Expansions for Nearly Gaussian Distributions
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Effects of Scale-Dependent Non-Gaussianity on Cosmological
Preprint typeset in JHEP style - HYPER VERSION Effects of Scale-Dependent Non-Gaussianity on Cosmological Structures Marilena LoVerde1, Amber Miller1, Sarah Shandera1, Licia Verde2 1 Institute of Strings, Cosmology and Astroparticle Physics Physics Department, Columbia University, New York, NY 10027 2 ICREA, Institut de Ci`encies de l’Espai (ICE), IEEC-CSIC, Campus UAB, F. de Ci`encies, Torre C5 par-2, Barcelona 08193, Spain Emails: [email protected], [email protected], [email protected], [email protected] Abstract: The detection of primordial non-Gaussianity could provide a powerful means to test various inflationary scenarios. Although scale-invariant non-Gaussianity (often de- scribed by the fNL formalism) is currently best constrained by the CMB, single-field models with changing sound speed can have strongly scale-dependent non-Gaussianity. Such mod- els could evade the CMB constraints but still have important effects at scales responsible for the formation of cosmological objects such as clusters and galaxies. We compute the effect of scale-dependent primordial non-Gaussianity on cluster number counts as a function of redshift, using a simple ansatz to model scale-dependent features. We forecast constraints arXiv:0711.4126v3 [astro-ph] 13 Mar 2008 on these models achievable with forthcoming data sets. We also examine consequences for the galaxy bispectrum. Our results are relevant for the Dirac-Born-Infeld model of brane inflation, where the scale-dependence of the non-Gaussianity is directly related to the geometry of the extra dimensions. Contents 1. Introduction 1 2. General Single-field Inflation: Review and Example 6 2.1 General Single Field Formalism 6 2.2 Scale-Dependent Relationships 8 2.3 An Example from String Theory 9 3. -
Gaussian and Non-Gaussian-Based Gram-Charlier and Edgeworth Expansions for Correlations of Identical Particles in HBT Interferometry
Gaussian and non-Gaussian-based Gram-Charlier and Edgeworth expansions for correlations of identical particles in HBT interferometry by Michiel Burger De Kock Thesis presented in partial fulfilment of the requirements for the degree of Master of Theoretical Physics at the University of Stellenbosch Department of Physics University of Stellenbosch Private Bag X1, 7602 Matieland, South Africa Supervisor: Prof H.C. Eggers March 2009 Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the owner of the copyright thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 02-03-2009 Copyright c 2009 Stellenbosch University All rights reserved. i Abstract Gaussian and non-Gaussian-based Gram-Charlier and Edgeworth expansions for correlations of identical particles in HBT interferometry M.B. De Kock Department of Physics University of Stellenbosch Private Bag X1, 7602 Matieland, South Africa Thesis: MSc (Theoretical Physics) March 2009 Hanbury Brown{Twiss interferometry is a correlation technique by which the size and shape of the emission function of identical particles created during collisions of high-energy leptons, hadrons or nuclei can be determined. Accurate experimental datasets of three-dimensional correlation functions in momentum space now exist; these are sometimes almost Gaussian in form, but may also show strong deviations from Gaussian shapes. We investigate the suitability of expressing these correlation functions in terms of statistical quantities beyond the normal Gaussian description. Beyond means and the covariance matrix, higher-order moments and cumulants describe the form and difference between the measured correlation function and a Gaussian distribution. -
On the Validity of the Formal Edgeworth Expansion for Posterior Densities
