Preprint typeset in JHEP style - HYPER VERSION Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures Marilena LoVerde1, Amber Miller1, Sarah Shandera1, Licia Verde2 1 Institute of Strings, Cosmology and Astroparticle Physics Physics Department, Columbia University, New York, NY 10027 2 ICREA, Institut de Ci`encies de l’Espai (ICE), IEEC-CSIC, Campus UAB, F. de Ci`encies, Torre C5 par-2, Barcelona 08193, Spain Emails:
[email protected],
[email protected],
[email protected],
[email protected] Abstract: The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often de- scribed by the fNL formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such mod- els could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints arXiv:0711.4126v3 [astro-ph] 13 Mar 2008 on these models achievable with forthcoming data sets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale-dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions. Contents 1. Introduction 1 2. General Single-field Inflation: Review and Example 6 2.1 General Single Field Formalism 6 2.2 Scale-Dependent Relationships 8 2.3 An Example from String Theory 9 3.