Edgeworth Series Approximation for Chi-Square Type Chance Constraints

Total Page:16

File Type:pdf, Size:1020Kb

Edgeworth Series Approximation for Chi-Square Type Chance Constraints Commun.Fac.Sci.Univ.Ank.Series A1 Volume 56, Number 2, Pages 27–37 (2007) ISSN 1303–5991 EDGEWORTH SERIES APPROXIMATION FOR CHI-SQUARE TYPE CHANCE CONSTRAINTS MEHMET YILMAZ Abstract. We introduce two methods for approximation to distribution of weighted sum of chi-square random variables. These methods can be more use- ful than the known methods in literature to transform chi-square type chance constrained programming (CCP) problem into deterministic problem. There- fore, these are compared with Sengupta (1970)’s method. Some examples are illustrated for the purpose of comparing the solutions of these methods. 1. Introduction The distribution of positive weighted combination of chi-square random variables with any degrees of freedom arises in many application areas such as communication theory, reliability of systems, engineering, industry etc. Many authors are interested in obtaining such as above distribution. Literature review of this subject was given by Johnson et al. (1994). Recent work of Castaño et al. (2005) derived a Laquerre expansion which has been used to evaluate distribution function of the sum of weighted central chi-square random variables. But it is more complicated for using stochastic programming. The best known example of a skewed sum is the chi-square distribution, of course chi-square distribution is itself asymptotically normal, thus this led us to approximate the distribution of a sum of weighted chi-square random variables by an expansion method based on central limit theorem (see Kendall, 1945; Patnaik, 1949; Feller, 1966 and Lehmann, 1999). Next section can be viewed as recalling Castaño et al. (2005)’s work. Introduced methods will be compared with their work which can be seen a main tool of this paper for further discussions. In section three, we will give two methods based on normal approximation. These are called …rst and second edgeworth expansion respectively. We can adapt suggested methods to linear combination of independent random variables assumed to having …nite fourth central moments. Chi-square Received by the editors Sept. 28, 2007; Accepted: Dec. 25, 2007. 2000 Mathematics Subject Classi…cation. Primary 62E20, 65K99; Secondary 60E07, 90C15. Key words and phrases. weighted sum of chi-square random variables, expansion for distrib- utions, chance constrained stochastic model. c 2007 Ankara University 27 28 MEHMETYILMAZ random variables have important role in many application areas of stochastic model. On the other hand, methods can be applied to solve CCP problem. In other words, it should be found their convenient deterministic equivalents to solve such a CCP problem. Two methods have some advantages of …nding deterministic equivalents of chance constraints as these will be presented in fourth section. 2. Laquerre Expansion Let X1;X2; :::; Xn be independent chi-square random variables with vi (i = 1; 2; :::; n) n degrees of freedom, respectively. Consider aiXi; where ai > 0: Distribution of i=1 n P aiXi as a Laquerre series expansion is given by Castaño et al. (2005) as follows: i=1 P x v 2 2 v e x 1 k!mk ( 2 ) (v + 2)x F (x) = 1+ v v v Lk (1) (2 ) 2 ( + 1) ( + 1) 4 2 k=0 2 k 0 with P n v v = vi, p = 2 + 1 i=1 and P k 1 v n p 2 2 p p vi 1 ai 2 mk = k mjIk j; k 1, where m0 = p (1 + ( 1)) j=0 0 0 i=1 0 and P Q j a j 1 1 n 1 i I = + v ; j 1 j p i ai p 1 2 i=1 1 + ( 1) 0 ! 0 ! P v k r ( 2 ) r+v=2 (:) where Lk (:) = k r r! ; is the generalized Laguerre polynomial. They r=0 have obtained theP following bound for the truncation error of the distribution func- tion F x v v 2 2 e x m0 (v + 2)x 1 ( 2 + 1)k k "N v v j j exp( ) 1+ 2 (2 ) ( 2 + 1) 8 0 k=N k! a P 1 i where = maxi ai p : This expansion converges uniformly in any …nite 1+ ( 1) 0 interval, for all and conveniently chosen. They also showed with illustrative 0 examples that if 0 = p=10 and = (a1 + an) =2 are chosen, then truncation error bound is quite small. Therefore our results will be compared with each other for the same values of 0 and . CHI-SQUARETYPECHANCECONSTRAINTS 29 