Lessons Learned
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimating Your Air Consumption
10/29/2019 Alert Diver | Estimating Your Air Consumption Estimating Your Air Consumption Advanced Diving Public Safety Diving By Mike Ange Mastering Neutral Buoyancy and Trim Military Diving Technical Diving Scientific Diving and Safety Program Oversight Seeing the Reef in a New Light ADVERTISEMENT Do you have enough breathing gas to complete the next dive? Here's how to find out. It is a warm clear day, and the Atlantic Ocean is like glass. As you drop into the water for a dive on North Carolina's famous U-352 wreck, you can see that the :: captain has hooked the wreck very near the stern. It is your plan to circumnavigate the entire structure and get that perfect photograph near the exposed bow torpedo tube. You descend to slightly below 100 feet, reach the structure and take off toward the bow. Unfortunately, you are only halfway, just approaching the conning tower, when your buddy signals that he is running low on air. Putting safety first, you return with him to the ascent line — cursing the lost opportunity and vowing to find a new buddy. If you've ever experienced the disappointment of ending a dive too soon for lack of breathing gas or, worse, had to make a hurried ascent because you ran out of air, it may surprise you to learn that your predicament was entirely predictable. With a little planning and some basic calculations, you can estimate how much breathing gas you will need to complete a dive and then take steps to ensure an adequate supply. It's a process that technical divers live by and one that can also be applied to basic open-water diving. -
Diving Rules at the University of Gothenburg
University of Gothenburg Regulatory document Dnr V 2013/511 Diving rules at the University of Gothenburg Published Medarbetarportalen.gu.se/Regulatory document Decision makers Vice-chancellor Manager function Personnel unit Decision date 2013-06-17 Validity until further notice Summary Rules for diving work at the University of Gothenburg responsibilities and organization as well as rules for systematic work environment management for diving activities Translated from the original in Swedish language by staff at the Marine Infrastructure-Kristineberg, Uni of Gothenburg, without any warrantee for correctness). Contents 1 General 1.1 Regulations and literature 1.2 All diving is voluntary 1.3 Exemption from diving rules 2 Validity of the regulations 2.1 Swedish visiting divers 2.2 Foreign visiting divers 3 Working environment responsibility 4 Diving activities leader 5 Regulations for diving and diving methods 5.1 Diving with hyperbaric shelf-contained underwater breathing apparatus (SCUBA) 5.1.1 Competence requirements 5.1.2 Medical examination etc. 5.1.3 Training in cardiopulmonary resuscitation (CPR-training) 5.1.4 Air transport after diving 5.1.5 Diving at altitude 5.1.6 Alcohol consumption 5.1.7 Certified equipment 5.1.8 Personal protective equipment 5.1.9 Maintenance of equipment 5.1.10 Diving air quality 5.1.11 Maintenance of skills 5.2 Snorkeling and free diving 6 Documentation 6.1 Common register for the University of Gothenburg 6.1.1 Records of medical examinations, CPR-training, diving competence etc. 6.1.2 Records of diving (diving journals) 6.2 Local records save on the currents drive 6.2.1 Inspection/service of dive equipment 6.2.2 Risk assessment and measures 6.2.3 Diving plan 6.3 Personal register 6.3.1 Personal diving book 6.4 Other registers 6.4.1 Reporting of work injuries, incidents and deviations in diving work 7 Leisure/recreational diving 7.1 SCUBA-diving 7.2 Snorkeling and free diving 1 General The vice-chancellor decided at a meeting at the 17th of June 2013 to established rules for diving at the University of Gothenburg. -
DNVGL-OS-E402 Diving Systems
