Effect of Tamoxifen Or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Tamoxifen Or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer ANTICANCER RESEARCH 31: 1367-1372 (2011) Effect of Tamoxifen or Anastrozole on Steroid Sulfatase Activity and Serum Androgen Concentrations in Postmenopausal Women with Breast Cancer S.J. STANWAY1, C. PALMIERI2, F.Z. STANCZYK3, E.J. FOLKERD4, M. DOWSETT4, R. WARD2, R.C. COOMBES2, M.J. REED1† and A. PUROHIT1 1Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, U.K.; 2Cancer Research UK Laboratories, Department of Oncology, Hammersmith Hospital, London W12 0NN, U.K.; 3Reproductive Endocrine Research Laboratory, University of Southern California, Keck School of Medicine, Women’s and Children’s Hospital, Los Angeles, CA, U.S.A.; 4Department of Biochemistry, Royal Marsden Hospital, London, SW3 6JJ, U.K. Abstract. Background: In postmenopausal women sulfate and dehydroepiandrosterone levels. Results: Neither estrogens can be formed by the aromatase pathway, which anastrozole nor tamoxifen had any significant effect on STS gives rise to estrone, and the steroid sulfatase (STS) route activity as measured in PBLs. Anastrozole did not affect which can result in the formation of estrogens and serum androstenediol concentrations. Conclusion: androstenediol, a steroid with potent estrogenic properties. Anastrozole and tamoxifen did not inhibit STS activity and Aromatase inhibitors, such as anastrozole, are now in serum androstenediol concentrations were not reduced by clinical use whereas STS inhibitors, such as STX64, are still aromatase inhibition. As androstenediol has estrogenic undergoing clinical evaluation. STX64 was recently shown properties, it is possible that the combination of an to block STS activity and reduce serum androstenediol aromatase inhibitor and STS inhibitor may give a therapeutic concentrations in postmenopausal women with breast cancer. advantage over the use of either agent alone. In contrast, little is known about the effects of aromatase inhibitors or anti-estrogens on STS activity or serum Anti-estrogens and aromatase inhibitors are now widely used androgen levels. Patients and Methods: Study 1: Blood was for the treatment of postmenopausal women with hormone- collected from ten postmenopausal women with breast dependent breast cancer (1, 2). While anti-estrogens, such as cancer before and after two-week treatment with anastrozole tamoxifen, block the interaction of estradiol (E2) with the and serum concentrations of androstenediol and other estrogen receptor (ER), aromatase inhibitors such as androgens and estrogens were assessed. Study 2: Blood anastrozole, letrozole and exemestane inhibit the conversion samples were collected from 15 breast cancer patients before of androstenedione to estrone (E1), the major source of and after four-week treatment with anastrozole and 10 estrogen in postmenopausal women (3). Recent clinical studies patients before and after four-week treatment with tamoxifen. have revealed that third-generation aromatase inhibitors are of Blood was used to assess STS activity in peripheral blood greater clinical benefit compared with tamoxifen in lymphocytes (PBLs) and serum dehydroepiandrosterone postmenopausal women with breast cancer (4, 5). In addition to the aromatase pathway of estrogen synthesis, the steroid sulfatase (STS) route is also thought to contribute to the in situ synthesis of estrogens in breast †Deceased. tumors (6). STS is responsible for the hydrolysis of estrone sulfate (E1S) and dehydroepiandrosterone sulfate (DHEAS) Correspondence to: Dr. A. Purohit, Oncology Drug Discovery to E1 and dehydroepiandrosterone (DHEA) respectively. E1 Group, Section of Investigative Medicine, Imperial College London, and DHEA can be reduced by 17β-hydroxysteroid 6th Floor, Commonwealth Building (6N2B) Hammersmith Hospital, dehydrogenase type I (17β-HSD1) to steroids with potent Du Cane Road, London W12 0NN, U.K. Tel: +44 2083834287, i.e. Fax: +44 2083838320, e-mail: [email protected] estrogenic properties, E2 and androstenediol. 