Marine Aquaculture in Turkey

Total Page:16

File Type:pdf, Size:1020Kb

Marine Aquaculture in Turkey MARINE AQUACULTURE IN TURKEY Edited by Akın CANDAN Süheyla KARATAŞ Hüseyin KÜÇÜKTAŞ İbrahim OKUMUŞ MARINE AQUACULTURE IN TURKEY 2007 İstanbul-Turkey Edited by Akın CANDAN Süheyla KARATAŞ Hüseyin KÜÇÜKTAŞ İbrahim OKUMUŞ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission from the Turkish Marine Research Foundation (TÜDAV) The finding, interpretations and conclusions expressed in this publication are entirely those of authors and should not be attributed in any manner to the Turkish Marine Research Foundation (TÜDAV). Texts are as originally submitted. Citation: CANDAN, A., KARATAŞ, S., KÜÇÜKTAŞ, H., OKUMUŞ, İ. (Eds.), 2007. “Marine Aquaculture in Turkey” Turkish Marine Research Foundation. Istanbul TURKEY. Publication Number: 27 A. CANDAN Fisheries Faculty, Istanbul University, Istanbul, TURKEY S. KARATAŞ Fisheries Faculty, Istanbul University, Istanbul, TURKEY H. KÜÇÜKTAŞ Fish Molecular Genetics and Biotechnology Laboratory, Auburn University, Auburn, USA İ. OKUMUŞ Fisheries Faculty, Rize University, TURKEY Copyright: Türk Deniz Araştırmaları Vakfı (Turkish Marine Research Foundation) ISBN: 978-975-8825-18-9 Avaible from: Türk Deniz Araştırmaları Vakfı-Turkish Marine Research Foundation (TÜDAV) P.O. Box 10 Beykoz/ISTANBUL-TURKEY Tel: +90 216 424 07 72 Fax: + 90 216 424 07 71 Web: www.tudav.org e-mail: [email protected] Cover picture: FEZA TONAY Oceanus and Thetis Roman mosaic (400 A.C.) Antakya Museum, Antakya, Hatay, Turkey Printed by: Aktif Print Center Tel: +90 212 509 24 87 CONTENTS Preface……………………………………………………………………………………...I Past, Present and Future of the Marine Aquaculture İbrahim OKUMUŞ, Hayri DENİZ…………………………………………………………1 Culture of European Sea Bass (Dicentrarchus labrax), Gilthead Sea Bream (Sparus aurata) and Other Mediterranean Species Şahin SAKA, Haluk TUNCER, Kürşat FIRAT, Oğuz UÇAL…………………………………….11 Trout Farming Yılmaz EMRE, İbrahim OKUMUŞ, Özerdem MALTAŞ…………………………………………21 Developments in Turbot Farming Atilla ÖZDEMİR…………………………………………………………………………………..33 Sturgeon Aquaculture Devrim MEMİŞ……………………………………………………………………………………49 Fishing and Farming of the Bluefin Tuna (Thunnus thynnus L.) F. Saadet KARAKULAK………………………………………………………………………….61 Crustacean and Shellfish Production Metin KUMLU, Aynur LÖK………………………………………………………………………….71 Aquafeed Industry Ahmet Adem TEKİNAY, Derya GÜROY, Nazan ÇEVİK……………………………………….81 Marine Fish Feed and Feeding Erdal ŞENER, Mustafa YILDIZ…………………………………………………………………...89 Important Bacterial, Viral Diseases and Treatment in Marine Aquaculture Süheyla KARATAŞ, Akın CANDAN……………………………………………………………..99 Marketing and Economic Perspective Hakan ÖZGÜLER………………………………………………………………………………….117 Aquaculture Legislation Erkan GÖZGÖZOĞLU…………………………………………………………………………….127 PREFACE This book, containing up-to-date information about marine aquaculture in Turkey was prepared to provide a projection about Turkish marine aquaculture, to the world literature and the aquaculture sector and prepared with a collective effort from scientists from different institutions, experts from related government agencies and representatives of the aquaculture sector. Marine aquaculture is developing rapidly not only in Turkey but also in the entire world. While each individual chapter of this book presents the current status and the future projections of marine aquaculture from the beginning of the scientific and sectoral milestones of aquaculture, the general assessment of the overall subject is left to the reader. I would like to thank Prof. Dr. Bayram Öztürk and all others involved in preparing this book for bringing us together with the hope that this book will help everybody to understand the importance and the impact of marine aquaculture as a whole, not just as a matter of increasing aquaculture production output in Turkey. I am very grateful for support and contributions of Kılıç Groups, Akuadan, Turbotsan, Agromarin. Prof.Dr. Akın CANDAN Board Member Turkish Marine Research Fundation. PAST, PRESENT AND FUTURE OF THE MARINE AQUACULTURE İbrahim OKUMUŞ1 Hayri DENİZ2 1Rize University, Faculty of Fisheries, Fener Mah., 53100 Rize, TURKEY 2 MARA, DG for Agricultural Production and Development, Department of Fisheries, Ankara, TURKEY 1. INTRODUCTION Turkey is a large country with a size of about 779,452 square kilometres and has a relatively young population approaching 70 million, which is increasing at around 1.5 percent a year. The country has rich and diverse aquatic resources ranging