OFFSHORE STANDARDS DNVGL-OS-E402 Edition January 2017 Diving systems The content of this service document is the subject of intellectual property rights reserved by DNV GL AS ("DNV GL"). The user accepts that it is prohibited by anyone else but DNV GL and/or its licensees to offer and/or perform classification, certification and/or verification services, including the issuance of certificates and/or declarations of conformity, wholly or partly, on the basis of and/or pursuant to this document whether free of charge or chargeable, without DNV GL's prior written consent. DNV GL is not responsible for the consequences arising from any use of this document by others. The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL offshore standards contain technical requirements, principles and acceptance criteria related to classification of offshore units. © DNV GL AS January 2017 Any comments may be sent by e-mail to [email protected] This service document has been prepared based on available knowledge, technology and/or information at the time of issuance of this document. The use of this document by others than DNV GL is at the user's sole risk. DNV GL does not accept any liability or responsibility for loss or damages resulting from any use of this document. CHANGES – CURRENT This document supersedes DNV-OS-E402 Offshore standard for Diving systems, October 2010 and DNV-DS- E403 Standard for Surface Diving Systems, July 2012 Changes in this document are highlighted in red colour. -
How Does the Diver Work? Preparing the Plastic Soda Bottle
How Does the Diver Work? Preparing the Plastic Soda Bottle Vv'hen you build a Cartesian diver, you are exploring three scientific properties of air: You will need to start collecting plastic soda bottles with caps. While (1) Air has weight almost any size bottle will work, the most popular sizes are 1 liter, 1.5 liter, and 2 liter bottles. Smaller children will find that the 1 and 1.5 liter (2) Air occupies space bottles are easiest to squeeze. The best soda bottles are those that are (3) Air exerts pressure. clear from top to bottom so that you can see everything that is happening in the bottle. Generally speaking, an object will float in a fluid if its density is less than that of the fluid (densltyemass/volume). If the object is more dense than the fluid, then the object will sink. For example, an empty bottle will float in a bathtub that is filled with water if the bottle is less dense than the water. However, as you start filling the bottle with water, its Here's an easy method for density increases and its buoyancy decreases. Eventually, the bottle will sink if it is filled too full with water. ~ cleaning the plastic The Cartesian diver, consisting of a plastic medicine dropper and soda bottles: a metal hex nut, will float or sink in the bottle of water depending on the water level in the bulb of the dropper. Vv'hen pressure is applied to the outside of the bottle, water is pushed up inside the diver, and the air • Rinse out the bottle using warm water. -
Plymouth Shipwrecks Commercial Diving in Spain
INTERNATIONAL DIVING SCHOOLS ASSOCIATION EDITION NO.26 JULY 2015 PLYMOUTH SHIPWRECKS COMMERCIAL DIVING IN SPAIN DEVELOPMENTS IN SICILIAN LAW THE ANNUAL MEETING Cygnus DIVE Underwater Wrist-Mountable Ultrasonic Thickness Gauge Wrist-mountable Large bright AMOLED display Measures through coatings On-board data logging capability Topside monitoring with measurements video overlayed Twin crystal probe option for extreme corrosion and anchor chains t: +44 (0)1305 265533 e: [email protected] w: www.cygnus-instruments.com Page 3 FROM THE Editors: Alan Bax and Jill Williams CHAIRMAN Art Editor: Michael Norriss International Diving Schools Association 47 Faubourg de la Madeleine 56140 MALESTROIT FRANCE Phone: +33 (0)2 9773 7261 e-mail: [email protected] web: Dear Members www.idsaworldwide.org F irst may I welcome the Aegean Diving Services as an Associate Member. Another year has gone by, and we are again looking at the Annual Meeting, this year teaching Level 1 and increased in Cork where our hosts – the through Level 2, 3 & 4 ? Irish Naval Diving Section – are offering a very warm welcome, ••Obtaining an ISO Approval both professionally and socially. ••Liaison with other organisa- It looks to be an interesting tions meeting and currently the Board Several of these items might is considering the following items affect the future shape and for the Agenda: operations of the Association, A Commercial Diving Instruc- •• therefore we would very much like tor Qualification to receive comments on these ••The need for an IDSA Diver items, fresh suggestions will be Training Manual most welcome, as will ideas for ••The revision of the Level 2 presentations - I am sure many Standard to include the use of members to know that Rory mixed gases in Inland /Inshore Golden has agreed to recount his Operations. -
