Evaluating Skyscraper Design and Construction Technologies on an International Basis

Total Page:16

File Type:pdf, Size:1020Kb

Evaluating Skyscraper Design and Construction Technologies on an International Basis EVALUATING SKYSCRAPER DESIGN AND CONSTRUCTION TECHNOLOGIES ON AN INTERNATIONAL BASIS by Saad Allah Fathy Abo Moslim B.Sc., Mansoura University, Egypt, 1984 M.Eng., The University of British Columbia, Canada, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Civil Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) November 2017 © Saad Allah Fathy Abo Moslim, 2017 Abstract Design and construction functions of skyscrapers tend to draw from the best practices and technologies available worldwide in order to meet their development, design, construction, and performance challenges. Given the availability of many alternative solutions for different facets of a building’s design and construction systems, the need exists for an evaluation framework that is comprehensive in scope, transparent as to the basis for decisions made, reliable in result, and practical in application. Findings from the literature reviewed combined with a deep understanding of the evaluation process of skyscraper systems were used to identify the components and their properties of such a framework, with emphasis on selection of categories, perspectives, criteria, and sub-criteria, completeness of these categories and perspectives, and clarity in the language, expression and level of detail used. The developed framework divided the evaluation process for candidate solutions into the application of three integrated filters. The first filter screens alternative solutions using two-comprehensive checklists of stakeholder acceptance and local feasibility criteria/sub-criteria on a pass-fail basis to eliminate the solutions that do not fit with local cultural norms, delivery capabilities, etc. The second filter treats criteria related to design, quality, production, logistics, installation, and in-use perspectives for assessing the technical performance of the first filter survivors in order to rank them. The third filter evaluates the financial performance expressed in terms of Net Present Value of a skyscraper project over its life cycle as a function of system solutions being considered, and involves treatment of all major cash flow streams (revenues and expenditures), and their timing. Product and process models are developed to provide the cash flow model with the required scope and time information. The most preferred solution is recommended on the basis of filter two and three results. Efficacy of the developed framework and each filter were assessed through their application to many case studies and through interviews with construction professionals. Findings show that the framework addresses the deficiencies identified in the existing literature and can improve the quality of the decision-making process when selecting preferred solutions for building a specific skyscraper in a specific geographic area. ii Lay Summary The research goal is to develop an evaluation framework for assessing skyscraper engineering and construction technologies in order to recommend the most preferred solution(s) for a specific skyscraper in a specific geographic area to the decision maker. This framework involves the use of three filters and reflects the informal thought processes applied in practice by design and construction personnel. This thesis is a manuscript-based document and has five chapters. Chapter 1 includes an extensive thesis overview given adoption of manuscript thesis format and describes the background, problem statement, proposed solution, methodologies, research motivations, summary of literature review, and contributions of the research. Chapters 2 through 4 describe the findings of filters 1 through 3 of the research work, respectively. Chapter 5 concludes the thesis through summarizing the research work and contributions, and suggests future work for tackling challenges/limitations encountered in this research endeavor. iii Preface The research reported in this thesis consists of: identification of research problems and questions, formulation of research methodologies in pursuing answers to the research questions, comprehensive and critical review for related literature, analysis of design guidelines and development methods of an evaluation framework, and implementation of the framework and its three filters. Case studies related to an iconic skyscraper and interviews with construction practitioners are used for validating and verifying the framework and each filter. The lessons learned from these applications as well as the received feedbacks from these interviews are incorporated in the current version of the framework. The topic of dissertation was proposed by the author who had the passion of conducting research on skyscrapers primarily because of the previous experience in the Middle East in the context of high rise buildings; and agreed by PhD program supervisor Dr. Alan Russell. Process modeling that forms part of filter 3 made use of a linear planning software system (Repcon) developed by Dr. Alan Russell. With the guidance from Dr. Alan Russell, the author was solely responsible for all components of this research including collecting data of the case study project, Abraj el-Bait, Makkah, Saudia Arabia. The content of this dissertation is in the form of three manuscripts prepared for publication, namely Chapters 2 to 4. For each of these, the dissertation author was the primary manuscript author, while the co-author provided guidance on the development and application of various aspects of the research as well as manuscript review and editing. The following peer-reviewed conference papers are incorporated in Chapter 2and have been published: i. AboMoslim, S. and