from fresh to brackish and marine: 8,333 km of coast line, 151,080 square kilometres of economic coastal zone, 177,714 km total river length, around 900,000 ha natural lakes, and 500,000 ha of dam reservoirs (ÇELIKKALE et al., 1999, Table 1). Despite of these large resources, Turkish fisheries has stagnated at an annual production of around 600,000 tons and depends mainly on small-scale and largely small pelagic species. Therefore, marine aquaculture has been seen as an alternative source for marine capture fisheries, potentially relieving the pressure on the capture fishery sector. Table 1. Data on Turkish coastline Marine Resource Areas Coastline (km) Aquaculture/fishing Area (ha) Black Sea, Aegean Sea and Mediterranean 6,892 23,475,000 Sea of Marmara, Bosporus and Dardanelles 1,441 1,132,200 Total 8,333 24,607,200 Aquaculture is an important economic activity in the coastal and rural areas of many countries. It offers opportunities to alleviate poverty, creates employment, helps community development, reduces overexploitation of natural aquatic resources, and contributes enhancing food security. Due to the increasing worldwide demand for aquatic products, aquaculture is one of the most important and fastest growing sectors - not only within fisheries and but also within the food production sector. Turkey’s coastal resources for aquaculture are exceptional. A wide diversity of aquatic species can be farmed in brackish or salt water using a variety of production systems. Today marine aquaculture plays an increasingly important role in the production of fishery products. In 2005, its share of total aquaculture and fishery production were around 59% and 13% by volume respectively and it was much higher in value terms. The sector can be characterized by limited species (primarily three species: rainbow trout, sea bass and sea bream) and system diversity (cages), small farms, a production oriented approach and export dependent (EU) market. Current per capita fish consumption in Turkey is very low (around 7 kg) comparing to many European countries, but it is expected that the recent developments will lead to increases in domestic fish consumption. In fact there are some indicators that this is happening already. On the other hand, wild fish stocks are already under pressure from over- fishing, environmental degradation and pollution. About 41% of total marine fish production is from one species – anchovy. The country therefore needs aquaculture development for a number of reasons: • to support increased per capita fish consumption and service export market demand; • rational natural resource utilization and to develop recreational and ornamental fisheries; • restocking and ranching; • stabilize the domestic market. 2. HISTORY OF MARINE AQUACULTURE IN TURKEY Various forms of aquaculture have a long history around Mediterranean; however, although some form of extensive aquaculture has been practised in Mediterranean lagoons in Turkey, called “dalyan fisheries”, it was not a wide-spread traditional activity. Therefore, aquaculture in Turkey is a relatively young industry; it started with rainbow trout (Oncorhynchus mykiss) culture in 1970 and little happened in terms of marine aquaculture until 1985 when first sea bream (Sparus auratus) and sea bass (Dicentrarchus labrax) hatchery was established by Pinar Sea Products and on- 1 growing started in the Aegean Sea in 1985. First official aquaculture statistics were published in 1986 and marine fish culture was about 35 tons. It was not until “anchovy crisis” in late 1980s that aquaculture gained big attention as a potential. A sharp drop in production of Black Sea small pelagics has led to seeking new alternatives to traditional fisheries. During early 1990s Atlantic salmon (Salmo salar) and rainbow trout mariculture in the Black Sea has attracted considerable attention and efforts, but trials for salmon farming have to be terminated due to high water temperatures during summer. There were some attempts for kuruma shrimp (Penaeus japonicus) on the Mediterranean coast (OKUMUŞ et al., 2000) during mid- 1990s. Another major development was a joint project supported by Government of Japan on developing hatchery technology for Black Sea turbot (Psetta maxima) in Central Fisheries Research Institute in Trabzon. Hatchery technology has been developed for the turbot after 7 years project, but in spite of some trials, there is no commercial production yet. Initiation of bluefin tuna (Thunnus thynnus) farming or “fattening” in the Mediterranean and Aegean Sea was the main development at the beginning of the new millennium. Lack of shellfish production has been a limiting issue for diversity of Turkish aquaculture. Only recently mussel farming has started in the Aegean Sea. The EU import ban in 1998 due to difficulties implying Council Directive 91/491/EEC laying down the health conditions for the production and placing on the market of fishery products caused great economic difficulty for sea bass and