On the validity of the formal Edgeworth expansion for posterior densities John E. Kolassa Department of Statistics and Biostatistics Rutgers University [email protected] Todd A. Kuffner Department of Mathematics Washington University in St. Louis [email protected] October 6, 2017 Abstract We consider a fundamental open problem in parametric Bayesian theory, namely the validity of the formal Edgeworth expansion of the posterior density. While the study of valid asymptotic expansions for posterior distributions constitutes a rich literature, the va- lidity of the formal Edgeworth expansion has not been rigorously established. Several authors have claimed connections of various posterior expansions with the classical Edge- worth expansion, or have simply assumed its validity. Our main result settles this open problem. We also prove a lemma concerning the order of posterior cumulants which is of independent interest in Bayesian parametric theory. The most relevant literature is synthe- sized and compared to the newly-derived Edgeworth expansions. Numerical investigations illustrate that our expansion has the behavior expected of an Edgeworth expansion, and that it has better performance than the other existing expansion which was previously claimed to be of Edgeworth-type. Keywords and phrases: Posterior; Edgeworth expansion; Higher-order asymptotics; arXiv:1710.01871v1 [math.ST] 5 Oct 2017 Cumulant expansion. 1 Introduction The Edgeworth series expansion of a density function is a fundamental tool in classical asymp- totic theory for parametric inference. Such expansions are natural refinements to first-order asymptotic Gaussian approximations to large-sample distributions of suitably centered and normalized functionals of sequences of random variables, X1;:::;Xn. Here, n is the avail- able sample size, asymptotic means n ! 1, and first-order means that the approximation 1 using only the standard Gaussian distribution incurs an absolute approximation error of order O(n−1=2). -
Hermite Functions and the Quantum Oscillator REVISE
Hermite Functions and the Quantum Oscillator Background Differentials Equations handout The Laplace equation – solution and application Concepts of primary interest: Separation constants Sets of orthogonal functions Discrete and continuous eigenvalue spectra Generating Functions Rodrigues formula representation Recurrence relations Raising and lowering operators Sturm-Liouville Problems Sample calculations: Tools of the trade: k ½ REVISE: Use the energy unit ( /m) and include the roots of 2 from the beginning. The Quantum Simple Harmonic Oscillator is one of the problems that motivate the study of the Hermite polynomials, the Hn(x). Q.M.S. (Quantum Mechanics says.): 2 du2 n ()()01 kx2 E u x [Hn.1] 2mdx2 2 nn This equation is to be attacked and solved by the numbers. STEP ONE: Convert the problem from one in physics to one in mathematics. The equation as written has units of energy. The constant has units of energy * time, m 2 has units of mass, and k has units of energy per area. Combining, has units of mk Contact: [email protected] 1/4 4 mk -1 (length) so a dimensioned scaling constant = 2 is defined with units (length) as a step toward defining a dimensionless variable z = x. The equation itself is k ½ divided by the natural unit of energy ½ ( /m) leading to a dimensionless constant 2 En n = which is (proportional to) the eigenvalue, the energy in natural units. (/km )1/2 The equation itself is now expressed in a dimensionless (mathspeak) form: du2 n ()()0 zuz2 . [Hn.2] (**See problem 2 for important details.) dz2 nn The advantage of this form is that one does not need to write down as many symbols. -
HERMITE POLYNOMIALS Schrödinger's Equation for A
MATH 105B EXTRA/REVIEW TOPIC: HERMITE POLYNOMIALS PROF. MICHAEL VANVALKENBURGH Schr¨odinger'sequation for a quantum harmonic oscillator is 1 d2 − + x2 u = u. 2 dx2 This says u is an eigenfunction with eigenvalue . In physics, represents an energy value. Let 1 d a = p x + the \annihilation" operator, 2 dx and 1 d ay = p x − the \creation" operator. 2 dx Note that, as an operator, d2 aya + aay = − + x2; dx2 which we can use to rewrite Schr¨odinger'sequation. Fact. The function −1=4 −x2=2 u0(x) = π e represents a quantum particle in its \ground state." (Its square is the probability density function of a particle in its lowest energy state.) Note that au0(x) = 0; which justifies calling the operator a the \annihilation" operator! On the other hand, y u1(x) : = a u0(x) 2 = π−1=42−1=2(2x)e−x =2 represents a quantum particle in its next highest energy state. So the operator ay \creates" one unit of energy! 