3. expansion for distributions In this section, we will introduce two known expansions for sum of independent and identical random variables related to the central limit theorem. These are called as …rst and second edgeworth expansion in the literature. First edgeworth expansion which is well known yields more approximated probability than normal approximation does. Also, second edgeworth expansion could be better than the …rst for the sum of chi-square random variables (see Kendall, 1945; Patnaik, 1949 and Lehmann, 1999). Hence, extensions of two methods for the weighted chi-square random variables, are set up the following subsection. Theorem 3.1. Let X1;X2; :::; Xn be independent continuous random variables such 3 that E Xj < (j = 1; 2; :::; n), for large values of n, then j j 1 n n Xj E Xj (n) 2 j=1 j=1 ! 3 (1 x ) n P 1 x = (x) + 3 (x) + o( 3 ) (2) 0 (n) 2 1 (n) 2 (n) 2 P 2 P 6 2 2 B C is used approximation@ to standardA normal distribution. Here and stand for standard normal cumulative distribution function, its density function respectively n (n) k and k denotes E (Xj EXj) (Feller, 1966 Chapter XVI). j=1 P The …rst term given in (2) is known as …rst term edgeworth expansion in the literature. The second term edgeworth expansion can be de…ned without loss of generality as follows: Subtract from the right side of (2) the term K K2 4 (x3 3x) + 3 (x5 10x3 + 15x) (x) (3) 24 72 n (Xj E(Xj )) where K and K are third and fourth cumulants of j=1 (see Wallace, 3 4 n P 2 (Xj E(Xj )) v uj=1 u 1958). If the random variables are identically distributedtP then the quantity given in (3) can be written as 2 (n) 2 (n) 3(2 ) (n) 4 n 3 3 5 3 2 (x 3x) + 3 (x 10x + 15x) (x): (4) 24 (n) 72 (n) " 2 2 # 30 MEHMETYILMAZ 3.1. Set-up for Weighted Chi-Square Random Variables. Consider random variables Xi (i = 1; 2; :::; n) distributed as chi-square with vi (i = 1; 2; :::; n) degrees of freedom. The probability density function of Xi (i = 1; 2; :::; n) is given by vi 1 2 1 xi f(x ; v ) = v x exp( ); x > 0; v > 0 (i = 1; 2; :::; n): i i v i i i i i 2 2 ( 2 )2 (1) The central moments l (l = 1; 2; 3; 4) can be obtained by evaluating the following integral, (1) 1 1 vi x k 2 1 = v (x v ) x exp( )dx k v i i i 2 2 ( 2 )2 0 k R k j vi j k ( vi) ( + j)2 = 2 ; k = 1; 2; 3; ::: j ( vi ) j=0 2 (1) (1) P (1) (1) 2 Hence 1 = 0; 2 = 2vi; 3 = 8vi and 4 = 12vi + 48vi are calculated. From now on, we can set up (2) and (3) for the weighted sum of chi-square variables. Let n n n n 2 3 4 M1= aivi;M 2= 2 ai vi;M 3= 8 ai vi;M 4= 48 ai vi: (5) i=1 i=1 i=1 i=1 P P n P Pn Mk (k 1) denote cumulants of ai(Xi E(Xi)), then P ( aiXi t) is i=1 i=1 approximated as P P 2 M3(1 x ) (x) + 3 (x) (6) 6(M2) 2 M (1 x2) M (x3 3x) M 2(x5 10x3+15x) 3 4 3 (x) + 3 24M2 72M 3 (x) (7) 6M 2 2 2 2 3M2 2 0 2 3 2 5 3 M3(1 x ) (M )(x 3x) M (x 10x +15x) (7) 4 n 3 (x) + 3 24M 2 72M 3 (x) 6M 2 2 2 2 n where x = t M1 , and M 0 = a4 12v2 + 48v . First and second edgeworth pM 4 i i i 2 i=1 approximations for distributionP of weighted sum of chi-square random variables can be given respectively in (6) and (7). Here the second expression (7*) can be viewed as modi…ed and extended version for weighted sum, this modi…ed expansion allows to get better results than the other when the chi-square random variables have di¤erent degrees of freedom. Otherwise, (7) and (7*) give same result for v1 = v2 = ::: = vn: In Table 1, we …rst compare our results for P 22 + 22 t , n = 2 and (1) (1) a1 = a2, v1 = v2. Here FE, SE and LE denote …rst term edgeworth expansion, second term edgeworth expansion and Laquerre expansion. These are calculated from Matlab. CHI-SQUARETYPECHANCECONSTRAINTS 31 Notes: (i) Since the weights are equal and random variables are independent and identically distributed, if the quantity P (22 + 22 t) can be arranged as (1) (1) P 2 t , then it is easy to compare FE and SE by checking chi-square tables. (2) 2 Table 1 and Table 3 are specially presented because of these probabilities are easily checked from chi-square tables. So that tabulations could be useful to …nd an answer how close FE and SE to exact values. (ii) Various approximation methods of distribution of weighted sum of chi-square random variables can be seen in Johnson et al.
