The First Permian Centipedes from Russia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scolopocryptops Zhijinensis Sp.N. and a Key to Species of Scolopocryptopine Centipedes from China (Scolopendromorpha: Scolopocryptopidae)
Arthropoda Selecta 30(1): 28–33 © ARTHROPODA SELECTA, 2021 Scolopocryptops zhijinensis sp.n. and a key to species of scolopocryptopine centipedes from China (Scolopendromorpha: Scolopocryptopidae) Scolopocryptops zhijinensis sp.n. è êëþ÷ äëÿ âèäîâ ñêîëîïîêðèïòîïèíîâûõ ãóáîíîãèõ èç Êèòàÿ (Scolopendromorpha: Scolopocryptopidae) Sha Qiao, Shu-Qing Xiao, Zhi-Yong Di Øà Êüÿî, Øó-Êèí Ñÿî, Æè-¨í Äè School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding 071002, Hebei, China; Email: [email protected] KEY WORDS: Cave, Chilopoda, taxonomy, new species, Guizhou, southern China. КЛЮЧЕВЫЕ СЛОВА: Пещера, Chilopoda, новый вид, Гижу, Юэный Китай. ABSTRACT. Scolopocryptops zhijinensis sp.n., a на Восточной Бразилии. Оба вида имеют такие сход- new scolopocryptopine centipede species, is described ные трогломорфные черты, как депигментирован- from a karst cave in Guizhou Province, China. By its ные покровы и длинные конечности. У S. zhijinensis morphological characters, S. zhijinensis sp.n. is close sp.n. членики усиков приземистые, лишь один ба- to S. troglocaudatus Chagas et Bichuette, 2015, a tro- зальный членик с редкими щетинками, а прочие globite from a siliciclastic area of eastern Brazil. They сегменты с густыми; передний край ногочелюстно- share similar troglomorphic features, such as depig- го коксостернума прямой, а зубные пластинки уз- mentation and long appendages. In S. zhijinensis sp.n., кие и не сросшиеся по средней линии; тергит пос- the antennal segments are stout, only one basal article леднего -
MYRIAPODS 767 Volume 2 (M-Z), Pp
In: R. Singer, (ed.), 1999. Encyclopedia of Paleontology, MYRIAPODS 767 volume 2 (M-Z), pp. 767-775. Fitzroy Dearborn, London. MYRIAPODS JVlyriapods are many-legged, terrestrial arthropods whose bodies groups, the Trilobita, Chelicerata, Crustacea, and the Uniramia, the are divided into two major parts, a head and a trunk. The head last consisting of the Myriapoda, Hexapoda, and Onychophora (vel- bears a single pair of antennae, highly differentiated mandibles (or vet worms). However, subsequent structural and molecular evidence jaws), and at least one pair of maxillary mouthparts; the trunk indicates that there are several characters uniting major arthropod region consists of similar "metameres," each of which is a func- taxa. Moreover, paleobiologic, embryologie, and other evidence tional segment that bears one or two pairs of appendages. Gas demonstrates that myriapods and hexapods are fiindamentally exchange is accomplished by tracheae•a branching network of polyramous, having two major articulating appendages per embry- specialized tubules•although small forms respire through the ological body segment, like other arthropods. body wall. Malpighian organs are used for excretion, and eyes con- A fourth proposal (Figure ID) suggests that myriapods are sist of clusters of simple, unintegrated, light-sensitive elements an ancient, basal arthropod lineage, and that the Hexapoda that are termed ommatidia. These major features collectively char- emerged as an independent, relatively recent clade from a rather acterize the five major myriapod clades: Diplopoda (millipeds), terminal crustacean lineage, perhaps the Malacostraca, which con- Chilopoda (centipeds), Pauropoda (pauropods), Symphyla (sym- tains lobsters and crabs (Ballard et al. 1992). Because few crusta- phylans), and Arthropleurida (arthropleurids). Other features cean taxa were examined in this analysis, and due to the Cambrian indicate differences among these clades. -
Permian Millipedes from the Fort Sill fissures of Southwestern Oklahoma, with Comments on Allied Taxa and Millipedes Preserved in Karstic Environments