Wessex Archaeology
Wessex Archaeology HMS/m A1, Bracklesham Bay Designated Site Assessment Archaeological Report Ref: 53111.03jj April 2006 ARCHAEOLOGICAL SERVICES IN RELATION TO THE PROTECTION OF WRECKS ACT (1973) HMS/M A1, BRACKLESHAM BAY, WEST SUSSEX DESIGNATED SITE ASSESSMENT: ARCHAEOLOGICAL REPORT Prepared by: Wessex Archaeology Portway House Old Sarum Park Salisbury WILTSHIRE SP4 6EB Prepared for: English Heritage Fort Cumberland Fort Cumberland Road Eastney Portsmouth PO4 9LD April 2006 Ref: 53111.03jj Wessex Archaeology Limited 2006 Wessex Archaeology Limited is a Registered Charity No.287786 HMS/m A1 Archaeological Report Ref: 53111.03jj HMS/M A1, BRACKLESHAM BAY, WEST SUSSEX DESIGNATED SITE ASSESSMENT: ARCHAEOLOGICAL REPORT Ref: 53111.03jj Summary Wessex Archaeology was commissioned by English Heritage to undertake a Designated Site Assessment of the HMS/m A1 site: a designated wreck located in Bracklesham Bay, West Sussex. The work was undertaken as part of the contract for Archaeological Services in Relation to the Protection of Wrecks Act (1973) (Figure 1). Wessex Archaeology diving operations took place in September and October 2005. A total of 11 dives were conducted, achieving a total dive time of 680 minutes (Appendix I). Diving investigations concentrated on an assessment of the wreck itself, supported by a photographic and video survey. A measured plan of the remains was produced. Two anomalies close to the site were also investigated, with one proving to be a corroded metal buoy and the other being a metal object of unknown function but not considered to be a part of the vessel. The hull structure was observed to be in and relatively good condition, despite areas of corrosion pitting along the outer casing on the top of the wreck. -
And Financial Implications of Unmanned
Disruptive Innovation and Naval Power: Strategic and Financial Implications of Unmanned Underwater Vehicles (UUVs) and Long-term Underwater Power Sources MASSACHUsf TTT IMef0hrE OF TECHNOLOGY by Richard Winston Larson MAY 0 8 201 S.B. Engineering LIBRARIES Massachusetts Institute of Technology, 2012 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 2014 © Massachusetts Institute of Technology 2014. All rights reserved. 2) Author Dep.atment of Mechanical Engineering nuaryL5.,3014 Certified by.... Y Douglas P. Hart Professor of Mechanical Engineering Tbesis Supervisor A ccepted by ....................... ........ David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering 2 Disruptive Innovation and Naval Power: Strategic and Financial Implications of Unmanned Underwater Vehicles (UUVs) and Long-term Underwater Power Sources by Richard Winston Larson Submitted to the Department of Mechanical Engineering on January 15, 2014, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Abstract The naval warfare environment is rapidly changing. The U.S. Navy is adapting by continuing its blue-water dominance while simultaneously building brown-water ca- pabilities. Unmanned systems, such as unmanned airborne drones, are proving piv- otal in facing new battlefield challenges. Unmanned underwater vehicles (UUVs) are emerging as the Navy's seaborne equivalent of the Air Force's drones. Representing a low-end disruptive technology relative to traditional shipborne operations, UUVs are becoming capable of taking on increasingly complex roles, tipping the scales of battlefield entropy. They improve mission outcomes and operate for a fraction of the cost of traditional operations. -
Darling Marine Center Local Shore Diving Guide