17β-HSD1 is expressed in many tissues in the body including breast Key Words: Aromatase inhibitors, anti-estrogens, breast cancer, tumors (7, 8). Several potent STS inhibitors have now been steroid sulfatase, tamoxifen, anastrozole, postmenopausal women. developed including STX64 (also known as 667 Coumate, 0250-7005/2011 $2.00+.40 1367 ANTICANCER RESEARCH 31: 1367-1372 (2011) BN83495 or Irosustat) (9, 10). In a recent phase I trial of be measured in PBLs. In addition, serum concentrations of STX64 in postmenopausal women with advanced breast androstenediol were assessed by radioimmunoassay, together cancer, treated with either 5 or 20 mg/day, STS activity in with the levels of androstenedione, testosterone, E1, E2 and peripheral blood lymphocytes (PBLs) and tumor tissues was E1S, which were measured using gas chromatographic- almost completely blocked (>90%) (11). Inhibition of STS tandem mass spectroscopy (GC-MS/MS). activity in these patients resulted in a significant decrease in serum concentration of E1 and E2. Serum concentrations of Patients and Methods androstenediol, which in postmenopausal women is mainly derived from the peripheral conversion of DHEAS, also fell Study 1. Blood was collected for the measurement of serum steroid by up to 90% (12). Unexpectedly, serum androstenedione concentrations from ten postmenopausal women with breast cancer concentration also decreased, as a result of STS inhibitor before and two weeks after starting treatment with anastrozole (1 mg/d). Three of the patients in this group achieved an objective therapy, indicating that in postmenopausal women the major response. For these patients, serum concentrations of androstenediol, part of this steroid is derived from the peripheral conversion androstenedione, testosterone, E1, E2 and E1S were measured. of DHEAS. In the phase I STX64 inhibitor trial, all patients selected Study 2. Blood samples were also collected from a further 15 for entry into the trial had previously progressed while on postmenopausal women with breast cancer before and four weeks anti-estrogen or aromatase inhibitor therapy. However, 5 out after treatment with anastrozole (1 mg/d) and ten patients before and of 14 patients still showed evidence of stable disease after four-week treatment with tamoxifen (20 mg/d). In addition, blood samples were collected from these patients before and after according to RECIST criteria. This finding suggests that STS four-week treatment for the assessment of STS activity in PBLs. For inhibitor therapy may have a role in the treatment of this blood was collected into CPT vacutainers (Beckton Dickinson, postmenopausal women with hormone-dependent breast Franklin Lakes, NJ, USA). After centrifugation (1,500 ×g at 22˚C for cancer and, in particular, for those patients progressing on 30 min), isolated PBLs were washed with phosphate-buffered saline anti-estrogen or aromatase inhibitor therapy. (PBS, 5 ml ×2) and stored at –20˚C until assayed. The STS in PBLs Although aromatase inhibitors have now been in clinical was solubilised before assaying using Triton-X 100/PBS (0.2%). STS 3 use for a number of years there is still no convincing evidence activity was assayed using [6,7- H] E1S (2-3 nmol/l, 46-57 Ci/mmol; Perkin-Elmer Life Sciences, Wellesley, MA, USA) over a 20 h period that the response to this form of endocrine therapy is related using [4-14C] E1 to monitor procedural losses (11, 22). to baseline levels of E2 or to the extent that E2 levels are The protocols for these studies were approved by the suppressed (13, 14). It is also not known why patients become Hammersmith Hospital’s Ethics Committees and all patients gave resistant to this form of therapy. Androstenediol, which is written informed consent for their participation in the study. derived from DHEA, has been shown to have potent estrogenic properties, stimulating the proliferation of ER- Steroid concentrations. For serum steroid concentration positive breast cancer cells in vitro and the growth of induced measurements in samples obtained from patients in the first study, androstenediol concentrations were measured by radioimmunoassay mammary tumors in vivo in rodents (15-17). One possible (RIA) after organic solvent extraction and Celite column partition reason why disease might progress whilst patients are treated chromatography (23). Concentrations of androstenedione, with aromatase inhibitors may be that over time tumor cells testosterone, E1, E2 and E1S were measured using a GC-MS/MS become more sensitive to the proliferative effects, not only of method by SBFC Taylor (Princeton, NJ, USA) (24, 25). The