Russell, A. (2005), “Evaluating Innovative Design and Construction Technologies for Super Hi-rise Buildings on an International Basis”, Proceedings-33rd CSCE Annual Conference 2005: 6th Construction Specialty Conference, pp CT-189-1-10. ii. AboMoslim, S. and Russell, A. (2005), “Innovative Design and Construction Technologies for Building Internal Partitions for Super Hi-Rise Buildings on an International Basis”, Sixth International Conference on Tall Buildings, Hong Kong, China, World Scientific Publishing Co, pp. 594 - 603. Similarly, the following journal paper is presented as Chapter 2 and has been published: iii. AboMoslim, S. and Russell, A. (2014), “Screening skyscraper design and construction technologies on an international basis”, Construction Innovation: Information, Process, Management, Vol. 14 No 3, pp. 307- 445. A version of each manuscript that represent Chapters 3 and 4 is ready for submission to a journal. iv Table of Contents Abstract ............................................................................................................................................. ii Lay Summary ............................................................................................................................................ iii Preface ............................................................................................................................................. iv Table of Content .............................................................................................................................................. v List of Tables ............................................................................................................................................. ix List of Figures ............................................................................................................................................. xi List of Abbreviations ...................................................................................................................................... xiii Glossary ............................................................................................................................................ xv Acknowledgements ......................................................................................................................................... xvi Dedication ......................................................................................................................................... xvii Chapter 1 Introduction ............................................................................................................ 1 1.1 Chapter overview .................................................................................................................. 1 1.2 Problem statement ................................................................................................................. 1 1.3 Overview of the proposed framework for evaluating skyscraper technologies .................... 2 1.3.1 First filter .............................................................................................................................. 3 1.3.2 Second filter .......................................................................................................................... 3 1.3.3 Third filter............................................................................................................................. 4 1.4 Research motivations ............................................................................................................ 7 1.5 Research questions, objectives, and hypothesis .................................................................... 8 1.6 Research scope, limitations, and assumptions ...................................................................
Recommended publications
  • The Construction of a High-Rise Development Using Volumetric Modular Methodology
    ctbuh.org/papers Title: The Construction of a High-Rise Development Using Volumetric Modular Methodology Author: Phillip Gardiner, Managing Director, Irwinconsult Subjects: Architectural/Design Building Case Study Construction Economics/Financial Keywords: Design Process Economics Modular Construction Sustainability Publication Date: 2015 Original Publication: The Future of Tall: A Selection of Written Works on Current Skyscraper Innovations Paper Type: 1. Book chapter/Part chapter 2. Journal paper 3. Conference proceeding 4. Unpublished conference paper 5. Magazine article 6. Unpublished © Council on Tall Buildings and Urban Habitat / Phillip Gardiner The Construction of a High-Rise Development Using Volumetric Modular Methodology Phillip Gardiner, Managing Director, Irwinconsult The SOHO Tower is a 29-level modular building the cost and shortage of a skilled construction Another driver was the foundation in Darwin, in the far north of Australia, a workforce led to a decision to investigate a conditions. Darwin is underlain cyclonic region. The building was designed to volumetric modular alternative, with modules predominantly by a crust of soft Porcellanite incorporate a basement and eight floors built delivered complete with all finishes, joinery rock overlying softer Cretaceous sedimentary with conventional reinforced concrete followed and fittings. It was essential however that deposits of Phyllite to a very significant by 21 levels of volumetric modular apartments. the building layout and appearance not be depth. Buildings have been typically founded The modules were constructed and fully finished changed in any substantial way. This was a on pads or rafts founded in the soft rocks in Ningbo, China and shipped to Darwin. Unlike significant challenge. at bearing pressures that would not cause most modular systems, a concrete floor was unacceptable levels of settlement.
