Diesel Particulate Filter: Exhaust Aftertreatment for the Reduction of Soot Emissions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Preventing Catalytic Converter Thefts
Ty Henshaw, Chief of Police IRWINDALE POLICE DEPARTMENT Preventing Catalytic Converter Thefts Catalytic converter thefts from vehicle exhaust systems continue to increase throughout the region. A catalytic converter is part of your car's exhaust system and is used to convert dangerous exhaust pollutants into less harmful emissions as they pass through your car's exhaust pipe. Catalytic converters have been required on all cars sold in the U.S since 1975. They don't seem very glamorous, but they are extremely attractive to thieves. The reason lies in the value of the metals used in the manufacturing of the converters. Catalytic converters contain platinum, rhodium, and palladium and their value to thieves across the nation has increased dramatically in recent years due to the black market resale value of these metals. Catalytic converters are relatively easy to steal and a skilled crook can remove one from a car in just a few minutes. Because they are concealed underneath the car, many owners do not even know their converter has been stolen until they notice the car running poorly and they hear a loud, rumbling exhaust noise. If you believe your car’s catalytic converter has been stolen, look under the car. The catalytic converter is a round canister that connects two pieces of the exhaust piping that runs from your engine to your tail pipe. If your converter has been taken, you'll see a gap or open space in the middle of the exhaust and you'll likely see evidence of the exhaust piping being cut away. Not only does the theft of a catalytic converter result in a poorly running vehicle, but it is also illegal to drive your car without one. -
Applications of Lean Combustion to Reduce Emissions
McNair Scholars Research Journal Volume 1 Article 6 2014 Applications of Lean Combustion to Reduce Emissions Narhari Khanal Embry-Riddle Aeronautical University Follow this and additional works at: https://commons.erau.edu/mcnair Recommended Citation Khanal, Narhari (2014) "Applications of Lean Combustion to Reduce Emissions," McNair Scholars Research Journal: Vol. 1 , Article 6. Available at: https://commons.erau.edu/mcnair/vol1/iss1/6 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in McNair Scholars Research Journal by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Khanal: Applications of Lean Combustion to Reduce Emissions Khanal 1 Applications of Lean Combustion to Reduce Emissions Narhari Khanal Office of Mc-Nair Scholar Embry- Riddle Aeronautical University Daytona Beach, FL 12/02/2013 Published by Scholarly Commons, 2014 1 McNair Scholars Research Journal, Vol. 1 [2014], Art. 6 Khanal 2 Contents Acknowledgement:...................................................................................................................... 3 Abstract: ...................................................................................................................................... 4 Applications of lean combustion to reduce emissions .................................................................... 5 Introduction: ............................................................................................................................... -
TECHNICAL SERVICE BULLETIN 2.0L Ecoboost
Page 1 of 8 TECHNICAL SERVICE BULLETIN 19-2346 2.0L EcoBoost - Coolant In Cylinders, White Exhaust Smoke 19 December 2019 And/Or Illuminated MIL This bulletin supersedes 19-2208. Reason for update: Replace Awareness/Interim Message Model: Ford 2015-2018 Edge 2017-2019 Escape 2017-2019 Fusion Lincoln 2017-2019 MKC 2017-2019 MKZ Summary This article supersedes TSB 19-2208 to update the parts list. Issue: Some 2015-2018 Edge and 2017-2019 Fusion/MKZ/Escape/MKC vehicles equipped with a 2.0L EcoBoost engine may exhibit a low coolant level, white exhaust smoke and/or a runs rough condition with or without an illuminated malfunction indicator lamp (MIL). Diagnostic trouble codes (DTCs) may include P0300, P0301-P0304, P0316, P0217, P1285 and/or P1299 stored in powertrain control module (PCM). This may be due to coolant intrusion into the cylinder. To correct the condition, follow the Service Procedure steps to replace the long block engine assembly. Action: Follow the Service Procedure steps to correct the condition on vehicles that meet all of the following criteria: • One of the following vehicles: - 2015-2018 Edge - 2017-2019 Fusion/MKZ built on or before 8-Apr-2019 - 2017-2019 Escape built on or before 16-May-2019 - 2017-2019 MKC built on or before 18-Apr-2019 • 2.0L EcoBoost engine • Presence of coolant in the engine cylinders, white exhaust smoke and/or a runs rough condition with or without an illuminated MIL NOTE: Part availability for this TSB is initially limited and Dealers may experience temporary backorders that will be filled as quickly as possible. -
The Influence of the Exhaust System Leak on the Operating Parameters of a Turbocharged Spark Ignition Engine