limits the low residual levels of E2, but also to steroids with potent of quantitation of E1, E2 and E1S in this assay were 5.8, 2.3 and 8.9 estrogenic properties, such as androstenediol (18). As yet, pmol/l, respectively. For samples of serum obtained from the second little is known about the effects of aromatase inhibitors on study, concentrations of DHEAS and DHEA were assayed using kits obtained from DSL (Webster, TX, USA) according to the serum concentrations of androstenediol, although in a manufacturer’s instructions. Intra-and inter-assay coefficients of previous study no effect on serum concentrations of DHEAS, variation for these assays were <15%. DHEA or androstenedione was detected (14). There is also a paucity of information about the effects of tamoxifen on Statistics. Mean and standard error of the mean (sem) levels of STS serum androgen concentrations. There are, however, a number activity and serum steroid
Recommended publications
  • Prospective Study on Gynaecological Effects of Two Antioestrogens Tamoxifen and Toremifene in Postmenopausal Women
    British Journal of Cancer (2001) 84(7), 897–902 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2001.1703, available online at http://www.idealibrary.com on http://www.bjcancer.com Prospective study on gynaecological effects of two antioestrogens tamoxifen and toremifene in postmenopausal women MB Marttunen1, B Cacciatore1, P Hietanen2, S Pyrhönen2, A Tiitinen1, T Wahlström3 and O Ylikorkala1 1Departments of Obstetrics and Gynecology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland; 2Department of Oncology, Helsinki University Central Hospital, P.O. Box 180, FIN-00029 HYKS, Finland; 3Department of Pathology, Helsinki University Central Hospital, P.O. Box 140, FIN-00029 HYKS, Finland Summary To assess and compare the gynaecological consequences of the use of 2 antioestrogens we examined 167 postmenopausal breast cancer patients before and during the use of either tamoxifen (20 mg/day, n = 84) or toremifene (40 mg/day, n = 83) as an adjuvant treatment of stage II–III breast cancer. Detailed interview concerning menopausal symptoms, pelvic examination including transvaginal sonography (TVS) and collection of endometrial sample were performed at baseline and at 6, 12, 24 and 36 months of treatment. In a subgroup of 30 women (15 using tamoxifen and 15 toremifene) pulsatility index (PI) in an uterine artery was measured before and at 6 and 12 months of treatment. The mean (±SD) follow-up time was 2.3 ± 0.8 years. 35% of the patients complained of vasomotor symptoms before the start of the trial. This rate increased to 60.0% during the first year of the trial, being similar among patients using tamoxifen (57.1%) and toremifene (62.7%).
    [Show full text]
  • Tamoxifen, Raloxifene Upheld for Prevention
    38 WOMEN’S HEALTH MAY 1, 2010 • FAMILY PRACTICE NEWS Tamoxifen, Raloxifene Upheld for Prevention BY KERRI WACHTER 9,736 on tamoxifen and 9,754 on ralox- 1.24, which was significant (P = .01). Both events) did not appear to be as effective ifene. The differences in numbers are due drugs reduced the risk of invasive breast as tamoxifen (57 events) in preventing WASHINGTON — Tamoxifen and to a combination of loss during follow- cancer by roughly 50% in the original re- noninvasive breast cancer (P = .052). raloxifene offer women at high risk of up or follow-up data becoming available port (median follow-up 47 months). “Now with additional follow-up, those developing breast cancer two effective for women who were lost to follow-up “We have estimated, however, that differences have narrowed,” he said. At options to prevent the disease, based on in the original report. Women on ta- this difference in the raloxifene-treated 8 years, there was no statistical signifi- 8 years of follow-up data for more than moxifen received 20 mg/day and those group represents 76% of tamoxifen’s cance between the two groups with a 19,000 women in the STAR trial. on raloxifene received 60 mg/day. chemopreventative benefit, which trans- risk ratio of 1.22 (P = .12). The relative While tamoxifen proved significantly At an average follow-up of 8 years, the lates into at 38% reduction in invasive risk of 1.22 favors tamoxifen, but ralox- more effective in preventing invasive breast relative risk of invasive breast cancer on breast cancers,” Dr.