Recommended publications
  • Effects of Scale-Dependent Non-Gaussianity on Cosmological
    Preprint typeset in JHEP style - HYPER VERSION Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures Marilena LoVerde1, Amber Miller1, Sarah Shandera1, Licia Verde2 1 Institute of Strings, Cosmology and Astroparticle Physics Physics Department, Columbia University, New York, NY 10027 2 ICREA, Institut de Ci`encies de l’Espai (ICE), IEEC-CSIC, Campus UAB, F. de Ci`encies, Torre C5 par-2, Barcelona 08193, Spain Emails: [email protected], [email protected], [email protected], [email protected] Abstract: The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often de- scribed by the fNL formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such mod- els could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints arXiv:0711.4126v3 [astro-ph] 13 Mar 2008 on these models achievable with forthcoming data sets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale-dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions. Contents 1. Introduction 1 2. General Single-field Inflation: Review and Example 6 2.1 General Single Field Formalism 6 2.2 Scale-Dependent Relationships 8 2.3 An Example from String Theory 9 3.
    [Show full text]
  • Gaussian and Non-Gaussian-Based Gram-Charlier and Edgeworth Expansions for Correlations of Identical Particles in HBT Interferometry
    Gaussian and non-Gaussian-based Gram-Charlier and Edgeworth expansions for correlations of identical particles in HBT interferometry by Michiel Burger De Kock Thesis presented in partial fulfilment of the requirements for the degree of Master of Theoretical Physics at the University of Stellenbosch Department of Physics University of Stellenbosch Private Bag X1, 7602 Matieland, South Africa Supervisor: Prof H.C. Eggers March 2009 Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 02-03-2009 Copyright c 2009 Stellenbosch University All rights reserved. i Abstract Gaussian and non-Gaussian-based Gram-Charlier and Edgeworth expansions for correlations of identical particles in HBT interferometry M.B. De Kock Department of Physics University of Stellenbosch Private Bag X1, 7602 Matieland, South Africa Thesis: MSc (Theoretical Physics) March 2009 Hanbury Brown{Twiss interferometry is a correlation technique by which the size and shape of the emission function of identical particles created during collisions of high-energy leptons, hadrons or nuclei can be determined. Accurate experimental datasets of three-dimensional correlation functions in momentum space now exist; these are sometimes almost Gaussian in form, but may also show strong deviations from Gaussian shapes. We investigate the suitability of expressing these correlation functions in terms of statistical quantities beyond the normal Gaussian description. Beyond means and the covariance matrix, higher-order moments and cumulants describe the form and difference between the measured correlation function and a Gaussian distribution.