I Eksploatacja i testy Krystian HENNEK, Mariusz GRABA THE INFLUENCE OF THE EXHAUST SYSTEM LEAK ON THE OPERATING PARAMETERS OF A TURBOCHARGED SPARK IGNITION ENGINE Turbocharging of an internal combustion engine is the most common technique to improve an engines’ performance. In present it is not hard to meet vehicles on the road with turbocharged SI engines, which have a high mileage, and because of this fact there is a high risk of exhaust systems leak. This might have its influence not only on the emissions, but also on the vehicles performance. Thereby this dissertation shows the comparative analysis of the influence of exhaust system leak in the catalyzer input on the exhaust gasses composition in the catalyzer output and the operation parameters of an turbocharged SI engine. During the research some parameters were recorded and compared, e. g.: the engines power and torque, the injectors opening time, the oxygen sensors voltage signals in the input and in the output of the catalyzer, the concentration of harmful gasses in the exhaust tailpipe. The research was conducted with the use of a single roller MAHA MSR 500 chassis dynamome- ter. A series of torque measurements was performed. Under these measurements a simulation of the exhaust system leakage of a turbocharged SI passenger car engine was made. As a result three variations of the wideband oxygen sensor acting were reached. The wideband sensor is mounted between the turbocharger unit and the input of the catalyzer. In the test the influence of the leakage on the injector’s opening time and the composition of harmful exhaust substances were pointed. -
Developmental Study of Soot-Oxidation Catalysts for Fireplaces: the Effect of Binder and Preparation Techniques on Catalyst Texture and Activity
catalysts Article Developmental Study of Soot-Oxidation Catalysts for Fireplaces: The Effect of Binder and Preparation Techniques on Catalyst Texture and Activity Pauliina Nevalainen, Niko Kinnunen * and Mika Suvanto University of Eastern Finland, Department of Chemistry, P. O. Box 111, FI-80101, Joensuu, Finland; Pauliina.Nevalainen@uef.fi (P.N.); mika.suvanto@uef.fi (M.S.) * Correspondence: niko.kinnunen@uef.fi Received: 8 October 2019; Accepted: 13 November 2019; Published: 15 November 2019 Abstract: An awareness of increasing climate and health problems has driven the development of new functional and affordable soot-oxidation catalysts for stationary sources, such as fireplaces. In this study, Al(OH)3, water glass and acidic aluminium phosphate binder materials were mixed with soot-oxidation catalysts. The effect of the binder on the performance of the Ag/La-Al2O3 catalyst was examined, while the Pt/La-Al2O3 catalyst bound with Al(OH)3 was used as a reference. Soot was oxidised above 340 ◦C on the Ag/La-Al2O3 catalyst, but at 310 ◦C with same catalyst bound with Al(OH)3. The addition of water glass decreased the catalytic performance because large silver crystals and agglomeration resulted in a blockage of the support material’s pores. Pt/La-Al2O3 bound with Al(OH)3 was ineffective in a fireplace environment. We believe that AgOx is the active form of silver in the catalyst. Hence, Ag/La-Al2O3 was shown to be compatible with the Al(OH)3 binder as an effective catalyst for fireplace soot oxidation. Keywords: binder; silver; Al(OH)3; fireplace; soot emission 1. -
Are Black Carbon and Soot the Same? Title Page
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 12, 24821–24846, 2012 Atmospheric www.atmos-chem-phys-discuss.net/12/24821/2012/ Chemistry ACPD doi:10.5194/acpd-12-24821-2012 and Physics © Author(s) 2012. CC Attribution 3.0 License. Discussions 12, 24821–24846, 2012 This discussion paper is/has been under review for the journal Atmospheric Chemistry Are black carbon and Physics (ACP). Please refer to the corresponding final paper in ACP if available. and soot the same? P. R. Buseck et al. Are black carbon and soot the same? Title Page P. R. Buseck1,2, K. Adachi1,2,3, A. Gelencser´ 4, E.´ Tompa4, and M. Posfai´ 4 Abstract Introduction 1School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85282, USA Conclusions References 2 Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85282, USA Tables Figures 3Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan 4Department of Earth and Environmental Sciences, University of Pannonia, Veszprem,´ J I Hungary J I Received: 1 September 2012 – Accepted: 3 September 2012 – Published: 21 September 2012 Back Close Correspondence to: P. R. Buseck ([email protected]) Full Screen / Esc Published by Copernicus Publications on behalf of the European Geosciences Union. Printer-friendly Version Interactive Discussion 24821 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract ACPD The climate change and environmental literature, including that on aerosols, is replete with mention of black carbon (BC), but neither reliable samples nor standards exist. 12, 24821–24846, 2012 Thus, there is uncertainty about its exact nature. -
2.2 Sewage Sludge Incineration