    [Show full text]
  • Effects of Biologically Active Metabolites of Tamoxifen on the Proliferation Kinetics of MCF-7 Human Breast Cancer Cells in Vitro
    [CANCER RESEARCH 43, 4618-4624, October 1983] Effects of Biologically Active Metabolites of Tamoxifen on the Proliferation Kinetics of MCF-7 Human Breast Cancer Cells in Vitro Roger R. Reddel, Leigh C. Murphy, and Robert L. Sutherland1 Ludwig Institute for Cancer Research (Sydney Branch), University of Sydney, Sydney, New South Wales 2006, Australia ABSTRACT tumor tissues of patients treated with tamoxifen is DMT, with 4OHT being present at much lower concentrations (1, 7,13, 25). The effects of two major metabolites of tamoxifen, /V-de- Prompted no doubt in part by the early misidentification of the methyltamoxifen (DMT) and 4-hydroxytamoxifen (4OHT), on major metabolite as 4OHT, there has been considerable interest MCF-7 Å“il proliferation and cell cycle kinetic parameters were in the antiestrogenic and antitumor activity of 4OHT (2, 3, 6,15, compared with those of the parent compound. All three com 16, 33). In contrast, there have been very few studies on the pounds produced dose-dependent decreases in the rate of cell biological activity of DMT (6, 33). proliferation which were accompanied by decreases in the per In the present study, we have attempted to answer the follow centage of S- and G2-M-phase cells. 4OHT was 100- to 167-fold ing questions. Do the metabolites DMT and 40HT differ from more potent than both tamoxifen and DMT in producing these tamoxifen in their actions on the proliferation and cell cycle effects, and this was correlated with their relative binding affini kinetics of human breast cancer cells? What are the relative ties (RBAs) for the cytoplasmic estrogen receptor (ER) (17/3- potencies of these 3 compounds in their actions on such cells in estradiol = 100, 4OHT = 41, tamoxifen = DMT = 2).
    [Show full text]
  • Curriculum Vitae
    Professor Barry V L Potter Publications (1979 - 2015) Papers in refereed journals, patents, reviews and book chapters JOURNAL PAPERS 1. The effect of 17O and the magnitude of the 18O isotope shift in 31P nuclear magnetic resonance spectroscopy. G Lowe, B V L Potter, B S Sproat and W E Hull, J Chem Soc Chem Commun (1979) 733- 735. 2. Bacteriostatic properties of fluoro-analogues of 5(2-hydroxyethyl)-4-methyl thiazole, a metabolic intermediate in thiamine biosynthesis. G Lowe and B V L Potter, J Chem Soc Perkin Trans I (1980) 9, 2026-2028. 3. The synthesis, absolute configuration and circular dichroism of the enantiomers of fluorosuccinic acid. G Lowe and B V L Potter, J Chem Soc Perkin Trans I (1980) 9, 2029-2032. 4. Evidence against a step-wise mechanism for the fumarase-catalysed dehydration of (2S)- malate. V T Jones, G Lowe and B V L Potter, Eur J Biochem (1980) 108, 433-437. 5. A stereochemical investigation of the cyclisation of D-glucose-6[16O,17O,18O]-phosphate and adenosine 5'[16O,17O,18O]-phosphate. R L Jarvest, G Lowe and B V L Potter, J Chem Soc Chem Commun (1980) 1142-1145. 6. The stereochemistry of phosphoryl transfer. G Lowe, P M Cullis, R L Jarvest, B V L Potter and B S Sproat, Phil Trans Roy Soc Lond Ser B (1981) 293, 75-92. 7. The stereochemistry of 2-substituted-2-oxo-4,5-diphenyl-1,3,2-dioxaphospholanes and the related chiral [16O,17O,18O]-phosphate monoesters. P M Cullis, R L Jarvest, G Lowe and B V L Potter, J Chem Soc Chem Commun (1981) 245- 246.