    [Show full text]
  • On the Validity of the Formal Edgeworth Expansion for Posterior Densities
    On the validity of the formal Edgeworth expansion for posterior densities John E. Kolassa Department of Statistics and Biostatistics Rutgers University [email protected] Todd A. Kuffner Department of Mathematics Washington University in St. Louis [email protected] October 6, 2017 Abstract We consider a fundamental open problem in parametric Bayesian theory, namely the validity of the formal Edgeworth expansion of the posterior density. While the study of valid asymptotic expansions for posterior distributions constitutes a rich literature, the va- lidity of the formal Edgeworth expansion has not been rigorously established. Several authors have claimed connections of various posterior expansions with the classical Edge- worth expansion, or have simply assumed its validity. Our main result settles this open problem. We also prove a lemma concerning the order of posterior cumulants which is of independent interest in Bayesian parametric theory. The most relevant literature is synthe- sized and compared to the newly-derived Edgeworth expansions. Numerical investigations illustrate that our expansion has the behavior expected of an Edgeworth expansion, and that it has better performance than the other existing expansion which was previously claimed to be of Edgeworth-type. Keywords and phrases: Posterior; Edgeworth expansion; Higher-order asymptotics; arXiv:1710.01871v1 [math.ST] 5 Oct 2017 Cumulant expansion. 1 Introduction The Edgeworth series expansion of a density function is a fundamental tool in classical asymp- totic theory for parametric inference. Such expansions are natural refinements to first-order asymptotic Gaussian approximations to large-sample distributions of suitably centered and normalized functionals of sequences of random variables, X1;:::;Xn. Here, n is the avail- able sample size, asymptotic means n ! 1, and first-order means that the approximation 1 using only the standard Gaussian distribution incurs an absolute approximation error of order O(n−1=2).
    [Show full text]
  • A Tail Quantile Approximation Formula for the Student T and the Symmetric Generalized Hyperbolic Distribution
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Schlüter, Stephan; Fischer, Matthias J. Working Paper A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution IWQW Discussion Papers, No. 05/2009 Provided in Cooperation with: Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics Suggested Citation: Schlüter, Stephan; Fischer, Matthias J. (2009) : A tail quantile approximation formula for the student t and the symmetric generalized hyperbolic distribution, IWQW Discussion Papers, No. 05/2009, Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung (IWQW), Nürnberg This Version is available at: http://hdl.handle.net/10419/29554 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu IWQW Institut für Wirtschaftspolitik und Quantitative Wirtschaftsforschung Diskussionspapier Discussion Papers No.
    [Show full text]
  • New Edgeworth-Type Expansions with Finite Sample Guarantees1]A2
    New Edgeworth-type expansions with finite sample guarantees1 Mayya Zhilova2 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 USA e-mail: [email protected] Abstract: We establish higher-order expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry–Esseen inequalities under very general conditions. For symmetrically distributed random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. The new technique which we developed for establishing nonasymptotic higher-order expansions can be interesting by itself. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The results of the paper also include explicit error bounds for general elliptical confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls. MSC2020 subject classifications: Primary 62E17, 62F40; secondary 62F25. Keywords and phrases: Edgeworth series, dependence on dimension, higher-order accuracy, multivariate Berry–Esseen inequality, finite sam- ple inference, anti-concentration inequality, bootstrap, elliptical confidence sets, linear contrasts, bootstrap score test, model misspecification.
    [Show full text]
  • Algorithms for Operations on Probability Distributions in a Computer Algebra System
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2001 Algorithms for operations on probability distributions in a computer algebra system Diane Lynn Evans College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Mathematics Commons, and the Statistics and Probability Commons Recommended Citation Evans, Diane Lynn, "Algorithms for operations on probability distributions in a computer algebra system" (2001). Dissertations, Theses, and Masters Projects. Paper 1539623382. https://dx.doi.org/doi:10.21220/s2-bath-8582 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Reproduced with with permission permission of the of copyright the copyright owner. owner.Further reproductionFurther reproduction prohibited without prohibited permission. without permission. ALGORITHMS FOR OPERATIONS ON PROBABILITY DISTRIBUTIONS IN A COMPUTER ALGEBRA SYSTEM A Dissertation Presented to The Faculty of the Department of Applied Science The College of William & Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Diane Lynn Evans July 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3026405 Copyright 2001 by Evans, Diane Lynn All rights reserved. ___ ® UMI UMI Microform 3026405 Copyright 2001 by Bell & Howell Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • On the Validity of the Formal Edgeworth Expansion for Posterior Densities
    Submitted to the Annals of Statistics ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION FOR POSTERIOR DENSITIES By John E. Kolassaz and Todd A. Kuffnerx Rutgers Universityz and Washington University in St. Louisx We consider a fundamental open problem in parametric Bayesian theory, namely the validity of the formal Edgeworth expansion of the posterior density. While the study of valid asymptotic expansions for posterior distributions constitutes a rich literature, the validity of the formal Edgeworth expansion has not been rigorously estab- lished. Several authors have claimed connections of various posterior expansions with the classical Edgeworth expansion, or have simply assumed its validity. Our main result settles this open problem. We also prove a lemma concerning the order of posterior cumulants which is of independent interest in Bayesian parametric theory. The most relevant literature is synthesized and compared to the newly-derived Edgeworth expansions. Numerical investigations illustrate that our expansion has the behavior expected of an Edgeworth expansion, and that it has better performance than the other existing expansion which was previously claimed to be of Edgeworth-type. 1. Introduction. The Edgeworth series expansion of a density function is a fundamental tool in classical asymptotic theory for parametric inference. Such expansions are natural refinements to first-order asymptotic Gaussian approximations to large-sample distributions of suitably centered and nor- malized functionals of sequences of random variables, X1;:::;Xn. Here, n is the available sample size, asymptotic means n ! 1, and first-order means that the approximation using only the standard Gaussian distribution incurs an absolute approximation error of order O(n−1=2).