2.2 Sewage Sludge Incineration There are approximately 170 sewage sludge incineration (SSI) plants in operation in the United States. Three main types of incinerators are used: multiple hearth, fluidized bed, and electric infrared. Some sludge is co-fired with municipal solid waste in combustors based on refuse combustion technology (see Section 2.1). Refuse co-fired with sludge in combustors based on sludge incinerating technology is limited to multiple hearth incinerators only. Over 80 percent of the identified operating sludge incinerators are of the multiple hearth design. About 15 percent are fluidized bed combustors and 3 percent are electric. The remaining combustors co-fire refuse with sludge. Most sludge incinerators are located in the Eastern United States, though there are a significant number on the West Coast. New York has the largest number of facilities with 33. Pennsylvania and Michigan have the next-largest numbers of facilities with 21 and 19 sites, respectively. Sewage sludge incinerator emissions are currently regulated under 40 CFR Part 60, Subpart O and 40 CFR Part 61, Subparts C and E. Subpart O in Part 60 establishes a New Source Performance Standard for particulate matter. Subparts C and E of Part 61--National Emission Standards for Hazardous Air Pollutants (NESHAP)--establish emission limits for beryllium and mercury, respectively. In 1989, technical standards for the use and disposal of sewage sludge were proposed as 40 CFR Part 503, under authority of Section 405 of the Clean Water Act. Subpart G of this proposed Part 503 proposes to establish national emission limits for arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, and total hydrocarbons from sewage sludge incinerators. -
Clean Air Facts
CClleeaann AAiirr FFaaccttss The Catalytic Converter: Technology for Clean Air Overview The catalytic converter has been the centerpiece of mobile source emission control throughout the world. Since the mid-1970s, catalysts equipped on passenger cars, from the first two-way oxidation catalysts to today's advanced three-way catalysts, have cut pollution by more than 10 billion tons in the U.S. Catalyst technology frequently has been hailed as one of the great automotive engineering achievements. Catalytic converters have been developed for use on trucks, buses, and motorcycles, as well as on construction equipment, lawn and garden equipment, and other non-road engines. The technology has been used on vehicles and equipment fueled with gasoline, diesel, propane, and natural gas. The History of the Automotive Catalyst • When strict vehicle emission standards were first set in the Clean Air Act Amendments of 1970, automakers did not possess the technology to significantly lower vehicle emissions. Catalytic converters for automobiles were developed to meet the standards set by the U.S. Congress. • Catalytic converters, or “catalysts,” were first installed on cars in the mid-1970s. • Over the past 30 years, catalyst technology has continued to advance to meet increasingly tighter emissions standards and greater durability requirements. How a Catalytic Converter Works • First generation catalytic converters, called “two-way converters,” only controlled carbon monoxide (CO) and hydrocarbon (HC) emissions. • In the early 1980s, catalysts were introduced that could control nitrogen oxides (NOx), in addition to controlling CO and HC. All cars sold in the U.S. today are equipped with this type of catalytic converter, called a three-way converter. -
The Foundation for Global Action on Persistent Organic Pollutants: a United States Perspective
The Foundation for Global Action on Persistent Organic Pollutants: A United States Perspective Office of Research and Development Washington, DC 20460 EPA/600/P-01/003F NCEA-I-1200 March 2002 www.epa.gov Disclaimer Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Cover page credits: Bald eagle, U.S. FWS; mink, Joe McDonald/Corbis.com; child, family photo, Jesse Paul Nagaruk; polar bear, U.S. FWS; killer whales, Craig Matkin. Contents Contributors ................................................................................................. vii Executive Summary ....................................................................................... ix Chapter 1. Genesis of the Global Persistent Organic Pollutant Treaty ............ 1-1 Why Focus on POPs? ................................................................................................. 1-2 The Four POPs Parameters: Persistence, Bioaccumulation, Toxicity, Long-Range Environmental Transport ......................................................... 1-5 Persistence ......................................................................................................... 1-5 Bioaccumulation ................................................................................................. 1-6 Toxicity .............................................................................................................. 1-7 Long-Range Environmental Transport .................................................................. 1-7 POPs -
Emission Performance of California and Federal Aftermarket TWC Converters Rasto Brezny and Joseph Kubsh Manufacturers of Emission Controls Association