1 MATH 105B EXTRA/REVIEW TOPIC: HERMITE POLYNOMIALS 2 Each application of ay creates a unit of energy, and we get the \Hermite functions" −1=2 y n un(x) : = (n!) (a ) u0(x) −1=4 −n=2 −1=2 −x2=2 = π 2 (n!) Hn(x)e ; where Hn(x) is a polynomial of order n called \the nth Hermite polynomial." In particular, H0(x) = 1 and H1(x) = 2x. Fact: Hn satisfies the ODE d2 d − 2x + 2n H = 0: dx2 dx n For review, let's use the power series method: We look for Hn of the form 1 X k Hn(x) = Akx : k=0 We plug in and compare coefficients to find: A2 = −nA0 2(k − n) A = A for k ≥ 1: k+2 (k + 2)(k + 1) k Note how there is a natural split into odd and even terms, similar to what happened for Legendre's equation in x5.2. -
New Edgeworth-Type Expansions with Finite Sample Guarantees1]A2
New Edgeworth-type expansions with finite sample guarantees1 Mayya Zhilova2 School of Mathematics Georgia Institute of Technology Atlanta, GA 30332-0160 USA e-mail: [email protected] Abstract: We establish higher-order expansions for a difference between probability distributions of sums of i.i.d. random vectors in a Euclidean space. The derived bounds are uniform over two classes of sets: the set of all Euclidean balls and the set of all half-spaces. These results allow to account for an impact of higher-order moments or cumulants of the considered distributions; the obtained error terms depend on a sample size and a dimension explicitly. The new inequalities outperform accuracy of the normal approximation in existing Berry–Esseen inequalities under very general conditions. For symmetrically distributed random summands, the obtained results are optimal in terms of the ratio between the dimension and the sample size. The new technique which we developed for establishing nonasymptotic higher-order expansions can be interesting by itself. Using the new higher-order inequalities, we study accuracy of the nonparametric bootstrap approximation and propose a bootstrap score test under possible model misspecification. The results of the paper also include explicit error bounds for general elliptical confidence regions for an expected value of the random summands, and optimality of the Gaussian anti-concentration inequality over the set of all Euclidean balls. MSC2020 subject classifications: Primary 62E17, 62F40; secondary 62F25. Keywords and phrases: Edgeworth series, dependence on dimension, higher-order accuracy, multivariate Berry–Esseen inequality, finite sam- ple inference, anti-concentration inequality, bootstrap, elliptical confidence sets, linear contrasts, bootstrap score test, model misspecification. -
On the Validity of the Formal Edgeworth Expansion for Posterior Densities
Submitted to the Annals of Statistics ON THE VALIDITY OF THE FORMAL EDGEWORTH EXPANSION FOR POSTERIOR DENSITIES By John E. Kolassaz and Todd A. Kuffnerx Rutgers Universityz and Washington University in St. Louisx We consider a fundamental open problem in parametric Bayesian theory, namely the validity of the formal Edgeworth expansion of the posterior density. While the study of valid asymptotic expansions for posterior distributions constitutes a rich literature, the validity of the formal Edgeworth expansion has not been rigorously estab- lished. Several authors have claimed connections of various posterior expansions with the classical Edgeworth expansion, or have simply assumed its validity. Our main result settles this open problem. We also prove a lemma concerning the order of posterior cumulants which is of independent interest in Bayesian parametric theory. The most relevant literature is synthesized and compared to the newly-derived Edgeworth expansions. Numerical investigations illustrate that our expansion has the behavior expected of an Edgeworth expansion, and that it has better performance than the other existing expansion which was previously claimed to be of Edgeworth-type. 1. Introduction. The Edgeworth series expansion of a density function is a fundamental tool in classical asymptotic theory for parametric inference. Such expansions are natural refinements to first-order asymptotic Gaussian approximations to large-sample distributions of suitably centered and nor- malized functionals of sequences of random variables, X1;:::;Xn. Here, n is the available sample size, asymptotic means n ! 1, and first-order means that the approximation using only the standard Gaussian distribution incurs an absolute approximation error of order O(n−1=2). -