    [Show full text]
  • Generating Random Samples from User-Defined Distributions
    The Stata Journal (2011) 11, Number 2, pp. 299–304 Generating random samples from user-defined distributions Katar´ına Luk´acsy Central European University Budapest, Hungary lukacsy [email protected] Abstract. Generating random samples in Stata is very straightforward if the distribution drawn from is uniform or normal. With any other distribution, an inverse method can be used; but even in this case, the user is limited to the built- in functions. For any other distribution functions, their inverse must be derived analytically or numerical methods must be used if analytical derivation of the inverse function is tedious or impossible. In this article, I introduce a command that generates a random sample from any user-specified distribution function using numeric methods that make this command very generic. Keywords: st0229, rsample, random sample, user-defined distribution function, inverse method, Monte Carlo exercise 1 Introduction In statistics, a probability distribution identifies the probability of a random variable. If the random variable is discrete, it identifies the probability of each value of this vari- able. If the random variable is continuous, it defines the probability that this variable’s value falls within a particular interval. The probability distribution describes the range of possible values that a random variable can attain, further referred to as the sup- port interval, and the probability that the value of the random variable is within any (measurable) subset of that range. Random sampling refers to taking a number of independent observations from a probability distribution. Typically, the parameters of the probability distribution (of- ten referred to as true parameters) are unknown, and the aim is to retrieve them using various estimation methods on the random sample generated from this probability dis- tribution.
    [Show full text]
  • Random Variables Generation
    Random Variables Generation Revised version of the slides based on the book Discrete-Event Simulation: a first course L.L. Leemis & S.K. Park Section(s) 6.1, 6.2, 7.1, 7.2 c 2006 Pearson Ed., Inc. 0-13-142917-5 Discrete-Event Simulation Random Variables Generation 1/80 Introduction Monte Carlo Simulators differ from Trace Driven simulators because of the use of Random Number Generators to represent the variability that affects the behaviors of real systems. Uniformly distributed random variables are the most elementary representations that we can use in Monte Carlo simulation, but are not enough to capture the complexity of real systems. We must thus devise methods for generating instances (variates) of arbitrary random variables Properly using uniform random numbers, it is possible to obtain this result. In the sequel we will first recall some basic properties of Discrete and Continuous random variables and then we will discuss several methods to obtain their variates Discrete-Event Simulation Random Variables Generation 2/80 Basic Probability Concepts Empirical Probability, derives from performing an experiment many times n and counting the number of occurrences na of an event A The relative frequency of occurrence of event is na/n The frequency theory of probability asserts thatA the relative frequency converges as n → ∞ n Pr( )= lim a A n→∞ n Axiomatic Probability is a formal, set-theoretic approach Mathematically construct the sample space and calculate the number of events A The two are complementary! Discrete-Event Simulation Random
    [Show full text]
  • Multivariate Generalized Gram-Charlier Series in Vector
    arXiv: math.ST: 1503.03212 Multivariate Generalized Gram-Charlier Series in Vector Notations Dharmani Bhaveshkumar C. Dhirubhai Ambani Institute of Information & Communication Technology (DAIICT), Gandhinagar, Gujarat, INDIA - 382001 e-mail: [email protected] Abstract: The article derives multivariate Generalized Gram-Charlier (GGC) series that expands an unknown joint probability density function (pdf ) of a random vector in terms of the differentiations of the joint pdf of a reference random vector. Conventionally, the higher order differentiations of a multivariate pdf in GGC series will require multi-element array or tensor representations. But, the current article derives the GGC series in vector notations. The required higher order differentiations