    [Show full text]
  • WGP 107 (18) Offshore Oil and Gas Platforms
    Corporate Solutions WGP 107 (18) Offshore Oil and Gas platforms Eric Brault - Energy Practice Leader PROTECT PREVENT SERVE RESOLVE PARTNER OFFSHORE OIL& GAS PLATFORMS IMIA WGP 107 (18) Part icipant s: Eric Brault – AXA Coporate Solutions - Chairman Ma r t in Ka u t h - Partner Re Mark Mackay - AXA Corporate Solutions Al a i n Padet - AXA Corporate Solutions Mik e McMahon - Charles Taylor Consultant Mohamed F. El-Ai l a h - Qatar General Ins Javier Rodriguez Gomez - Reinsurance Consultancy Mexico Roman Emelyanov - SOGAZ Insurance Group Thomas Friedrich – Munich Re Eve Ong - Helvetia Stephan Lämmle – Munich Re – Sponsor 2 PROTECT PREVENT SERVE RESOLVE PARTNER Technical description of Offshore Plat forms Construction process and components Information needed and Underwriting Consideration Pure Insurance Aspect s MPL Considerat ions and Accumulation driving system Ex am p l e of Loss Recommendat ions Conclusion 3 Executive summary The development of an oil field is a broad complex subject, which needs strong analysis. The Presentation is a overhaul view of the risks assessment, concerning the construction of the offshore platforms. We do not focused on specific subjects such as: Covers of the drilling of wells , risk inherent to the research for new oilfield, operation of the platforms, processes for NG and oil, pressurizing, storage, market absorption and dismantling ... We pay attention on the risks to anticipate and balance the construction phase, weather and sea condition impact, importance of the design, the safety systems, details on the MPL scenarios during the construction, putting in place of the platform and starting of operation phase. The MWS role and his importance is also described.
    [Show full text]
  • List of World's Tallest Buildings in the World
    Height Height Rank Building City Country Floors Built (m) (ft) 1 Burj Khalifa Dubai UAE 828 m 2,717 ft 163 2010 2 Shanghai Tower Shanghai China 632 m 2,073 ft 121 2014 Saudi 3 Makkah Royal Clock Tower Hotel Mecca 601 m 1,971 ft 120 2012 Arabia 4 One World Trade Center New York City USA 541.3 m 1,776 ft 104 2013 5 Taipei 101 Taipei Taiwan 509 m 1,670 ft 101 2004 6 Shanghai World Financial Center Shanghai China 492 m 1,614 ft 101 2008 7 International Commerce Centre Hong Kong Hong Kong 484 m 1,588 ft 118 2010 8 Petronas Tower 1 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 8 Petronas Tower 2 Kuala Lumpur Malaysia 452 m 1,483 ft 88 1998 10 Zifeng Tower Nanjing China 450 m 1,476 ft 89 2010 11 Willis Tower (Formerly Sears Tower) Chicago USA 442 m 1,450 ft 108 1973 12 Kingkey 100 Shenzhen China 442 m 1,449 ft 100 2011 13 Guangzhou International Finance Center Guangzhou China 440 m 1,440 ft 103 2010 14 Dream Dubai Marina Dubai UAE 432 m 1,417 ft 101 2014 15 Trump International Hotel and Tower Chicago USA 423 m 1,389 ft 98 2009 16 Jin Mao Tower Shanghai China 421 m 1,380 ft 88 1999 17 Princess Tower Dubai UAE 414 m 1,358 ft 101 2012 18 Al Hamra Firdous Tower Kuwait City Kuwait 413 m 1,354 ft 77 2011 19 2 International Finance Centre Hong Kong Hong Kong 412 m 1,352 ft 88 2003 20 23 Marina Dubai UAE 395 m 1,296 ft 89 2012 21 CITIC Plaza Guangzhou China 391 m 1,283 ft 80 1997 22 Shun Hing Square Shenzhen China 384 m 1,260 ft 69 1996 23 Central Market Project Abu Dhabi UAE 381 m 1,251 ft 88 2012 24 Empire State Building New York City USA 381 m 1,250
    [Show full text]
  • No Longer Just a Hole in the Ground the Adaptive Re-Use of Derelict Quarries