Journal of Paleontology, 95(3), 2021, p. 586–600 Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (http:// creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use. 0022-3360/21/1937-2337 doi: 10.1017/jpa.2020.100 Permian millipedes from the Fort Sill fissures of southwestern Oklahoma, with comments on allied taxa and millipedes preserved in karstic environments Joseph T. Hannibal1 and William J. May2 1Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, Ohio 44106, USA <[email protected]> 2Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, Oklahoma 73072, USA <[email protected]> Abstract.—Permian millipedes are rare, especially so considering the relative abundance of millipedes in Carboniferous rocks. We report an early Permian millipede fauna containing three new genera and species of millipedes (Oklahoma- soma richardsspurense new genus new species, Karstiulus fortsillensis new genus new species, and Dolesea subtila new genus new species) found in fossil-producing pockets of the Fort Sill fissures exposed in the Dolese Quarry near Richards Spur, southwest Oklahoma, USA. These are the first new genera of invertebrates to be described from this site, one of the most prolific fossil-vertebrate sites in the world. -
Arachnides 76
Arachnides, 2015, n°76 ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 76 2015 0 Arachnides, 2015, n°76 LES PREDATEURS DES SCORPIONS (ARACHNIDA : SCORPIONES) G. DUPRE Dans leur revue sur les prédateurs de scorpions, Polis, Sissom & Mac Cormick (1981) relèvent 150 espèces dont essentiellement des espèces adaptées au comportement nocturne de leur proie (chouettes, rongeurs, carnivores nocturnes) mais également des espèces diurnes (lézards, rongeurs, carnivores....) qui débusquent les scorpions sous les pierres ou dans leurs terriers. Dans une précédente note (Dupré, 2008) nous avions effectué un relevé afin d'actualiser cette étude de 1981. Sept ans après, de nouvelles données sont présentées dans cette synthèse. Voici un nouveau relevé des espèces prédatrices. Nous ne faisons pas mention des scorpions qui feront l'objet d'un futur article traité avec le cannibalisme. Explication des tableaux: La première colonne correspond aux prédateurs, la seconde aux régions concernées et la troisième aux références. Dans la mesure du possible, les noms scientifiques ont été rectifiés en fonction des synonymies ou des nouvelles combinaisons appliquées depuis les dates de publication d'origine. ARTHROPODA ARACHNIDA SOLIFUGAE Solifugae Afrique du Nord Millot & Vachon, 1949; Punzo, 1998; Cloudsley-Thompson, 1977 Eremobates sp. USA Bradley, 1983 ARACHNIDA ARANEAE Acanthoscurria atrox Brésil Lourenço, 1981 Aphonopelma sp. et autres Amérique centrale Mazzotti, 1964 Teraphosidae Phormictopus auratus Cuba Teruel & De Armas, 2012 Brachypelma vagans Mexique Dor et al., 2011 Epicadus heterogaster Brésil Lourenço et al. 2006 Latrodectus sp. USA Baerg, 1961 L. hesperus USA Polis et al., 1981 L. mactans Cuba Teruel, 1996; Teruel & De Armas, 2012 L. -
A New Scolopendromorph Centipede from Belize
SOIL ORGANISMS Volume 81 (3) 2009 pp. 519–530 ISSN: 1864 - 6417 Ectonocryptoides sandrops – a new scolopendromorph centipede from Belize Arkady A. Schileyko Zoological Museum of Moscow State Lomonosov University, Bolshaja Nikitskaja Str.6, 103009, Moscow, Russia; e-mail: [email protected] Abs tract A new representative of the rare subfamily Ectonocryptopinae (Scolopocryptopidae) is described from western Belize as Ectonocryptoides sandrops sp. nov. Both previously known representatives of this subfamily ( Ectonocryptops kraepelini Crabill, 1977 and Ectonocryptiodes quadrimeropus Shelley & Mercurio, 2005) and the new species have been compared and the taxonomic status of the latter has been analysed. Keywords: Ectonocryptopinae, new species, Belize 1. Introduction Some years ago, working on exotic Scolopendromorpha from a collection of Prof. Alessandro Minelli I found one very small (ca 11–12 mm long) scolopendromorph centipede (Fig. 1). It had been collected by Francesco Barbieri in Mountain Pine Ridge of Western Belize (Fig. 2). With 23 pedal segments this blind centipede clearly belongs to the family Scolopocryptopidae Pocock, 1896. According to the very special structure of the terminal legs I have identified