Orthogonal Functions: the Legendre, Laguerre, and Hermite Polynomials
ORTHOGONAL FUNCTIONS: THE LEGENDRE, LAGUERRE, AND HERMITE POLYNOMIALS THOMAS COVERSON, SAVARNIK DIXIT, ALYSHA HARBOUR, AND TYLER OTTO Abstract. The Legendre, Laguerre, and Hermite equations are all homogeneous second order Sturm-Liouville equations. Using the Sturm-Liouville Theory we will be able to show that polynomial solutions to these equations are orthogonal. In a more general context, finding that these solutions are orthogonal allows us to write a function as a Fourier series with respect to these solutions. 1. Introduction The Legendre, Laguerre, and Hermite equations have many real world practical uses which we will not discuss here. We will only focus on the methods of solution and use in a mathematical sense. In solving these equations explicit solutions cannot be found. That is solutions in in terms of elementary functions cannot be found. In many cases it is easier to find a numerical or series solution. There is a generalized Fourier series theory which allows one to write a function f(x) as a linear combination of an orthogonal system of functions φ1(x),φ2(x),...,φn(x),... on [a; b]. The series produced is called the Fourier series with respect to the orthogonal system. While the R b a f(x)φn(x)dx coefficients ,which can be determined by the formula cn = R b 2 , a φn(x)dx are called the Fourier coefficients with respect to the orthogonal system. We are concerned only with showing that the Legendre, Laguerre, and Hermite polynomial solutions are orthogonal and can thus be used to form a Fourier series. In order to proceed we must define an inner product and define what it means for a linear operator to be self- adjoint. -
Multivariate Generalized Gram-Charlier Series in Vector
arXiv: math.ST: 1503.03212 Multivariate Generalized Gram-Charlier Series in Vector Notations Dharmani Bhaveshkumar C. Dhirubhai Ambani Institute of Information & Communication Technology (DAIICT), Gandhinagar, Gujarat, INDIA - 382001 e-mail: [email protected] Abstract: The article derives multivariate Generalized Gram-Charlier (GGC) series that expands an unknown joint probability density function (pdf ) of a random vector in terms of the differentiations of the joint pdf of a reference random vector. Conventionally, the higher order differentiations of a multivariate pdf in GGC series will require multi-element array or tensor representations. But, the current article derives the GGC series in vector notations. The required higher order differentiations of a multivari- ate pdf in vector notations are achieved through application of a specific Kronecker product based differentiation operator. Overall, the article uses only elementary calculus of several variables; instead Tensor calculus; to achieve the extension of an existing specific derivation for GGC series in uni- variate to multivariate. The derived multivariate GGC expression is more elementary as using vector notations compare to the coordinatewise ten- sor notations and more comprehensive as apparently more nearer to its counterpart for univariate. The same advantages are shared by the other expressions obtained in the article; such as the mutual relations between cumulants and moments of a random vector, integral form of a multivariate pdf, integral form of the multivariate Hermite polynomials, the multivariate Gram-Charlier A (GCA) series and others. Primary 62E17, 62H10; Secondary 60E10. Keywords and phrases: Multivariate Generalized Gram-Charlier (GGC) series; Multivariate Gram-Charlier A (GCA) series; Multivariate Vector Hermite Polynomials; Kronecker Product; Vector moments; Vector cumu- lants. -
Complex Hermite Polynomials: Their Combinatorics and Integral Operators