    1 NO LONGER JUST A HOLE IN THE GROUND The Adaptive Re-Use of Resource Depleted Quarries Catherine McCandless Urban Nature and City Design Professor Anne Whiston Spirn MIT 4.213J/11.308J Fall 2013 2 Table of Contents ABSTRACT 3 Introduction 4 Quarrying Activity 5 Cases 6 1. Brownstone Park 7 2. Quarry Falls 9 3. Bellwood Quarry 11 4. Butchart Gardens 13 5. Groundscraper Hotel 15 Conclusion from Cases 17 Looking Forward 18 REFERENCES 19 3 Abstract A quarry is an area from which rocks such as marble, limestone, and granite are extracted for industrial use. Once depleted of their desired resources, quarries are frequently abandoned. The resulting gaping holes can fill with water and form dangerous quarry lakes while others are turned into unsightly landfills. When quarries are in close proximity to urban environments, inhabitants are subjected to pollution and noise, and the undeniable eyesore of an abandoned quarry remains long after excavation is completed. Sustainable redevelopment has become a shining solution for these abandoned, resource-depleted quarries. Dozens of cities in America and abroad have undertaken adaptive re-use projects to transform quarries into a variety of public and private spaces. The potential new uses for these expanses of land include sites for research and education, aquaculture, recreational activities, storage, industry and housing. The goal of my research is to encourage the rehabilitation of land disturbed by quarrying by making the areas suitable for new sustainable land uses. I will examine cases that successfully transformed resource-depleted quarries into commercial and residential communities, and will discuss how further to improve future redevelopment of quarries with greater consideration to environmental impact and biodiversity.
    [Show full text]
  • NMB Bank Headquarters the Impressive Performance of a Green Building W ILLIAM B ROWNING
    Reprinted with pemission from the Urban Land Institute the Urban Land Institute www.uli.org In project design and construction, “green” means putting environmen- June June 1992 tal concerns first. Doing so ENVIRONMENT can mean big pay offs, as this Amsterdam office building proves. NMB Bank Headquarters The Impressive Performance of A Green Building W ILLIAM B ROWNING hen Nederlandsche Middenstandsbank (NMB), then the number four bank in the Netherlands, felt the need, in 1978, for a W new image and a new headquarters, its board of directors set out some unusual criteria. The board asked for an organic building that would integrate art, natural materials, sunlight, green plants, energy conservation, low noise levels, and water, reports Tie Liebe, head of Maatschappij voor Bedrijfsobjecten (MBO), NMB’s real estate develop- ment subsidiary. Per vote of the bank’s employees, the new headquarters would be built in a growing area south of Amsterdam. An integrated team instructed to work across disciplines–an architect, a construction engineer, a landscape architect, an energy expert, and artists– worked for three years designing the building. Construction began in 1983 and was completed in 1987. The NMB building is no monolithic tower. To the contrary, its 538,000 square feet (50,000 square meters) of office space housing 2,400 employees is broken up into a series of 10 slanting towers arranged in an irregular S-curve with gardens and courtyards interspersed. Portions of the complex are supported by a 301,280-square-foot structure (28,000 square meters) containing parking and service areas. Restaurants and meeting rooms line the internal “street” that connects the towers on the mezzanine level.