    [Show full text]
  • Version Introducing VHIO Foreword
    2017SCIENTIFIC REPORT Vall d'Hebron Institute of Oncology (VHIO) CELLEX CENTER C/Natzaret, 115 – 117 08035 Barcelona, Spain Tel. +34 93 254 34 50 www.vhio.net Direction: Amanda Wren Design: Parra estudio Photography: Katherin Wermke Vall d'Hebron Institute of Oncology (VHIO) | 2018 VHIO Scientific Report 2017 Index Scientific Report INTRODUCING VHIO CORE TECHNOLOGIES 02 Foreword 92 Cancer Genomics Group 08 2017: marking the next chapter of 94 Molecular Oncology Group VHIO's translational story 96 Proteomics Group 18 Scientific Productivity: research articles VHIO'S TRANSVERSAL CLINICAL 19 Selection of some of the most relevant TRIALS CORE SERVICES & UNITS articles by VHIO researchers published in 2017 100 Clinical Trials Office 25 A Golden Decade: reflecting on the 102 Research Unit for Molecular Therapy past 10 years of VHIO's translational of Cancer (UITM) – ”la Caixa” success story 104 Clinical Research Oncology Nurses 106 Clinical Research Oncology Pharmacy PRECLINICAL RESEARCH Unit 49 From the Director 50 Experimental Therapeutics Group RECENTLY INCORPORATED GROUPS 52 Growth Factors Group 110 Cellular Plasticity & Cancer Group 54 Mouse Models of Cancer Therapies 112 Experimental Hematology Group Group 114 Tumor Immunology 56 Tumor Biomarkers Group & Immunotherapy Group 116 Applied Genetics of Metastatic Cancer TRANSLATIONAL RESEARCH Group 61 From the Director 118 Chromatin Dynamics in Cancer Group 62 Gene Expression & Cancer Group 120 Prostate Cancer Translational Research Group 64 Stem Cells & Cancer Group 122 Radiomics Group CLINICAL
    [Show full text]
  • Chemotherapy Regimen: Tamoxifen
    Tamoxifen Chemotherapy Teaching The Center for Breast Cancer Mass General Cancer Center Center for Breast Cancer Topics to Discuss: • How Tamoxifen works • How Tamoxifen is taken • Storage, Handling, and Disposal • Drug Interactions • Side Effects & How to Manage • Supportive Care Resources • Your Breast Cancer Team • When to Call • Important Phone Numbers 2 What is TAMOXIFEN? • TAMOXIFEN (Nolvadex®) is an oral hormonal therapy used for hormone-sensitive breast cancers. • It works by blocking estrogen from binding to hormone receptors. This: • decreases the chance of breast cancer returning (recurrence) • decreases tumor size • delays tumors from spreading (progression) • Your care team will talk with you about how long you will need to take this therapy. – It is common to be on therapy for 5-10 years. 3 How is it taken? • TAMOXIFEN is a tablet you take by mouth. • Take one tablet (20 mg) once daily with or without food at the same time each day. – Do not take with grapefruit juice. • Swallow tablet whole with water. Do not break, chew, or crush your tablet. • If you miss a dose, skip the dose. Do not take 2 doses at the same time to make up for the missed dose. 4 Storing and Handling • Keep TAMOXIFEN in its original bottle or in a separate pill box – do not mix other medicines into the same pill box. • Store at room temperature in a dry location away from direct light. • Keep out of reach from children and pets. • Wash your hands before and after handling. – If someone else will be handling your TAMOXIFEN, have them wear gloves so they do not come into direct contact with the medicine.
    [Show full text]
  • Pharmacogenomics of Endocrine Therapy in Breast Cancer
    Journal of Human Genetics (2013) 58, 306–312 & 2013 The Japan Society of Human Genetics All rights reserved 1434-5161/13 OPEN www.nature.com/jhg REVIEW Pharmacogenomics of endocrine therapy in breast cancer James N Ingle The most important modality of treatment in the two-thirds of patients with an estrogen receptor (ER)-positive early breast cancer is endocrine therapy. In postmenopausal women, options include the selective ER modulators (SERMs), tamoxifen and raloxifene, and the ‘third-generation’ aromatase inhibitors (AIs), anastrozole, exemestane and letrozole. Under the auspices of the National Institutes of Health Global Alliance for Pharmacogenomics, Japan, the Mayo Clinic Pharmacogenomics Research Network Center and the RIKEN Center for Genomic Medicine have worked collaboratively to perform genome-wide association studies (GWAS) in women treated with both SERMs and AIs. On the basis of the results of the GWAS, scientists at the Mayo Clinic have proceeded with functional genomic laboratory studies. As will be seen in this review, this has led to new knowledge relating to endocrine biology that has provided a clear focus for further research to move toward truly personalized medicine for women with breast cancer. Journal of Human Genetics (2013) 58, 306–312; doi:10.1038/jhg.2013.35; published online 2 May 2013 Keywords: aromatase inhibitors; breast cancer; pharmacogenomics; tamoxifen INTRODUCTION trials were the double-blind, placebo-controlled NSABP P-1 trial of Breast cancer is the most common form of cancer in women both in tamoxifen8, and the double-blind NSABP P-2 trial that compared the United States1 and Japan.2 Endocrine therapy is the most raloxifene with tamoxifen.9,10 Combined, these two studies involved important modality in the two-thirds of patients with an estrogen over 33 000 women, which constituted about 59% of the world’s receptor (ER)-positive early breast cancer.