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 143, Number 4, April 2015, Pages 1397–1410 S 0002-9939(2014)12362-8 Article electronically published on December 9, 2014 COMPLEX HERMITE POLYNOMIALS: THEIR COMBINATORICS AND INTEGRAL OPERATORS MOURAD E. H. ISMAIL AND PLAMEN SIMEONOV (Communicated by Jim Haglund) Abstract. We consider two types of Hermite polynomials of a complex vari- able. For each type we obtain combinatorial interpretations for the lineariza- tion coefficients of products of these polynomials. We use the combinatorial interpretations to give new proofs of several orthogonality relations satisfied by these polynomials with respect to positive exponential weights in the com- plex plane. We also construct four integral operators of which the first type of complex Hermite polynomials are eigenfunctions and we identify the corre- sponding eigenvalues. We prove that the products of these complex Hermite polynomials are complete in certain L2-spaces. 1. Introduction We consider two types of complex Hermite polynomials. The first type is sim- ply the Hermite polynomials in the complex variable z,thatis,{Hn(z)}.These polynomials have been introduced in the study of coherent states [4], [6]. They are defined by [18], [11], n/2 n!(−1)k (1.1) H (z)= (2z)n−2k,z= x + iy. n k!(n − 2k)! k=0 The second type are the polynomials {Hm,n(z,z¯)} defined by the generating func- tion ∞ um vn (1.2) H (z,z¯) =exp(uz + vz¯ − uv). m,n m! n! m, n=0 These polynomials were introduced by Itˆo [14] and also appear in [7], [1], [4], [19], and [8]. -
New Orthogonality Relations for the Hermite Polynomials and Related Hilbert Spaces
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 146, 89-98 (1990) New Orthogonality Relations for the Hermite Polynomials and Related Hilbert Spaces S. J. L. VAN EIJNDHOVEN AND J. L. H. MEYERS Eindhooen Uniuersify of Technology, Department of Mathematics. P.O. Bo.u 513, 5600MB Eindhoren, The Netherland.? Submitted hy George Gasper Received October 22, 1987 The Hermite polynomials give rise to orthonormal bases in Bagmann-like Hilbert spaces X,, 0 < A < 1, consisting of entire functions. These Hilbert spaces are related to the Gelfand-Shilov space S ;:I. viz. S ::f = (Jo< ,4<, X,4. (7, 1990 Academic Press. Inc. INTRODUCTION For n = 0, 1, 2, .. the n th Hermite polynomial H, is defined by n H,(x)=(-1)“e”’ $ eP2. (0.1) ( > The polynomials H, satisfy the following orthogonality relations ,x H,(x) H,(x) e& d.x = 71”~2”n! 6,,,. (0.2.) s- 7. Here a,,,, denotes Kronecker’s delta symbol. The orthogonality relations (0.2) can be readily obtained with the aid of the generating function, viz. .,zo 5 H,(x) = exp(2xz - z2). (0.3 1 Indeed, let anm = sFr H,(x) H,(x) e@ dx. Then we have exp[ -9 + 2x(z1 + z2) - z: - z:] dx =7t Ii2 exp[2z,z,]. So it follows that anm= n112(n!m!/n!) 2” 6,,. 89 0022-247X/90 $3.00 Copynght #r: 1990 by Academic Press. Inc. All rights of reproduction in any form reserved. 90 VAN EIJNDHOVEN AND MEYERS If we set l+hJx) = (7r’,22”,1!) ’ 2 e “-‘H,,(g), .YE R, (0.4) then the functions $,, n=O, 1, 2. -
Sharp Composition Bounds for Gaussian Differential Privacy Via
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion Qinqing Zheng∗ Jinshuo Dong† Qi Long‡ Weijie J. Su§ University of Pennsylvania February 27, 2020 Abstract Datasets containing sensitive information are often sequentially analyzed by many algorithms. This raises a fundamental question in differential privacy regarding how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed f-differential privacy. In contrast to the existing composition theorems using the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks. 1 Introduction Machine learning, data mining, and statistical analysis are widely applied to various applications impacting our daily lives. While we celebrate the benefits brought by these applications, to an alarming degree, the algorithms are accessing datasets containing sensitive information such as individual behaviors on the web and health records. By simply tweaking the datasets and leveraging the output of algorithms, it is possible for an adversary to learn information about and even identify certain individuals [FJR15, SSSS17]. In particular, privacy concerns become even more acute when the same dataset is probed by a sequence of algorithms.