Kinetic-Performance and Selectivity Optimization in Supercritical Fluid Chromatography Sander Delahaye
Total Page:16
File Type:pdf, Size:1020Kb
Kinetic-Performance and Selectivity Optimization in Supercritical Fluid Chromatography Thesis Submitted to the Faculty of Science in Fulfilment of the Requirements for the Degree of Doctor in Science (Chemistry) Sander Delahaye Promotor Prof. Dr. Frédéric Lynen Leden van de lees- en examencommissie: Voorzitter: Prof. Dr. J. Martins Vakgroep Organische en Macromoleculaire Chemie, Faculteit Wetenschappen, UGent Leescommissie: Prof. Dr. K. Broeckhoven Vakgroep Chemische Ingenieurstechnieken en Industriële Scheikunde (CHIS), Faculteit Ingenieurswetenschappen, Vrije Universiteit Brussel Prof. Dr. D. Cabooter Laboratorium Farmaceutische Analyse, Faculteit Farmaceutische Wetenschappen, KU Leuven Dr. L. Balcaen Vakgroep Analytische Chemie, Faculteit Wetenschappen, UGent Examencommissie: Dr. I. Francois UPC²/SFC & Strategic Separation Technologies Business Development Manager Europe and India (Waters) Prof. Dr. K. Van Geem Vakgroep Chemische Proceskunde en Technische Chemie Faculteit Ingenieurswetenschappen en Architectuur, UGent Prof. Dr. F. Lynen Vakgroep Organische en Macromoleculaire Chemie, Faculteit Wetenschappen, UGent This research was funded by the Agency for Innovation by Science and Technology in Flanders (IWT - Vlaanderen) Table of Contents I General Introduction and Scope 1 1. General introduction . .1 2. Scope . .5 3. References . .6 II The Emergence of Packed-Column Supercritical Fluid Chromatography as an Alternative for HPLC 9 1. Introduction . 10 2. Definition of supercritical fluids . 10 3. Physico-chemical properties of supercritical fluids . 10 4. The use of supercritical fluids as extraction solvent and as mobile phase in chromatography . 15 5. SFC over the years . 16 6. Contemporary pSFC conditions and stationary phases . 17 7. Most important applications of supercritical fluid chromatography . 20 7.1. Preparative SFC applications . 20 7.2. Analytical SFC applications . 21 8. Nomenclature issues . 21 9. References . 23 III Underlying Basic Principles of Resolution and Speed in Chromatographic Theory 25 1. Introduction . 26 2. Resolution as a measure for the quality of the separation . 26 3. Efficiency and permeability in packed-column chromatography . 29 4. Kinetic performance of packed-column separations . 32 5. References . 36 IV Practical Aspects of SFC Hardware and of State-of-the-Art pSFC instru- mentation 37 1. Introduction . 38 2. Practical aspects of SFC hardware . 38 2.1. Pumping system . 38 2.2. Injection system . 40 i TABLE OF CONTENTS 2.3. Column oven . 40 2.4. Pressure regulation . 40 2.5. Detection . 41 2.5.1. UV-visible detectors . 42 2.5.2. ELSD and CAD . 42 2.5.3. Mass spectrometry . 43 3. State-of-the-art SFC instrumentation overviewed . 43 3.1. Jasco 2800 Analytical SFC System . 45 3.2. Agilent Infinity Hybrid SFC/UHPLC . 45 3.3. Waters ACQUITY Ultra Performance Convergence Chromato- graph (UPC2)........................... 45 4. References . 47 V Approaches for Resolution Optimization in SFC 49 1. Introduction . 50 2. Influence of the pressure drop on performance in pSFC . 50 3. High-resolution pSFC separations on long columns . 54 4. High-throughput pSFC on short columns packed with small particles . 55 5. van Deemter and kinetic-plot construction for SFC separations . 57 6. Influence of chromatographic parameters on retention and selectivity . 60 6.1. Retention mechanisms in HPLC . 61 6.2. Retention mechanisms in pSFC . 62 6.2.1. Influence of stationary-phase chemistry on retention and selectivity in pSFC . 62 6.2.2. Influence of the mobile-phase composition . 64 6.2.3. Influence of column temperature and system pressure on retention . 66 6.2.4. Influence of altering flow rate and column length on retention . 67 7. Strategies applied for selectivity optimization in packed column chro- matography . 67 7.1. Mobile-phase based selectivity optimization . 67 7.1.1. Stationary phase pre-selection . 