    [Show full text]
  • Aromatase Inhibitors
    FACTS FOR LIFE Aromatase Inhibitors What are aromatase inhibitors? Aromatase Inhibitors vs. Tamoxifen Aromatase inhibitors (AIs) are a type of hormone therapy used to treat some breast cancers. They AIs and tamoxifen are both hormone therapies, are taken in pill form and can be started after but they act in different ways: surgery or radiation therapy. They are only given • AIs lower the amount of estrogen in the body to postmenopausal women who have a hormone by stopping certain hormones from turning receptor-positive tumor, a tumor that needs estrogen into estrogen. If estrogen levels are low to grow. enough, the tumor cannot grow. AIs are used to stop certain hormones from turning • Tamoxifen blocks estrogen receptors on breast into estrogen. In doing so, these drugs lower the cancer cells. Estrogen is still present in normal amount of estrogen in the body. levels, but the breast cancer cells cannot get enough of it to grow. Generic/Brand names of AI’s As part of their treatment plan, some post- Generic name Brand name menopausal women will use AIs alone. Others anastrozole Arimidex will use tamoxifen for 1-5 years and then begin exemestane Aromasin using AIs. letrozole Femara Who can use aromatase inhibitors? Postmenopausal women with early stage and metastatic breast cancer are often treated with AIs. After menopause, the ovaries produce only a small amount of estrogen. AIs stop the body from making estrogen, and as a result hormone receptor-positive tumors do not get fed by estrogen and die. AIs are not given to premenopausal women because their ovaries still produce estrogen.
    [Show full text]
  • Pushing Estrogen Receptor Around in Breast Cancer
    Page 1 of 55 Accepted Preprint first posted on 11 October 2016 as Manuscript ERC-16-0427 1 Pushing estrogen receptor around in breast cancer 2 3 Elgene Lim 1,♯, Gerard Tarulli 2,♯, Neil Portman 1, Theresa E Hickey 2, Wayne D Tilley 4 2,♯,*, Carlo Palmieri 3,♯,* 5 6 1Garvan Institute of Medical Research and St Vincent’s Hospital, University of New 7 South Wales, NSW, Australia. 2Dame Roma Mitchell Cancer Research Laboratories 8 and Adelaide Prostate Cancer Research Centre, University of Adelaide, SA, 9 Australia. 3Institute of Translational Medicine, University of Liverpool, Clatterbridge 10 Cancer Centre, NHS Foundation Trust, and Royal Liverpool University Hospital, 11 Liverpool, UK. 12 13 ♯These authors contributed equally. *To whom correspondence should be addressed: 14 [email protected] or [email protected] 15 16 Short title: Pushing ER around in Breast Cancer 17 18 Keywords: Estrogen Receptor; Endocrine Therapy; Endocrine Resistance; Breast 19 Cancer; Progesterone receptor; Androgen receptor; 20 21 Word Count: 5620 1 Copyright © 2016 by the Society for Endocrinology. Page 2 of 55 22 Abstract 23 The Estrogen receptor-α (herein called ER) is a nuclear sex steroid receptor (SSR) 24 that is expressed in approximately 75% of breast cancers. Therapies that modulate 25 ER action have substantially improved the survival of patients with ER-positive breast 26 cancer, but resistance to treatment still remains a major clinical problem. Treating 27 resistant breast cancer requires co-targeting of ER and alternate signalling pathways 28 that contribute to resistance to improve the efficacy and benefit of currently available 29 treatments.