    [Show full text]
  • Teacher Background
    Teacher Background Inquiry Description In many parts of the world today, notably in Asia, societies are rapidly transforming. A major part of this transformation is urbanization, the flocking of people from the countryside to cities. A sign of this transformation is the construction of tall buildings. Since the Lincoln Cathedral surpassed the Pyramids of Egypt in 1300 CE, all of the tallest buildings in the world were in Europe and North America. Then, in 1998, the Petronas Towers opened in Kuala Lumpur, Malaysia. Today the five tallest buildings are in Asia (One World Trade Center in New York City is #6) These areas are being transformed because of their integration into the world economic system that itself was the result of the Industrial Revolution in the 19th century in Western societies and the subsequent growth and expansion of those western societies. Interestingly, tall buildings, known as skyscrapers, were a sign of urbanization and industrial growth in Europe and North America at that time. This unit explores the connections between industrialization, urbanization, and skyscrapers, and how it was that skyscrapers were able to be built when and how they were. Key areas of attention will be building materials and related technologies that allowed for taller structures. Teachers are encouraged to use the following notes as they prepare for this unit, and additional secondary resources are listed at the end of this document. Historical Background Agriculture and Monumental Architecture In the long arc of human history, there are two interesting phenomena that might seem separate, but in hindsight are closely related. On the one hand, people have continually intensified their food production, leading to the ability to sustain larger populations on the same amount of land with fewer direct food producers.
    [Show full text]
  • Tall Buildings and Urban Habitat of the 21St Century: a Global Perspective
    Buildings 2012, 2, 384-423; doi:10.3390/buildings2040384 OPEN ACCESS buildings ISSN 2075-5309 www.mdpi.com/journal/buildings/ Article Tall Buildings and Urban Habitat of the 21st Century: A Global Perspective Mir M. Ali 1 and Kheir Al-Kodmany 2,* 1 School of Architecture, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; E-Mail: [email protected] 2 Urban Planning and Policy Department, College of Urban Planning and Public Affairs, University of Illinois at Chicago, Chicago, IL 60612, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 26 July 2012; in revised form: 5 September 2012 / Accepted: 10 September 2012 / Published: 28 September 2012 Abstract: The tall building is the most dominating symbol of the cities and a human-made marvel that defies gravity by reaching to the clouds. It embodies unrelenting human aspirations to build even higher. It conjures a number of valid questions in our minds. The foremost and fundamental question that is often asked: Why tall buildings? This review paper seeks to answer the question by laying out arguments against and for tall buildings. Then, it provides a brief account of the historic and recent developments of tall buildings including their status during the current economic recession. The paper argues that as cities continue to expand horizontally, to safeguard against their reaching an eventual breaking point, the tall building as a building type is a possible solution by way of conquering vertical space through agglomeration and densification. Case studies of some recently built tall buildings are discussed to illustrate the nature of tall building development in their respective cities.
    [Show full text]
  • Welcome to the Guests of Allah
    WELCOME TO THE GUESTS OF ALLAH MAKKAH CITY GUIDE SaudiaUmrah.com 1 INTRODUCTION USEFUL INFORMATION Makkah Al Mukaramah is Muslims’ Qibla (Praying Direction) and the heart of the Islamic world, the cradle of revelation and the holiest city in Islam. The city is the birthplace of Prophet Mohammed “Peace be upon him” and it is here within the Great Mosque that the Ka’aba, the most sacred shrine of Islam, awaits the Muslim pilgrim in Where GMT/UTC Number of guests Hajj & Umrah. South East + 3h Million Discover Makkah Al Mukaramah, the most sacred land Asia yearly on earth and learn more about the religious and historical 15 places you must visit during your Umrah. WEATHER Average temperature during the year 30 38 43 40 Jan Apr Jul Oct 18 24 28 25 31 42 42 35 Feb May Aug Nov 18 27 29 22 34 44 42 31 Mar Jun Sep Dec 20 28 28 20 Maximum Minimum 2 SaudiaUmrah.com SaudiaUmrah.com 3 1. Jabal Al Nour (The Mountain of Light) The mountain houses the famed Ghar Hira HISTORICAL PLACES or Hira cave. The mountain is barely 640 m tall. It does however, take two hours to TO VISIT make it to the cave. The mount and the cave hold tremendous signicance for Muslims throughout the world. 2. Ghar Hira (Hira Cave) Taking 1,200 walking steps to reach, the cave itself is about 3.7 m in length and 1.6 m in width. The cave is situated at a height of 270 m of Jabal Al Nour Mountain.