Recommended publications
  • Meristic and Morphometric Characteristics of the Black Sea Salmon, Salmo Labrax Pallas, 1814 Culture Line: an Endemic Species for Eastern Black Sea
    Journal of Fisheries eISSN 2311-3111 Volume 8 Issue 3 December 2020 Pages 935–939 pISSN 2311-729X Peer Reviewed | Open Access | Online First Short Communication Meristic and morphometric characteristics of the Black Sea salmon, Salmo labrax Pallas, 1814 culture line: an endemic species for Eastern Black Sea Nazli Kasapoglu1 Ekrem Cem Çankırılıgil2 Eyüp Çakmak2 Osman Tolga Özel2 1Department of Fisheries, Central Fisheries Research Institute, Trabzon, Turkey 2Department of Aquaculture, Central Fisheries Research Institute, Trabzon, Turkey Correspondence Ekrem Cem Çankırılıgil; Department of Aquaculture, Central Fisheries Research Institute, Trabzon, Turkey [email protected] and [email protected] Manuscript history Received 8 June 2020 | Revised 3 September 2020 | Accepted 7 September 2020 | Published online 21 September 2020 Citation Kasapoglu N, Çankırılıgil EC, Çakmak E, Özel OT (2020) Meristic and morphometric characteristics of the Black Sea salmon, Salmo labrax Pallas, 1814 culture line: an endemic species for Eastern Black Sea. Journal of Fisheries 8(3): 935–939. Abstract The Black Sea salmon Salmo labrax Pallas, 1814 is an essential species for the Turkish aquaculture sector, given increasing trends of the annual productions. To date, there are few studies on meristic and morphometric characteristics of this species. In this study, the fifth filial generation of the species was specified and studied for meristic and morphometric characteristics. The results obtained in this study were compared with available literature and a similarity was found between the study specimens and wild individuals. The morphological characteristics of any cultured species is valuable especially when a new culture generation is formed and therefore this study outcomes may provide important information to the literature.
    [Show full text]
  • Enviromental Indicators 2012
    REPUBLIC OF TURKEY MINISTRY OF ENVIRONMENT AND URBANIZATION GENERAL DIRECTORATE OF ENVIRONMENTAL IMPACT ASSESSMENT, PERMIT AND INSPECTION Environmental Inventory and Information Management Department ENVIROMENTAL INDICATORS 2012 20th YEAR OF ENVIRONMENTAL IMPACT ASSESSMENT ANKARA 2013 REPUBLIC OF TURKEY MINISTRY OF ENVIRONMENT AND URBANIZATION GENERAL DIRECTORATE OF ENVIRONMENTAL IMPACT ASSESSMENT, PERMIT AND INSPECTION Environmental Inventory and Information Management Department REPUBLIC OF TURKEY MINISTRY OF ENVIRONMENT AND URBANIZATION GENERAL DIRECTORATE OF ENVIRONMENTAL IMPACT ASSESSMENT, PERMIT AND INSPECTION Environmental Inventory and Information Management Department ENVIROMENTAL INDICATORS 2012 Release NO:17 FOR YOUR INFORMATION REQUESTS AND QUESTIONS ABOUT RELEASE CONTENT Environmental Inventory and Information Management Department Data Evaluation Divison Tel: +90 (312) 410 17 00 Fax:+90 (312) 419 21 92 e-mail: [email protected] Web http://www.csb.gov.tr/gm/ced/ ISBN 978-605-5294-22-9 T.R. MINISTRY OF ENVIRONMENT AND URBANIZATION GENERAL DIRECTORATE OF ENVIRONMENTAL IMPACT ASSESSMENT, PERMIT AND INSPECTION Vekâletler Cad. No:1 Bakanlıklar/Ankara PRODUCTION All rights of this publication is reserved to Republic of Turkey Ministry Of Environment and Urbanization due to the Law of Intellectual and Artistic Works numbered 5846. It shall not be reproduced or distributed without authorization by real or legal entity. One of the most important issues among our task as the Ministry is the submission of true and independent information about the environment to public.In addition to activities in creation of awareness, development, application and evaluation of environmental policies, our ministry is the most important public institute in the country which provide information for also public. Environmental indicators booklet we submitted as an important source establishes a bridge between past and present, gives opinion about environmental issues and guides all the related institutions and people.