68 7.1.2. Further optimization by mobile-phase tuning . 68 7.2. Alternative strategy: Stationary-phase based selectivity optimiza- tion in LC and SFC . 69 7.2.1. Stationary-phase optimized selectivity in LC . 69 7.2.2. Stationary-phase optimized selectivity in SFC . 70 8. References . 72 VI Design and Evaluation of Various Methods for the Construction of Kinetic- Performance Limit Plots for Supercritical Fluid Chromatography 79 1. Introduction . 80 2. Experimental . 81 2.1. Apparatus . 81 2.2. Chemicals . 81 2.3. Chromatography . 81 3. Methodology . 82 ii TABLE OF CONTENTS 3.1. The traditional method (single column, fixed outlet pressure) . 83 3.2. The variable-L method (multiple columns, fixed inlet and outlet pressure) . 83 3.3. The isopycnic method . 85 4. Results and discussion . 85 4.1. Example chromatograms . 85 4.2. Effect of flow rate on retention . 86 4.3. Effect of flow rate on band broadening . 89 4.4. Kinetic-performance limits in SFC . 92 4.4.1. Comparison of the different SFC methods . 92 4.4.2. Effect of average pressure and pressure drop on kinetic performance in SFC . 93 4.4.3. Comparison of SFC and HPLC . 97 5. Conclusions . 99 6. References . 101 VIIApplication of the Isopycnic Kinetic-Plot Method for Elucidating the Po- tential of Sub-2 micron and Core/Shell Particles in SFC 103 1. Introduction . 104 2. Experimental . 105 2.1. Apparatus . 105 2.2. Chemicals . 105 2.3. Chromatography . 106 2.3.1. SFC experiments . 106 2.3.2. HPLC experiments . 106 3. Methodology . 107 4. Results and discussion . 107 4.1. Column evaluation . 107 4.2. Extrapolations to sub- micron particles . 114 4.2.1. General methodology . 115 4.2.2. Confirmation of correctness of general methodology . 116 4.2.3. Predictions for 1 mm an 0.5 mm particles . 116 5. Conclusions . 122 6. References . 125 VIIIStationary-Phase Pre-Selection by Means of In-Silico QSRR Predictions 127 1. Introduction . 128 2. Experimental . 130 2.1. Materials . 130 2.2. Methods . 132 3. Results and discussion . 134 3.1. Test case 1 . 134 3.1.1. isocratic elution . 134 3.1.2. Gradient elution . 140 3.2. Test case 2 . 143 3.2.1. Isocratic elution . 143 3.2.2. Gradient elution . 147 4. Conclusions . 147 iii TABLE OF CONTENTS 5. References . 151 IX Implementing Stationary-Phase Optimized Selectivity in Supercritical Fluid Chromatography 153 1. Introduction . 154 2. Experimental section . 155 2.1. Materials . 155 2.2. Methods . 155 3. Results and Discussion . 156 3.1. Preliminary investigation . 156 3.2. Retention measurements on the pure stationary phases . 158 3.3. Separations on combined stationary phases . 160 3.4. Influence of stationary-phase order . 164 3.5. Using SOS-SFC for faster preparative fraction collection . 166 4. Conclusions . 167 5. References . 170 X Concluding Remarks 171 Summary and Future Prospectives 173 Samenvatting en Toekomstperspectieven 177 List of Abbreviations 181 Scientific Output 185 Dankwoord 187 iv Chapter I General Introduction and Scope 1. General introduction Since the first description of the technique by M.S. Tswett in 1903, chromatography has become an invaluable tool for the analysis of a broad variety of complex mixtures. In the last century, continuous innovations in the field resulted in contemporary chro- matographic methods and instruments which can deliver fast separation, purification, identification, and quantification of a vast variety of molecules. All common chromatographic methods have the same goal: to separate the individual compounds of a given sample in the shortest possible time. In chromatographic terms this boils down to finding a compromise between resolution, speed, and sensitivity. Or in other words: finding the experimental parameters where the desired resolution and sensitivity are reached in the fastest possible time. In this respect, the most important characteristic of a chromatographic separation is the resolution Rs as it delivers a measure of the quality of the separation: p N a − 1 k R = (I.1) s 4 a k + 1 This well-known dependency of the resolution Rs on the efficiency N,.