    [Show full text]
  • Burj Khalifa, the Shard, and Rivals by Eva Bogomil
    Burj Khalifa, The Shard, and Rivals by Eva Bogomil Introduction From the early days, we have invariably been interested in the world we live in, exploring, analysing, and altering it at our will. Humanity has gone a long way from caves to modern skyscrapers, aiming for ever greater heights. The power of human ingenuity has conquered the elements to reach the sky and beyond. Nowadays technologies allow us to build skyscrapers that totally change our idea of a modern world. Throughout the centuries brilliant engineers have been inventing more advanced and complex technologies, expanding our abilities. The Acropolis, St Paul’s Cathedral, the Eiffel Tower and the Sydney Opera House are all marvellous buildings that have remained objects of admiration for historians, architects, and artists, as well as a source of inspiration for many generations. Even to the general public the structures appear breathtaking. The 21st century saw the dawn of super-skyscraper construction. The Shard, Taipei 101, the Princess Tower, the Abraj Al-Bait Towers, and the Shanghai Tower are just some of the outstanding examples the modern world can be proud of. Burj Khalifa, currently the tallest building in the world, crowns this list of our achievements (Figure 1.0) which keep attracting people, making them wonder how such structures could have been built. Figure 1.0: Height comparison of some of the tallest buildings in the world This essay will focus mainly on London’s Shard and Dubai’s Burj Khalifa. Both of these skyscrapers are unique in their own way, yet similar. The Shard — currently the tallest building in the United Kingdom — dominates London skyline.
    [Show full text]
  • Town of Provincetown Zoning By-Laws
    TOWN OF PROVINCETOWN ZONING BY-LAWS Provincetown Planning Board September 1, 1978 Last Updated: August 18, 2021 Town of Provincetown, Massachusetts – Zoning By-laws Page 2 Amendments Adoption Revisions APPROVED BY TOWN APPROVED BY THE APPROVED BY TOWN APPROVED BY THE MEETING ATTORNEY GENERAL MEETING ATTORNEY GENERAL November 13, 1978 April 6, 1979 April 6, 2009 ATM July 14, 2009 March 10, 1980 November 8, 2010 STM February 22, 2011 March 9, 1981 December 16, 1981 April 4, 2011 June 20, 2011 March 8, 1982 July 12 and 13, 1982 October 24, 2011 STM November 3, 2011 October 27, 1982 January 11, 1983 April 2, 2012 ATM May 7, 2012 March 14, 1983 April 26, 1983 October 21, 2013 STM January 13, 2014 March 12, 1984 July 5, 1984 April 7, 2014 ATM May 15, 2014 March 11, 1985 June 11, 1985 April 6, 2015 ATM May 19, 2015 June 10, 1985 August 19, 1985 October 26, 2015 STM December 10, 2015 October 15, 1985 January 31, 1986 April 4, 2016 ATM July 11, 2016 March 10, 1986 April 11, 1986 April 3, 2017 ATM July 6, 2017 October 27, 1986 November 25, 1986 September 13, 2017 STM January 11, 2018 March 9, 1987 April 17, 1987 April 2, 2018 ATM July 18, and Oct 12, 2018 March 14, 1988 May 19, 1988 October 29, 2018 STM February 22, 2019 March 13, 1989 June 5, 1989 April 1, 2019 ATM May 6, 2019 March 12, 1990 May 7 and June 8, 1990 May 1, 2021 ATM August 18, 2021 April 1, 1991 June 12, 1991 April 6, 1992 July 2, 1992 November 5, 1992 January 11, 1993 April 7, 1993 July 13, 1993 October 27, 1993 January 7, 1994 April 1, 1996 May 6, 1996 October 28, 1996 November
    [Show full text]
  • Hibernia Offshore Oil Platform St