    [Show full text]
  • TURKEY MINISTRY of INTERIOR TURKISH NATIONAL POLICE Anti-Smuggling and Organized Crime Department
    REPUBLIC OF TURKEY MINISTRY OF INTERIOR TURKISH NATIONAL POLICE Anti-Smuggling and Organized Crime Department 2014 NATIONAL REPORT (2013 data) TO THE EMCDDA by the Reitox National Focal Point TURKEY New Development, Trends and in-depth information on selected issues TURKISH MONITORING CENTRE FOR DRUGS AND DRUG ADDICTION (TUBİM) REITOX 1 TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................... 2 TURKISH NATIONAL FOCAL POINT STAFF PREPARING THE REPORT ........................... 7 DATA PROVIDING AGENCIES AND AGENCY REPRESENTATIVES ................................... 8 PREFACE .............................................................................................................................. 11 ABBREVIATIONS .................................................................................................................. 13 SUMMARY ............................................................................................................................. 15 NEW DEVELOPMENTS AND TRENDS ................................................................................ 29 SECTION 1 ............................................................................................................................ 29 DRUG POLICY: LAWS, STRATEGIES, AND ECONOMIC ANALYSES ............................... 29 1.1. Introduction ................................................................................................................ 29 1.2. Legal Framework
    [Show full text]
  • Sea Water (18‰ Salinity) in Tanks at Farm Condition
    6(2): 88-95 (2012) DOI: 10.3153/jfscom.2012011 Journal of FisheriesSciences.com E-ISSN 1307-234X © 2012 www.fisheriessciences.com RESEARCH ARTICLE ARAŞTIRMA MAKALESİ ROUTINE OXYGEN CONSUMPTION RATE OF THE BLACK SEA TROUT (Salmo trutta labrax Pallas, 1811) Bilal Akbulut∗1, Eyüp Çakmak1, İlker Zeki Kurtoğlu2, Ali Alkan1 1Central Fisheries Research Institute, Kasüstü Beldesi, Yomra, Trabzon-Turkey. 2Rize University, Fisheries Faculty, Milli Piyango Kampüsü, Rize-Turkey Abstract: Aim of this study is to determinate oxygen consumption rate of Black Sea trout, (Salmo trutta labrax Pallas, 1811) in the sea water (18‰ salinity) in tanks at farm condition. Two different fish size were used as small size and big size which average weights 54.1 ±3.06 (n=300) and 507.0 ±17.71 (n=32) g, average total lengths 17.7 ±0.36 and 35.5 ±0.44 cm respectively. Water temperature averaged 10.0 ±0.01°C during the experiment. The amount of dissolved oxygen was measured during 3 days inlet and outlet of each tank. Oxygen consumption rate was found to be in the range of 95.2-140.0 mgO2kg/h according to fish size. It was observed that O2 con- sumption increased in the daylight period. Keywords: Oxygen consumption, Black Sea trout, Salmo trutta labrax, Water quality Özet: Karadeniz Alabalığının (Salmo trutta labrax Pallas, 1811) Rutin Oksijen Tüketimi Bu çalışmanın amacı, Karadeniz Alabalığının (Salmo trutta labrax Pallas, 1811) deniz suyunda (‰18 tuzluluk) çiftlik şartlarında tanklarda oksijen tüketim oranını belirlemektir. Denemede ortalama ağırlıkları 54.1 ±3.06 g (n=300) ve 507.0 ±17.71 g (n=32) ve total boyları 17.7 ±0.36 ve 35.5 ±0.44 cm olan iki farklı balık grubu kullanılmıştır.
