapeutically valuable in hormone-dependent androgens in many cancers, the developmental history of STS cancers and other non-oncological conditions. -
Mitochondrial Dysfunction and Organic Aciduria In
Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway Eva Morava, Tjitske Kleefstra, Saskia Wortmann, Richard Rodenburg, Ernie Mhf Bongers, Kinga Hadzsiev, Lambert van den Heuvel, Willy M Nillessen, Katalin Hollody, Martin Lammens, et al. To cite this version: Eva Morava, Tjitske Kleefstra, Saskia Wortmann, Richard Rodenburg, Ernie Mhf Bongers, et al.. Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway. European Journal of Human Genetics, Nature Publishing Group, 2010, 10.1038/ejhg.2010.171. hal-00591692 HAL Id: hal-00591692 https://hal.archives-ouvertes.fr/hal-00591692 Submitted on 10 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Mitochondrial dysfunction and organic aciduria in five patients carrying mutations in the Ras-MAPK pathway Running title: mutations in MAPK and mitochondrial dysfunction Tjitske Kleefstra1+, Saskia B. Wortmann2+, Richard J.T. Rodenburg2,3, Ernie M.H.F. Bongers1, Kinga Hadzsiev4, Cees Noordam5, Lambert -
Chromosomal Microarray, Postnatal, Clarisure® Oligo-SNP
Diagnostic Services Pediatrics Test Summary Chromosomal Microarray, Postnatal, ClariSure® Oligo-SNP The American College of Medical Genetics (ACMG) Test Code: 16478(X) recommends CMA testing as a first-line genetic test for developmental delay, intellectual disability, ASDs, and Specimen Requirements: 10 mL room-temperature whole multiple congenital anomalies.2,4 This recommendation blood (sodium-heparin, green-top tube); 5 mL minimum is based, in part, on a literature review that included over 21,000 patients with developmental delay/intellectual CPT Code*: 81229 disability, ASDs, or multiple congenital anomalies. The diagnostic yield was 15% to 20% for CMA testing versus ~3% for G-banded karyotyping and ~6% for subtelomeric Clinical Use fluorescence in situ hybridization (FISH) in combination • Determine the genetic etiology of developmental with G-banded karyotyping.5 In individuals with complex delay, intellectual disability, autism spectrum disorders ASDs, CMA testing can result in a diagnostic yield of over (ASDs; pervasive developmental disorders), and 25%.2 ACMG still considers karyotyping a first-line test multiple congenital anomalies when patients are suspected of having a recognizable • Confirm or exclude the diagnosis of known chromosomal syndrome such as trisomy 21 or 18, Turner chromosomal syndromes syndrome, or Klinefelter syndrome.2,4 • Further define ambiguities arising from cytogenetic The oligonucleotide-single nucleotide polymorphism or FISH studies (oligo-SNP) array contains over 2.6 million probes and • Assist in clinical management and genetic counseling covers regions of known and likely CNVs. It can confirm the diagnosis of suspected disorders associated with known Clinical Background chromosomal syndromes and is especially well suited Global developmental delay, intellectual disability (mental for determining the genetic cause of less well-described retardation), ASDs, and multiple congenital anomalies may disorders. -
Human Steroid Sulfatase Induces Wnt/Β-Catenin Signaling and Epithelial
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 37), pp: 61604-61617 Research Paper Human steroid sulfatase induces Wnt/β-catenin signaling and epithelial-mesenchymal transition by upregulating Twist1 and HIF-1α in human prostate and cervical cancer cells Sangyun Shin1,*, Hee-Jung Im1,*, Yeo-Jung Kwon1,*, Dong-Jin Ye1, Hyoung-Seok Baek1, Donghak Kim2, Hyung-Kyoon Choi1 and Young-Jin Chun1 1College of Pharmacy and Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea 2Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea *These authors have contributed equally to this work Correspondence to: Young-Jin Chun, email: [email protected] Keywords: steroid sulfatase, epithelial-mesenchymal transition, Wnt/β–catenin pathway, HIF-1α, Twist1 Received: March 06, 2017 Accepted: May 22, 2017 Published: June 27, 2017 Copyright: Shin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Steroid sulfatase (STS) catalyzes the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate (DHEAS) to their unconjugated biologically active forms. Although STS is considered a therapeutic target for estrogen-dependent diseases, the cellular functions of STS remain unclear. We found that STS induces Wnt/β-catenin s Delete ignaling in PC-3 and HeLa cells. STS increases levels of β-catenin, phospho-β-catenin, and phospho-GSK3β. Enhanced translocation of β-catenin to the nucleus by STS might activate transcription of target genes such as cyclin D1, c-myc, and MMP-7.