this animal as a new species of the very rare subfamily Ectonocryptopinae Shelley & Mercurio, 2005. The structure of the terminal legs (= legs of the ultimate body segment) is of considerable taxonomic importance in the order Scolopendromorpha. Commonly the terminal leg consists of 5 podomeres (prefemur, femur, tibia, tarsus 1, tarsus 2) and pretarsus. The first four podomeres are always present, when tarsus 2 and the pretarsus may both be absent. The terminal podomeres are the most transformable ones. There are six principle (or basic) types of terminal legs among scolopendromorph centipedes: 1) ‘common’ shape (the most similar to the locomotory legs), which is the least specialised (Fig. -
The Joggins Fossil Cliffs UNESCO World Heritage Site: a Review of Recent Research
The Joggins Fossil Cliffs UNESCO World Heritage site: a review of recent research Melissa Grey¹,²* and Zoe V. Finkel² 1. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada 2. Environmental Science Program, Mount Allison University, Sackville, New Brunswick E4L 1G7, Canada *Corresponding author: <[email protected]> Date received: 28 July 2010 ¶ Date accepted 25 May 2011 ABSTRACT The Joggins Fossil Cliffs UNESCO World Heritage Site is a Carboniferous coastal section along the shores of the Cumberland Basin, an extension of Chignecto Bay, itself an arm of the Bay of Fundy, with excellent preservation of biota preserved in their environmental context. The Cliffs provide insight into the Late Carboniferous (Pennsylvanian) world, the most important interval in Earth’s past for the formation of coal. The site has had a long history of scientific research and, while there have been well over 100 publications in over 150 years of research at the Cliffs, discoveries continue and critical questions remain. Recent research (post-1950) falls under one of three categories: general geol- ogy; paleobiology; and paleoenvironmental reconstruction, and provides a context for future work at the site. While recent research has made large strides in our understanding of the Late Carboniferous, many questions remain to be studied and resolved, and interest in addressing these issues is clearly not waning. Within the World Heritage Site, we suggest that the uppermost formations (Springhill Mines and Ragged Reef), paleosols, floral and trace fossil tax- onomy, and microevolutionary patterns are among the most promising areas for future study. RÉSUMÉ Le site du patrimoine mondial de l’UNESCO des falaises fossilifères de Joggins est situé sur une partie du littoral qui date du Carbonifère, sur les rives du bassin de Cumberland, qui est une prolongation de la baie de Chignecto, elle-même un bras de la baie de Fundy. -
[CIM] International Society for Myriapodology
Centre International de Myriapodologie [CIM] International Society for Myriapodology Newsletter n°4 (December 2019) Edited by Stylianos Simaiakis 1 New CIM Council and Board 2019-2021 The new CIM Council 2019-2021 comprises 13 members: Peter Decker (Germany) [President] Nesrine Akkari (Tunisia) [Vice-President] Stylianos Simaiakis (Greece) [General-Secretary] Jean-Jacques Geoffroy (France) [Associate-Secretary] Hans Reip (Germany) [Treasurer] Dragan Antic (Serbia) Lucio Bonato (Italy) Amazonas Chagas-Junior (Brazil) László Dányi (Hungary) Carsten Müller (Germany) Piyatida Pimvichai (Thailand) Petra Sierwald (USA) Varpu Vahtera (Finland) Cover Image: A micro-CT scan of a 100-million-year old millipede preserved in amber (offered by T. Wesener) 2 The 19TH International Congress of Myriapodology, Quindío, COLOMBIA, August 2021 FIRST MESSAGE TO THE MYRIAPODOLOGICAL COMMUNITY Warm greetings to all myriapodologists and onychophorologists of the World! We are pleased to announce that the next Congress of the International Society of Myriapodology will be held in Colombia, August 2021. First, we would like to thank the assistants to the 18th ICM in Budapest, Hungary, for their trust in our proposal for the headquarters of the 19th ICM. We have formed a Committee, that is eagerly working in organizing an event that lives up to your expectations. At the moment, we can communicate to the international myriapodological community that the event is going to take place in a country hotel located in the Colombian department of Quindío (within the coffee-producing region of Colombia), nestled in the Central Andes Mountain Range, with a pleasant mild climate throughout the year. We have selected this region for its breathtaking landscapes, its multiple tourist attractions, and because it was the location of previous international academic events, with excellent results. -