    Hibernia Offshore Oil Platform St. John's, Newfoundland, Canada Structural: Bridges & Marine Location: St. John’s, Newfoundland, Canada Contractor: Kiewit with joint venture partner Norwegian Contractors Owner: ExxonMobil Canada (33.125%), Chevron Canada Resources (26.875%), Petro-Canada (20%), Canada Hibernia Holding Corporation (8.5%), Murphy Oil (6.5%) and Norsk Hydro (5%). The Hibernia Oil Field lies approximately 200 miles (315 km) east-southeast of St. John’s, Newfoundland, Canada. When an offshore platform was deemed necessary to tap this rich petroleum resource, engineers and developers faced serious challenges. The project had to meet a tight construction schedule while overcoming the problems of working in extremely cold weather conditions. The structure had to withstand the most severe environmental stresses of freezing and thawing, ice abrasion, wind and wave action, and chemical attack. In addition, the giant structure was required to float, be towed to the site, and after placement withstand the impact of 5.5 million ton iceberg. To satisfy the tough requirements, a reinforced Gravity Base Structure (GBS) was designed. Weighing more than 1.2 million tons, the Hibernia offshore platform is the largest floating structure ever built in North America. The base raft portion of the GBS was built in an earthen “dry dock.” By flooding the dock, the base raft was floated, towed to a deep-water harbor area, anchored, and construction continued. Once completed, this floating giant was towed to the oil field site and set in place on the ocean floor in about 240 ft. (80m) of water. The GBS was designed to be maintenance free for its 30-year life.
    [Show full text]
  • Construction Work Plan
    FFY-2021 through FFY-2028 Construction Work Plan Volume XVIII Table of Contents SECTION I FOREWORD - Letter from the Director SECTION II BUDGETARY PROJECTIONS SECTION III BALANCING PROCESS SECTION IV SUMMARY REPORT CONSTRUCTION WORK PLAN SECTION V Sorted by Federal Fiscal Year and by County Presented for Transportation Commission Consideration December 7, 2020 FOREWORD BUDGETARY PROJECTIONS Budgetary Projections CONSTRUCTION WORK PLAN - FFY 2021 through FFY 2028 The budgetary projections utilized for the basis of the fiscally responsible and financially balanced Construction Work Plan were established through a systematic evaluation of the Department’s anticipated State-Aid and Federal-Aid revenues and expenditures. Projections were performed for Federal Fiscal Years 2021 – 2028 with the Federal Fiscal Year defined as beginning October 1st and ending on September 30th. The budgetary projections only address funding that has been historically and/or categorically committed to State, Federal and Interstate highway system improvements and does not address Department initiated set asides or other mandated programs. For the purposes of the initial projections, an estimated baseline State-Aid amount of $282.03 million and an estimated Federal-Aid amount of $401.88 million was utilized as the Fiscal Year 2021 benchmark. The Federal-Aid amount includes a 7.5% projection overstatement to avoid any potential loss of future Federal-Aid funds due to under programming. Of particular note, the annual baseline State-Aid amount available for Construction Work Plan projects is expected to grow to over $384.56 million during the next eight years. As the Federal-Aid benchmark amount will vary based upon the results of the annual Congressional budgeting process, the estimated projections will require further adjustment and we will adapt our Construction Work Plan accordingly.
    [Show full text]