    [Show full text]
  • In Romanian Waters
    The Black Sea Trout, Salmo labrax Pallas, 1814 (Pisces: Salmonidae) in Romanian Waters 1 1 1 1 * Călin LAȚIU , Daniel COCAN2,3 , Paul UIUIU , Andrada IHUȚ1 , 1 Sabin-Alexandru1 University of Agricultural NICULA Sciences, Radu CONSTANTINESCU and Veterinary Medicine, Vioara Cluj-Napoca, MIREȘAN Cluj County, Romania, Mănăştur Street 3-5, 400372, Faculty of Animal Science and Biotechnologies, Department I Fundamental Sciences (Romania) 2 Centre for Research on Settlements and Urbanism, Faculty of Geography, “Babeş-Bolyai” University, Cluj- Napoca, 5-7 Clinicilor St., RO-400006, (Romania) 3 National Institute for Economic Research “Costin C. Kiriţescu”, Romanian Academy, Bucharest, Casa Academiei Române, 13 Septembrie St., no. 13, RO-05071 (Romania) *corresponding author: vioara.mireș[email protected] Bulletin UASVM Animal Science and Biotechnologies 77(2)/2020 ISSN-L 1843-5262; Print ISSN 1843-5262; Electronic ISSN 1843-536X DOI:10.15835/buasvmcn-asb: 2020.0017 Abstract Salmo labrax The review assembles chronological data on Black Sea trout ( ) from Romanian waters and brings up-to-date information related to the distribution of the species. The information used dates from 1909 to 2020 and includes books, articles, digital databases, field observations, and notes from different research fields such as ichthyology, biogeography, genetics, aquaculture, conservation,Salmo labrax and ecology. Global distribution, migration, meristic characters, and aquaculture of the species were analyzed based on the recorded data from the specialty literature. New information related to a possible population of inside the Carpathian Arch was discussed. In Romanian waters the species is found in the Black Sea, Danube, Danube Delta but the current paper proposes a new hypothesis, namely that resident populations can be found in rivers and lakes adjacent to the Carpathian Arch.
    [Show full text]
  • An INIRO DUCTION
    Introduction to the Black Sea Ecology Item Type Book/Monograph/Conference Proceedings Authors Zaitsev, Yuvenaly Publisher Smil Edition and Publishing Agency ltd Download date 23/09/2021 11:08:56 Link to Item http://hdl.handle.net/1834/12945 Yuvenaiy ZAITSEV шшшшшшишшвивявшиншшшаттшшшштшшщ an INIRO DUCTION TO THE BLACK SEA ECOLOGY Production and publication of this book was supported by the UNDF-GEF Black Sea Ecosystem Recovery Project (BSERP) Istanbul, TURKEY an INTRO Yuvenaly ZAITSEV TO THE BLACK SEA ECOLOGY Smil Editing and Publishing Agency ltd Odessa 2008 УДК 504.42(262.5) 3177 ББК 26.221.8 (922.8) Yuvenaly Zaitsev. An Introduction to the Black Sea Ecology. Odessa: Smil Edition and Publishing Agency ltd. 2008. — 228 p. Translation from Russian by M. Gelmboldt. ISBN 978-966-8127-83-0 The Black Sea is an inland sea surrounded by land except for the narrow Strait of Bosporus connecting it to the Mediterranean. The huge catchment area of the Black Sea receives annually about 400 ктУ of fresh water from large European and Asian rivers (e.g. Danube, Dnieper, Yeshil Irmak). This, combined with the shallowness of Bosporus makes the Black Sea to a considerable degree a stagnant marine water body wherein the dissolved oxygen disappears at a depth of about 200 m while hydrogen sulphide is present at all greater depths. Since the 1970s, the Black Sea has been seriously damaged as a result of pollution and other man-made factors and was studied by dif­ ferent specialists. There are, of course, many excellent works dealing with individual aspects of the Black Sea biology and ecology.