The Joggins Cliffs of Nova Scotia: B2 the Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H
GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B2 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White The Joggins Cliffs of Nova Scotia: B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Lyell & Co's "Coal Age Galapagos” B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia Dan Kontak, Jarda Dostal, -
<I>Scolopocryptops</I> Species from the Fiji Islands (Chilopoda
Scolopocryptopinae from Fiji 159 International Journal of Myriapodology 3 (2010) 159-168 Sofi a–Moscow On Scolopocryptops species from the Fiji Islands (Chilopoda, Scolopendromorpha, Scolopocryptopidae) Amazonas Chagas Júnior Departamento de Invertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, s/nº, São Cristóvão, Rio de Janeiro, RJ, CEP-20940-040, Brazil. E-mail: [email protected] Abstract Th e scolopocryptopine centipedes from Fiji Islands are revised. Two species belonging to the genus Scolo- pocryptops – S. aberrans (Chamberlin, 1920) and S. melanostoma Newport, 1845 – are recorded. Scolo- pocryptops aberrans is redescribed and illustrated for the fi rst time. Scolopocryptops miersii fi jiensis is a junior subjective synonym of S. aberrans, and S. verdescens is a junior subjective synonym of S. melanostoma. An emended diagnosis for S. melanostoma is presented. Key words centipede, Scolopocryptopinae, Dinocryptops, taxonomy Introduction Th e centipedes of the subfamily Scolopocryptopinae are blind scolopendromorphs with 23 pairs of legs, the prefemur of the ultimate legs with at least one dorsomedial and one ventral “spinous process”, a trochanteroprefemoral process on the forcipules (Shelley & Mercurio 2005), and most antennal sensilla emerging from a collar or tubercle (Koch et al. 2010). Th e subfamily comprises two genera, Scolopocryptops Newport, 1845 and Dinocryptops Crabill, 1953, and 27 species and 10 subspecies (unpublished data). Th e Scolopocryptopinae occur throughout much of the New World, in West Africa, and -
08-Schneider Et Al. (Arthropleura).P65
Lucas et al., eds., 2010, Carb-Permian transition in Cañon del Cobre. New Mexico Museum of Natural History and Science Bulletin 49. 49 EURAMERICAN LATE PENNSYLVANIAN / EARLY PERMIAN ARTHROPLEURID/TETRAPOD ASSOCIATIONS – IMPLICATIONS FOR THE HABITAT AND PALEOBIOLOGY OF THE LARGEST TERRESTRIAL ARTHROPOD JÖRG W. SCHNEIDER1, SPENCER G. LUCAS2, RALF WERNEBURG3 AND RONNY RÖßLER4 1 TU Bergakademie Freiberg, Institut für Geologie, B.v.Cotta-Strasse 2, D-09596 Freiberg, Germany; 2 New Mexico Museum of Natural History and Science, 1801 Mountain Road N.W., Albuquerque, New Mexico 87104; 3 Naturhistorisches Museum Schloss Bertholdsburg, Burgstrasse 6, D-98553 Schleusingen, Germany; 4 Museum für Naturkunde, Moritzstrasse 20, D-09111 Chemnitz, Germany Abstract—The giant arthropod Arthropleura was a common member of the late Paleozoic continental biota of paleo-equatorial biomes for more than 35 million years, from the Early Carboniferous late Visean (FOD; Middle Mississippian, Asbian/Brigantian) up to the Early Permian lower Rotliegend (LOD = ?LAD; Asselian). In Upper Pennsylvanian red beds in Cañon del Cobre of northern New Mexico, trackways of Arthropleura are present in strata that also yield body fossils of the amphibian Eryops. We review the Arthropleura tracksite from Cañon del Cobre, New Mexico, as well as other tracksites of this animal and arthropleurid/eryopid associations in order to better interpret the paleoenvironmental preference and the paleobiology of Arthropleura. This review supports the conclusion that Arthropleura was well adapted to alluvial environments of ever wet humid to seasonally dry and semihumid climates. Preferred habitats of semi-adult and adult Arthropleura were open, vegetated, river landscapes. They co-occurred in these habitats with semi-aquatic eryopid amphibians and terrestrial pelycosaurs. -