Darling Marine Center Local Shore Diving Guide University of Maine Scientific Diving Program Table of Contents Recommended Equipment List……………………………………………………………..2 Local Information…………………………………………………………………………...3 Recompression Chambers…………………………………………………………………..3 General Emergency Action Plan…………………………………………………………….3-4 Documentation……………………………………………………………………………….4 Dive Sites DMC Pier……………………………………………………………………………5-6 Kresge Point………………………………………………………………………….7-8 Lowes Cove Mooring Field…………………………………………………………..9-10 Pemaquid Point……………………………………………………………………….11-12 Rachel Carson Preserve………………………………………………………………13-15 Sand Cove…………………………………………………………………………….16-17 Thread of life…………………………………………………………………………18-19 Appendix………………………………………………………………………………………20 1 Recommended Equipment List • Dive flag • DAN oxygen and first aid kit • Spare tank • Extra weights • Save-a-dive kit • Dive slate/underwater paper (recording purposes) Recommended Personal Equipment • Exposure suit- minimum7mm wetsuit o Booties o Gloves o Hood o Wool socks • Fins • BCD • Mask, Snorkel • Weights • Surface marker buoy • Dive watch • Dive computer • Knife/cutting tool 2 Local Information: Fire, Medical, Police 911 Emergency Dispatch Lincoln County Emergency (207)563-3200 Center Nearest Hospital Lincoln Health-Miles (207)563-1234 Campus USCG Boothbay (207)633-2661 Divers Alert Network Emergency hotline 1-919-684-9111 Medical information 1-919-684-2948 Diving Safety Officer Christopher Rigaud (207)563-8273 Recompression Chambers: In the event of a diving accident, call 911 and facilitate transport of victim to a hospital or medical facility. The medical staff will determine whether hyperbaric treatment is needed. St. Mary’s Regional Lewiston, ME (207)777-8331 Will NOT accept Medical Center divers after 4:30pm St. Joseph’s Hospital Bangor, ME (207)262-1550 Typically, available after hours Wound and Beverly, MA (978)921-1210 Hyperbaric Medicine Basic Emergency Information: See Appendix for the approved Emergency Action Plan by the UMaine DCB. -
Aqua Safari and Living Underwater, Cozumel +
The Private, Exclusive Guide for Serious Divers June 2015 Vol. 30, No. 6 Aqua Safari and Living Underwater, Cozumel Two different dive operators, two different views IN THIS ISSUE: Aqua Safari and Living These days, I get many reader queries about two dive Underwater, Cozumel . 1. destinations in particular -- Raja Ampat and Cozumel. While we periodically cover Raja Ampat, it has been a Your Fellow Divers Need Your while since we’ve written about Cozumel, and because two Reader Reports . 3. of our long-time correspondents were heading there just weeks apart, I decided to run stories with contrasting Dehydration and Diving . 4. views about two different dive operators. I think this can be extremely helpful for divers who have never vis- Could This Diver’s Death Have ited Cozumel, and for those who have, perhaps our writers Been Prevented? . .6 . will offer you new options. Now, go get wet! Little Cayman, Cocos, Palau . 9. -- Ben Davison They Left Without the Dead * * * * * Diver’s Body . 11. Murder of Stuart Cove’s Dock listening for splendid toadfish Manager . 12. Dear Fellow Diver: Rarest Dive Watch Ever? . 13. One of my favorite fish is Cozumel’s endemic splen- Starving Underwater did toadfish, which I look for under low-ceiling recesses Photographers: Part I . 14. on the sand. The vibrant yellow fin borders and gray-, blue- and white-striped body pop out, making its discovery Dive Your Golf Course . 15. a real treat. As a repeat diver with Aqua Safari, I was Bubbles Up . 16. fortunate on this trip to be guided by Mariano, a Yucatan native who has been Bad Night on the Wind Dancer 17 with Aqua Safari for 20 years. -
Offshore-Brochure-Compact.Pdf
About Us Cybermarine is an ISO certified leading Offshore Design & Engineering Enterprise with global operations. Cybermarine is headquartered in Singapore and delivers projects worldwide through offices at Houston, Mumbai and Kolkata. Cybermarine as a company built from scratch, has developed innovative technology and processes over the years and is in a position to deliver wide ranging design and engineering solutions to the upstream oil & gas industry. Cybermarine, by utilizing its proficiency in engineering & extensive design experience has successfully delivered a range of design and engineering solutions on Jack- up Rigs, Semi-submersibles and FPSOs Design & Engineering projects are executed using innovative and well-developed technology, which include Work Break-Down, Design-Spirals and 3D Space Arrangements/Models. The execution is augmented by well laid-down processes consisting of work specification