    [Show full text]
  • Epidemiological Characteristics of Infectious Hematopoietic Necrosis Virus (IHNV): a Review Peter Dixon, Richard Paley, Raul Alegria-Moran, Birgit Oidtmann
    Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review Peter Dixon, Richard Paley, Raul Alegria-Moran, Birgit Oidtmann To cite this version: Peter Dixon, Richard Paley, Raul Alegria-Moran, Birgit Oidtmann. Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review. Veterinary Research, BioMed Central, 2016, 47 (1), pp.63. 10.1186/s13567-016-0341-1. hal-01341515 HAL Id: hal-01341515 https://hal.archives-ouvertes.fr/hal-01341515 Submitted on 4 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dixon et al. Vet Res (2016) 47:63 DOI 10.1186/s13567-016-0341-1 REVIEW Open Access Epidemiological characteristics of infectious hematopoietic necrosis virus (IHNV): a review Peter Dixon1, Richard Paley1, Raul Alegria‑Moran2 and Birgit Oidtmann1* Abstract Infectious hematopoietic necrosis virus (IHNV, Rhabdoviridae), is the causative agent of infectious hematopoietic necrosis (IHN), a disease notifiable to the World Organisation for Animal Health, and various countries and trading areas (including the European Union). IHNV is an economically important pathogen causing clinical disease and mor‑ talities in a wide variety of salmonid species, including the main salmonid species produced in aquaculture, Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss).
    [Show full text]
  • Glossary of Japanese Fisheries Tirms 1
    states Department of the Interior, J. A. Krug, Secretary Fish and Wildlife Service, Albert M. Day, Director -... -------- Fishery Leaflet 220 Chica 0 54 Ill. 17126 March 194'1 GLOSSARY OF JAPANESE FISHERIES TERMS General Headquarters Supreme Commander for the Allied Powers Natural Resources Section Report No. 63 Tokyo 1946 GLOSSARY OF J.APAllISE FISHlWES ~S 1./ 1. Flsh and fishing play such an important role in Japanese life tbat an extensive and complicated fisheries vocabulary bas evolved. Bach of the hundreds of kinds of fish, shellfish, and seaweed bas several vernacular names, the wide alsortment of prepared seafood adds many ~ore words; and the variety of fishing gear bas a large specialized nomen­ clatllre. 2. An interpreter or translator who 1s not trained infisberias terminology finds himself contused by the many Japanese terms, some of which have no exact cOllnterpart in Engl1ah. The Japanese when translating their own phraseology into English make freqll8nt unintentional mistakes because of the complicated nature of the subject matter. Many organisms which are abllndant in Japan ~re not to be found in any part of the Englis~speaking world. and attempts at t~nslatio~ are often inacc~Ge. 3. This glossary was prepared to establish a standardized vocabulary It should help the members of ~e Occupation Forces to understand Japanese publications and reports. It should help the Jap~ese atlthor1ties in translating their reports into English. 4. The best accepted common names for commercially important marlne_ and freshwate;r animals and plants are presented. Countless local vernacu­ lar names for fish. shellfish. and seaweed are 1n use in various parts of Japan.
    [Show full text]
  • Biological-Diversity-In-The-Black-Sea-1.Pdf
    Biological Diversity in the Black Sea A Study of Change and Decline BLACK SEA ENVIRONMENTAL SERIES The Black Sea Environmental Series consists of thematic regional studies undertaken as part of a programme for improved management of the Black Sea environment. The Black Sea Environmental Programme (BSEP) was initiated in June 1993 at the urgent request of the governments of Bulgaria, Georgia, Romania, Russia, Turkey and Ukraine. The BSEP, funded by the Global Environment Facility and a number of collateral donors, is managed by the United Nations Development Programme (through UNOPS) in close cooperation with the World Bank and the United Nations Environment Programme, and donors. It closely coordinates the work of governmental and international experts, specialist UN Agencies, and national and international NGOs. The BSEP sets out to provide a sustainable basis for managing the Black Sea through capacity building, environmental assessment, the development and harmonization of policy and legislation, and by facilitating appropriate environmental investments. The Black Sea Environmental Series is brought to a wider audience in order to provide a baseline of peer-reviewed quantitative information on the Black Sea which can be employed by managers, researchers and teachers. The studies also serve as case histories for the eventual application of concepts agreed at the 1992 Rio de Janerio " Earth Summit" and which are embodied in "Agenda 21". Widely considered as the most damaged sea on our planet, the Black Sea should serve as an example to future generations of mankind's ability to understand, save and protect an internationally shared resource. GEF Black Sea Environmental Programme Marine Biological Diversity in the Black Sea A Study of Change and Decline by Yu.