of a multivari- ate pdf in vector notations are achieved through application of a specific Kronecker product based differentiation operator. Overall, the article uses only elementary calculus of several variables; instead Tensor calculus; to achieve the extension of an existing specific derivation for GGC series in uni- variate to multivariate. The derived multivariate GGC expression is more elementary as using vector notations compare to the coordinatewise ten- sor notations and more comprehensive as apparently more nearer to its counterpart for univariate. The same advantages are shared by the other expressions obtained in the article; such as the mutual relations between cumulants and moments of a random vector, integral form of a multivariate pdf, integral form of the multivariate Hermite polynomials, the multivariate Gram-Charlier A (GCA) series and others. Primary 62E17, 62H10; Secondary 60E10. Keywords and phrases: Multivariate Generalized Gram-Charlier (GGC) series; Multivariate Gram-Charlier A (GCA) series; Multivariate Vector Hermite Polynomials; Kronecker Product; Vector moments; Vector cumu- lants.
    [Show full text]
  • On Half-Cauchy Distribution and Process
    International Journal of Statistika and Mathematika, ISSN: 2277- 2790 E-ISSN: 2249-8605, Volume 3, Issue 2, 2012 pp 77-81 On Half-Cauchy Distribution and Process Elsamma Jacob1 , K Jayakumar2 1Malabar Christian College, Calicut, Kerala, INDIA. 2Department of Statistics, University of Calicut, Kerala, INDIA. Corresponding addresses: [email protected], [email protected] Research Article Abstract: A new form of half- Cauchy distribution using sin ξ cos ξ Marshall-Olkin transformation is introduced. The properties of () = − ξ, () = ξ, ≥ 0 the new distribution such as density, cumulative distribution ξ ξ function, quantiles, measure of skewness and distribution of the extremes are obtained. Time series models with half-Cauchy Remark 1.1. For the HC distribution the moments do distribution as stationary marginal distributions are not not exist. developed so far. We develop first order autoregressive process Remark 1.2. The HC distribution is infinitely divisible with the new distribution as stationary marginal distribution and (Bondesson (1987)) and self decomposable (Diedhiou the properties of the process are studied. Application of the (1998)). distribution in various fields is also discussed. Keywords: Autoregressive Process, Geometric Extreme Stable, Relationship with other distributions: Half-Cauchy Distribution, Skewness, Stationarity, Quantiles. 1. Let Y be a folded t variable with pdf given by 1. Introduction: ( ) > 0, (1.5) The half Cauchy (HC) distribution is derived from 2Γ( ) () = 1 + , ν ∈ , the standard Cauchy distribution by folding the ν ()√νπ curve on the origin so that only positive values can be observed. A continuous random variable X is said When ν = 1 , (1.5) reduces to 2 1 > 0 to have the half Cauchy distribution if its survival () = , function is given by 1 + (x)=1 − tan , > 0 (1.1) Thus, HC distribution coincides with the folded t distribution with = 1 degree of freedom.
    [Show full text]
  • Sharp Composition Bounds for Gaussian Differential Privacy Via
    Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion Qinqing Zheng∗ Jinshuo Dong† Qi Long‡ Weijie J. Su§ University of Pennsylvania February 27, 2020 Abstract Datasets containing sensitive information are often sequentially analyzed by many algorithms. This raises a fundamental question in differential privacy regarding how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed f-differential privacy. In contrast to the existing composition theorems using the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks. 1 Introduction Machine learning, data mining, and statistical analysis are widely applied to various applications impacting our daily lives. While we celebrate the benefits brought by these applications, to an alarming degree, the algorithms are accessing datasets containing sensitive information such as individual behaviors on the web and health records. By simply tweaking the datasets and leveraging the output of algorithms, it is possible for an adversary to learn information about and even identify certain individuals [FJR15, SSSS17]. In particular, privacy concerns become even more acute when the same dataset is probed by a sequence of algorithms.
    [Show full text]