2013-01-1298 Emission Performance of California and Federal Aftermarket TWC Converters Rasto Brezny and Joseph Kubsh Manufacturers of Emission Controls Association Copyright © 2012 SAE International ABSTRACT represents 120,000 miles (for some California-certified Partial Zero Emission Vehicle (PZEV) vehicles, the useful life is 150,000 miles). Original equipment (OE) catalytic converters are designed to last the life of properly tuned and maintained vehicles. Many high mileage vehicles require a replacement converter because Due to the high durability requirements necessary to last the the original catalyst was damaged, destroyed, or removed, and full useful life (FUL) of a vehicle, the OE catalysts must use the cost of a new OE converter on an older vehicle is difficult high levels of precious metals and other expensive materials. to justify. In the U.S., a federal aftermarket converter program Over time, however, the emission reduction effectiveness of has been in place since 1986 (California in 1988) and it has an OE catalytic converter may be severely degraded or even resulted in the replacement of over 50 million converters. completely destroyed. Excessive vibration or shock, excessive Both Federal and California programs have required heat, lack of proper vehicle maintenance, or improper vehicle aftermarket converters to meet minimum performance and operation can cause catalyst failures. Contaminants from durability standards. lubricating oil such as phosphorus, calcium and zinc have been found to poison catalysts over time [1]. In addition, converters can be structurally damaged in accidents or if the Increasingly tighter emission standards and durability vehicle hits an obstruction such as a large rock or debris on the requirements for new light-duty vehicles have resulted in road. -
Black Carbon's Properties and Role in the Environment
Sustainability 2010, 2, 294-320; doi:10.3390/su2010294 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Black Carbon’s Properties and Role in the Environment: A Comprehensive Review Gyami Shrestha 1,*, Samuel J. Traina 1 and Christopher W. Swanston 2 1 Environmental Systems Program, Sierra Nevada Research Institute, University of California- Merced, 5200 N. Lake Road, Merced, CA 95343, USA; E-Mail: [email protected] 2 Northern Institute of Applied Carbon Science, Climate, Fire, & Carbon Cycle Science Research, Northern Research Station, USDA Forest Service, 410 MacInnes Drive, Houghton, MI 49931, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 13 November 2009 / Accepted: 7 January 2010 / Published: 15 January 2010 Abstract: Produced from incomplete combustion of biomass and fossil fuel in the absence of oxygen, black carbon (BC) is the collective term for a range of carbonaceous substances encompassing partly charred plant residues to highly graphitized soot. Depending on its form, condition of origin and storage (from the atmosphere to the geosphere), and surrounding environmental conditions, BC can influence the environment at local, regional and global scales in different ways. In this paper, we review and synthesize recent findings and discussions on the nature of these different forms of BC and their impacts, particularly in relation to pollution and climate change. We start by describing the different types of BCs and their mechanisms of formation. To elucidate their pollutant sorption properties, we present some models involving polycyclic aromatic hydrocarbons and organic carbon. Subsequently, we discuss the stability of BC in the environment, summarizing the results of studies that showed a lack of chemical degradation of BC in soil and those that exposed BC to severe oxidative reactions to degrade it. -
Addressing Persistent Organic Pollutants
Minnesota Journal of Law & Inequality Volume 30 Issue 1 Article 3 June 2012 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burleson Stephanie Dodson Dougherty Follow this and additional works at: https://lawandinequality.org/ Recommended Citation Elizabeth Burleson & Stephanie Dodson Dougherty, Arctic Justice: Addressing Persistent Organic Pollutants, 30(1) LAW & INEQ. 57 (2012). Available at: https://scholarship.law.umn.edu/lawineq/vol30/iss1/3 Minnesota Journal of Law & Inequality is published by the University of Minnesota Libraries Publishing. 57 Arctic Justice: Addressing Persistent Organic Pollutants Elizabeth Burlesont & Stephanie Dodson Doughertytt Introduction Persistent Organic Pollutants (POPs), anthropogenic chemicals produced for or by agricultural and industrial uses, contaminate all regions of the world.! There are three general categories of POPs: pesticides (including insecticides, herbicides, and fungicides), industrial chemicals, and unintentionally produced byproducts of certain chemical and combustion processes.2 The pesticide dichlorodiphenyltrichloroethane (DDT) is perhaps the most well known of the POPs.' It was heavily relied upon during World War II to control the spread of certain diseases and is still used to control malaria in several developing nations.' Another POP is a class of chemicals collectively known as polychlorinated biphenyls (PCBs), which are widely used as dielectric fluid in transformers and capacitors. Dioxins are an example of unintentionally produced POPs.' These are chemicals released by incomplete combustion or by the manufacture of certain pesticides.' Although these chemicals are produced for beneficial purposes (or as a byproduct), it has become apparent t. Professor Elizabeth Burleson has an LL.M. from the London School of Economics and Political Science and a J.D. from the University of Connecticut School of Law.