    [Show full text]
  • Status Review for Oregon1s Umpqua River Sea-Run Cutthroat Trout
    NOAA Technical Memorandum NMFS-NWFSC-15 Status Review for Oregon1s Umpqua River Sea-Run Cutthroat Trout June 1994 u.s. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Northwest Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible due to time constraints. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-AFSC series is now being used by the Alaska Fisheries Science Center. This document should be cited as follows: Johnson~ O. W., R. S. Waples, T. C. Wainwright, K. G. Neely, F. W. Waknitz, and L. T. Parker. 1994. Status review for Oregon's Umpqua River sea-run cutthroat trout. U.S. Dep. Commer., NOAA Tech. Memo. NMFS­ NWFSC-15, 122 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-NWFSC-15 Status Review for Oregon1s Umpqua River Sea-Run Cutthroat Trout Orlay W. Johnson, Robin S. Waples, Thomas C. Wainwright, Kathleen G. Neely, F. William Waknitz, and L. Ted Parker National Marine Fisheries Service Northwest Fisheries Science Center Coastal Zone and Estuarine Studies Division 2725 Montlake Blvd. E., Seattle, WA 98112-2097 June 1994 U.S.
    [Show full text]
  • Elucidating the Decline of North American Atlantic Salmon with a Time-Dependent Matrix Model
    ELUCIDATING THE DECLINE OF NORTH AMERICAN ATLANTIC SALMON WITH A TIME-DEPENDENT MATRIX MODEL by Rui Zhang Submitted in partial fulfillment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia August 2017 c Copyright by Rui Zhang, 2017 To my beloved wife ii TABLE OF CONTENTS List of Tables ..................................... v List of Figures .................................... vi Abstract ........................................ vii List of Abbreviations Used ............................. viii Acknowledgements ................................. ix Chapter 1 Introduction ............................ 1 Chapter 2 Methods ............................... 7 2.1 Leslie model ................................. 7 2.2 Atlantic salmon model ........................... 11 2.3 Parameter estimates ............................. 13 2.4 Data set ................................... 17 2.4.1 Returned 1SW and 2SW salmon .................. 17 2.4.2 Fishery data ............................. 18 2.5 Optimization method ............................ 18 2.5.1 Evolutionary algorithm ....................... 18 2.5.2 Hessian analysis .......................... 21 2.5.3 Twin experiment .......................... 22 2.6 Population model experiments ....................... 23 2.6.1 Sensitivity experiment ....................... 23 2.6.2 Optimization over varying time segments ............. 23 2.6.3 Optimization with fecundity parameters only ........... 24 2.6.4 Incorporating fishery data ..................... 24 iii Chapter
    [Show full text]
  • GENUS Brachymystax Gunther, 1866
    FAMILY Salmonidae Jarocki (or Schinz), 1822 - salmonids SUBFAMILY Salmoninae Jarocki (or Schinz), 1822 - salmonids [=Dermopteres, Salmonidi, Salmones, Tutriformes (Truttiformes), Salvelini, Brachymystini, Oncorhynchus, Huchoninae, Salmothymini, Salvelinini, Parahuchoninae] GENUS Brachymystax Gunther, 1866 - lenoks, Asiatic trout, Manchurian trout Species Brachymystax lenok (Pallas, 1773) - sharp-snouted lenok [=coregonoides, swetowidowi] Species Brachymystax savinovi Mitrofanov, 1959 - Russian lenok Species Brachymystax tsinlingensis Li, 1966 - Yangtze lenok Species Brachymystax tumensis Mori, 1930 - blunt-snouted lenok [=czerskii] GENUS Hucho Gunther, 1866 - salmonids [=Epitomynis] Species Hucho bleekeri Kimura, 1934 - Bleeker's hucho Species Hucho hucho (Linnaeus, 1758) - huchen, huchen trout, Danube salmon [=germanorum] Species Hucho ishikawae Mori, 1928 - Korean hucho Species Hucho taimen (Pallas, 1773) - taimen [=fluviatilis, lossos] GENUS Oncorhynchus Suckley, 1861 - salmonids [=Hypsifario, Paraoncorhynchus, Parasalmo] Species Oncorhynchus aguabonita (Jordan, 1892) - golden trout, California golden trout [=roosevelti, whitei] Species Oncorhynchus apache (Miller, 1972) - apache trout, Arizona trout Species Oncorhynchus chrysogaster (Needham & Gard, 1964) - Mexican golden trout Species Oncorhynchus clarkii (Richardson, 1837) - cutthroat trout [=alpestris, alvordensis, bathoecetor, behnkei, bouvieri, brevicauda, carinatus, carmichaeli, crescentis, declivifrons, eremogenes, evermanni, henshawi, humboldtensis, jordani, lewisi, macdonaldi,
    [Show full text]