spreadsheets and process checklists. Our technical teams are organized as project teams and operations' teams. Project teams comprise of project managers and project engineers responsible for project management and client interaction. Project teams are stationed in all our offices in various geographical locations. Operations' teams comprising of Naval Architects/Engineers/Designers are responsible for project Deliveries and class approvals. They are stationed in Mumbai, India and Singapore. We also have a Marine Division catering to the Design and Engineering of Multi-purpose support vessels, Cargo Vessels and other special vessels used in dredging and marine construction. 02 Service Segments Our services extend to the entire range of Floating assets used in the Offshore Industry and covers following types of vessels: New Designs Offshore Support Vessels DSV MPV Accommodation Barges Well Stimulation Vessels Conversions Simple Vessels to high end complex Offshore Vessels Type Conversions, i.e. -
Dive Assessment & Log Sheet
Carlisle and District Divers Log Sheet – Greenends / Nestends Gully Location: Eyemouth Site: Greenends Gully / Date: Log Keeper: Post Dive Head Count: Nestends Gully Diver Details Pre-Dive Information Dive Planning Post-Dive Information Cylinder Nitrox % Nitrox Aux Gas Max Aux Gas Name* Grade Gas In Max Depth Time In Duration Gas Out Max Depth Stops Signature** Size O2 MOD Size / In Duration Out * Place divers in groups; dive leader to be highlighted. ** Sign to confirm that your log for the dive is correct. BSAC strongly recommend one third of cylinder capacity at termination of dive. Absolute minimum is 40 bar; anything less is regarded as unsafe and must be reported below. Pre-Dive Plan / Training*** Post Dive Comments*** *** Dive Leader to complete Version 7 – April 2013 Page 1 of 4 Carlisle and District Divers Dive Specific Assessment - Greenends / Nestends Gully Location: Eyemouth Date: Dive Manager: Assistant Dive Manager: Location of Phones or Radios: UK Emergencies at Sea: First Aider / Oxygen Administrator: Deputy First Aider / Oxygen Administrator: Coastguard: VHF DSC / Channel 16 Lives in danger: Mayday, Mayday DCI: Pan, Pan Location of Nearest A&E Facility: UK Emergencies on Land: Location of First Aid and Oxygen Kits: Access to First Aid and Oxygen Kits: Berwick Infirmary, DCI: 07831 151523 Infirmary Square, Berwick-upon-Tweed, DCI Scotland: 0845 408 6008 Northumberland. TD15 1LT DCI: 999 / 112 (Coastguard) 0844 811 8111 Near Drowning: 999 / 112 (Ambulance) Approximately 9 miles Lost Diver: 999 / 112 (Police) Weather Forecast: -
EQUIPMENT Scuba Cylinders
EQUIPMENT Scuba Cylinders: All scuba cylinders have markings stamped at the neck. These will include, regardless of the country of manufacture, the following: • Alloy designation (the metal type the cylinder is made from). • Hydrostatic test date • Working pressure • Manufacturer’s name • Serial number Some cylinders will have other markings depending on the country of origin. • Water capacity • Test pressure • + mark to indicate it can filled to10% more than its working pressure • Volume of air held at the working pressure • Distributor’s name • Visual inspection stamp • Batch number Cylinders used for gases other than air should be clearly labeled as such. Some countries require certain colour codes on the paint work to indicate this. In recreational and technical diving you will come across the following. Enriched Air Nitrox cylinders colour coded clearly green and yellow, a label should indicate the percentage of oxygen in the mix. Up to 40% for recreational divers and up to 100% for technical divers. In the latter case they will probably be also labeled as deco mix. Argon cylinders are used for dry suit inflation and should be clearly marked as such. These are never used to breathe from as you would die. Cylinders used for trimix are usually marked with the oxygen content followed by the nitrogen content – the remaining content being helium. All cylinders use for enriched air and technical diving should have a clearly labeled maximum operating depth (MOD). Or in the case of Trimix, Helitrox, Heliair or Heliox a minimum operating depth above which there is not enough oxygen to support life.