    [Show full text]
  • Aromatase Inhibitors and Their Use in the Sequential Setting
    Endocrine-Related Cancer (1999) 6 259-263 Aromatase inhibitors and their use in the sequential setting R C Coombes, C Harper-Wynne1 and M Dowsett1 Cancer Research Campaign, Department of Cancer Medicine, Division of Medicine, Imperial College School of Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK 1Academic Department of Biochemistry, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK (Requests for offprints should be addressed to R C Coombes) Abstract Over the past decade several novel aromatase inhibitors have been introduced into clinical practice. The discovery of these drugs followed on from the observation that the main mechanism of action of aminogluthemide was via inhibition of the enzyme aromatase thereby reducing peripheral levels of oestradiol in postmenopausal patients. The second-generation drug, 4-hydroxyandrostenedione (formestane), was introduced in 1990 and although its use was limited by its need to be given parenterally it was found to be a well-tolerated form of endocrine therapy. Third-generation inhibitors include vorozole, letrozole, anastrozole and exemestane, the former three being non-steroidal inhibitors, the latter being a steroidal inhibitor. All are capable of inhibiting aromatase action by >95% compared with 80% in the case of 4-hydroxyandrostenedione. The sequential use of different generations of aromatase inhibitors in the same patients is discussed. Studies suggest that an optimal sequence of these compounds may well result in longer remission in patients with hormone receptor positive tumours. Endocrine-Related Cancer (1999) 6 259-263 Introduction reduced, although formal trials comparing different dose regimens and using sufficient numbers of patients to The aromatase enzyme is a cytochrome P450-mediated provide the necessary statistical power have not been enzyme complex responsible for the conversion of the adequately carried out.
    [Show full text]
  • REVIEW Steroid Sulfatase Inhibitors for Estrogen
    99 REVIEW Steroid sulfatase inhibitors for estrogen- and androgen-dependent cancers Atul Purohit and Paul A Foster1 Oncology Drug Discovery Group, Section of Investigative Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK 1School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism, University of Birmingham, Birmingham B15 2TT, UK (Correspondence should be addressed to P A Foster; Email: [email protected]) Abstract Estrogens and androgens are instrumental in the maturation of in vivo and where we currently stand in regards to clinical trials many hormone-dependent cancers. Consequently,the enzymes for these drugs. STS inhibitors are likely to play an important involved in their synthesis are cancer therapy targets. One such future role in the treatment of hormone-dependent cancers. enzyme, steroid sulfatase (STS), hydrolyses estrone sulfate, Novel in vivo models have been developed that allow pre-clinical and dehydroepiandrosterone sulfate to estrone and dehydroe- testing of inhibitors and the identification of lead clinical piandrosterone respectively. These are the precursors to the candidates. Phase I/II clinical trials in postmenopausal women formation of biologically active estradiol and androstenediol. with breast cancer have been completed and other trials in This review focuses on three aspects of STS inhibitors: patients with hormone-dependent prostate and endometrial 1) chemical development, 2) biological activity, and 3) clinical cancer are currently active. Potent STS inhibitors should trials. The aim is to discuss the importance of estrogens and become therapeutically valuable in hormone-dependent androgens in many cancers, the developmental history of STS cancers and other non-oncological conditions.
    [Show full text]
  • Comparison Between Two Methods of Ovulation Induction: Clomiphene Alone and Clomiphene +Tamoxifen in PCOS Patients
    Iranian Journal of Reproductive Medicine Vol. 2. No.2 pp:74-77, 2004 Comparison between Two Methods of Ovulation Induction: Clomiphene alone and Clomiphene +Tamoxifen in PCOS Patients Mohammad Ghafourzadeh, M.D.1, Mojgan Karimi M.D.2, Mohammad Ali Karimazadeh, M.D. 3, and Mahshid Bokai,B.S. 4 1,2,3,4 Shahid Sadoughi Univerisity of Medical Sciences and Health Services of Yazd, Iran. Background: Infertility affects about 10-15% of reproductive-age couples. About half the causes of infertility are female related and approximately 40% of the cases are caused by anovulation, mostly in PCO women. Objective: This study was conducted to determine and compare the effects of two drug treatment regimens: higher dose of clomiphene and a combination of lower dose of clomiphene and tamoxifen in treating infertile women with PCO. Materials and Methods: The study was a randomized clinical trial conducted on 100 infertile patients who referred to Yazd-Iran Infertility Clinic between the years 2001-2003. The patients were selected who had received at least 3 periods of clomiphene, but no pregnancy had occurred. They were randomly divided into two groups. In the first group, clomiphene was increased to 100 mg and the second group 20 mg of tamoxifen was added to 50 mg of clomiphene from day 5-9 of menstruation cycle. Infertility duration, duration of medicine used, PCT score, endometrial thickness, ovulation, and pregnancy rate were studied in both groups. Results: Ovulation rate in clomiphene group was 54.9%; Tamoxifen + clomiphene group was 73.5% without significant differences in both groups. (PV = 0.053).
    [Show full text]