JOGGINS RESEARCH SYMPOSIUM September 22, 2018
JOGGINS RESEARCH SYMPOSIUM September 22, 2018 2 INTRODUCTION AND ACKNOWLEDGEMENTS The Joggins Fossil Cliffs is celebrating its tenth year as a UNESCO World Heritage Site! To acknowledge this special anniversary, the Joggins Fossil Institute (JFI), and its Science Advisory Committee, organized this symposium to highlight recent and current research conducted at Joggins and work relevant to the site and the Pennsylvanian in general. We organized a day with plenty of opportunity for discussion and discovery so we invite you to share, learn and enjoy your time at the Joggins Fossils Cliffs! The organizing committee appreciates the support of the Atlantic Geoscience Society for this event and in general. Sincerely, JFI Science Advisory Committee, Symposium Subcommittee: Elisabeth Kosters (Chair), Nikole Bingham-Koslowski, Suzie Currie, Lynn Dafoe, Melissa Grey, and Jason Loxton 3 CONTENTS Symposium schedule 4 Technical session schedule 5 Abstracts (arranged alphabetically by first author) 6 Basic Field Guide to the Joggins Formation______________________18 4 SYMPOSIUM SCHEDULE 8:30 – 9:00 am Registration 9:00 – 9:10 am Welcome by Dr. Elisabeth Kosters, JFI Science Advisory Committee Chair 9:10 – 10:30 am Talks 10:25 – 10:40 am Coffee Break and Discussion 10:45 – 12:00 pm Talks and Discussion 12:00 – 1:30 pm Lunch 1:30 – 4:30 pm Joggins Formation Field Trip 4:30 – 6:00 pm Refreshments and Wrap-up 5 TECHNICAL SESSION SCHEDULE Chair: Melissa Grey 9:10 – 9:20 am Peir Pufahl 9:20 – 9:30 am Nikole Bingham-Koslowski 9:30 – 9:40 am Michael Ryan 9:40 – 9:50 am Lynn Dafoe 9:50 – 10:00 am Matt Stimson 10:00 – 10:15 am Olivia King 10:15 – 10:25 am Hillary Maddin COFFEE BREAK Chair: Elisabeth Kosters 10:40 – 10:50 am Martin Gibling 10:50 – 11:00 am Todd Ventura 11:10 – 11:20 am Jason Loxton 11:20 – 11:30 am Nathan Rowbottom 11:30 – 11:40 am John Calder 11:40 – 12:30 Discussion led by Elisabeth Kosters LUNCH 6 ABSTRACTS Breaking down Late Carboniferous fish coprolites from the Joggins Formation NIKOLE BINGHAM-KOSLOWSKI1, MELISSA GREY2, PEIR PUFAHL3, AND JAMES M. -
Anatomy of <I>Ectonocryptoides</I> (Scolopocryptopidae: Ectonocryptopinae) and the Phylogeny of Blind Scolopendromor
Anatomy of Ectonocryptoides 51 International Journal of Myriapodology 3 (2010) 51-81 Sofi a–Moscow Anatomy of Ectonocryptoides (Scolopocryptopidae: Ectonocryptopinae) and the phylogeny of blind Scolopendromorpha (Chilopoda) Markus Koch1, Gregory D. Edgecombe2 & Rowland M. Shelley3 1 Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany. E-mail: [email protected] 2 Department of Palaeontology, Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail:[email protected] 3 Research Lab, North Carolina State Museum of Natural Science, MSC #1626, Raleigh NC 27699-1626, USA. E-mail: [email protected] Abstract Th e chilopod subfamily Ectonocryptopinae (Scolopocryptopidae) comprises rarely-encountered, small- bodied scolopendromorphs known only from Mexico and Belize. Th ree species have been described, one in Ectonocryptops Crabill, 1977, and two in Ectonocryptoides Shelley & Mercurio, 2005. External charac- ters ally this clade with the speciose Neotropical subfamily Newportiinae. Scanning electron microscopic documentation of the mouthparts, peristomatic structures and foregut in Ectonocryptoides quadrimeropus Shelley and Mercurio, 2005, together with new data for Newportia, enable analysis of ectonocryptopine relationships based on the current character set for scolopendromorph phylogeny. A distinctive “pineap- ple-shaped” gizzard projection strengthens the alliance between Ectonocryptopinae and Newportiinae, which group together as a well-supported clade that