Federal Service of Russia for Hydrometeorology And

Total Page:16

File Type:pdf, Size:1020Kb

Federal Service of Russia for Hydrometeorology And FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Russian Federation State Research Center Arctic and Antarctic Research Institute Russian Antarctic Expedition QUARTERLY BULLETIN №2 (27) April - June 2004 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2004 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Russian Federation State Research Center Arctic and Antarctic Research Institute Russian Antarctic Expedition QUARTERLY BULLETIN №2 (27) April - June 2004 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2004 Authors and contributors Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition (RAE) Department) Section 1 - M.O. Krichak (RAE), V.Ye. Lagun (Department of Sea-Air Interaction) Section 2 - Ye.I. Aleksandrov (Department of Meteorology) Section 3 - L.Yu. Ryzhakov, G.Ye. Ryabkov (Department of Long-Range Weather Forecasting) Section 4 - A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 - Ye.Ye. Sibir (Department of Meteorology) Section 6 - I.P. Yeditkina, I.V. Moskvin, A.V. Frank-Kamenetsky (Department of Geophysics) Section 7 - V.V. Lukin (RAE), Section 8 - V.A. Kuchin (RAE). Translated by I.I. Solovieva http://south.aari.nw.ru, Russian Antarctic Expedition, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for help and assistance in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41 Fax: (812) 352 28 27 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….…………………………..1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS…………………………………….………………………….3 2. METEOROLOGICAL CONDITIONS IN APRIL – JUNE 2004……………………….47 3. REVIEW OF THE ATMOSPHERIC PROCESSES ABOVE THE ANTARCTIC IN APRIL – JUNE 2004……………..…………………………………….…………….53 4. BRIEF REVIEW OF ICE PROCESSES IN THE SOUTHERN OCEAN FROM DATA OF SATELLITE AND COASTAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS IN APRIL-JUNE 2004……………….…………………….54 5. RESULTS OF TOTAL OZONE MEASUREMENTS IN THE SECOND QUARTER OF 2004…………….……………………………………………………………………58 6. GEOPHYSICAL OBSERVATIONS AT RUSSIAN ANTARCTIC STATIONS IN APRIL – JUNE 2004…..….………………………………….…………….………..59 7. XXVII ANTARCTIC TREATY CONSULTATIVE MEETING………...…………….67 8. MAIN RAE EVENTS IN APRIL, MAY AND JUNE 2004……………………………70 1 PREFACE The Bulletin is prepared on the basis of data reported from the Russian Antarctic stations in real time via the communication channels. The Bulletin is published from 1998 on a quarterly basis. Section I in this issue presents monthly averages of standard meteorological and solar radiation observations and upper-air sounding for the second quarter of 2004. Standard meteorological observations are carried out at present at Mirny, Novolazarevskaya, Bellingshausen, Progress (from February this year) and Vostok stations (at Vostok station after its reactivation, a complete set of meteorological observations was resumed from March 2004). The upper-air sounding is undertaken once a day at 00.00 UT at two stations - Mirny Observatory and Novolazarevskaya. More frequent sounding is conducted during the periods of the International Geophysical Interval (in accordance with the International Geophysical Calendar in 2004 – from 8 to 21 March, 14 to 27 June, 13 to 26 September and 13 to 26 December) at both stations at 00 h and 12 h UT. In the meteorological tables, the atmospheric pressure values for the coastal stations are referenced to sea level. Along with the monthly averages of meteorological parameters, the tables in Section 1 present their deviations from multiyear averages (anomalies), deviations in σf fractions (normalized anomalies - (f-favg)/ σf) and relative anomalies (f/favg) of the monthly sums of precipitation and total radiation. The statistical characteristics necessary for the calculation of anomalies were derived at the AARI Department of Meteorology for the period 1961-1990 recommended by the World Meteorological Organization. Section 1 also presents the diagrams of temporal variations of mean daily values of meteorological parameters at the stations for specific months allowing an assessment of fluctuations of these parameters during a month. The section also presents the upper-air-temporal temperature and wind speed sections in the free atmosphere obtained from the results of regular upper-air sounding at Mirny and Novolazarevskaya stations. The Bulletin contains brief overviews of the state of the Antarctic environment based on actual data. Sections 2 and 3 are devoted to the meteorological and synoptic conditions. The reviews of synoptic conditions (section 3) are prepared on the basis of the analysis of current aerological and synoptic information, which is performed by the weather forecaster at Novolazarevskaya station and also on the basis of more complete data of the Southern Hemisphere collected at the AARI. The analysis of ice conditions in the Southern Ocean (Section 4) is based on satellite data received at Bellingshausen, Novolazarevskaya and Mirny stations and on the observations conducted at the coastal Bellingshausen and Mirny stations. The anomalous character of ice conditions is evaluated against the multiyear averages of the drifting ice edge location and the onset of different ice phases in the coastal areas of the Southern Ocean adjoining the Antarctic stations. The multiyear averages were obtained at the AARI Department of Ice Regime and Forecasting over the period 1971-1995. Section 5 presents an overview of total ozone (TO) on the basis of measurements at the Russian stations. Data of geophysical observations published in Section 6 present the results of measurements under the geomagnetic and ionospheric programs (magnetic and riometer observations; vertical sounding of the ionosphere) in Mirny Observatory, at Novolazarevskaya and Vostok stations. At the beginning of 2004, practically the entire complex of geophysical observations was resumed at Vostok station, however the vertical sounding of the ionosphere was temporally stopped due to technical causes. This type of observations is carried out now only in Mirny Observatory. The geophysical information also includes the PC-index – indicator of magnetic activity, which is calculated from data of geomagnetic observations of Vostok station. Section 7 presents information about the XXVII Antarctic Treaty Consultative Meeting held in late May-early June in Cape Town (South Africa). The last Section (8) is traditionally devoted to the main directions of the logistics activities of RAE during the period under consideration. 2 Russian Antarctic stations in operation in April - June 2004 MIRNY OBSERVATORY STATION SYNOPTIC INDEX 89592 METEOROLOGICAL SITE HEIGHT ABOVE SEA LEVEL 39.9 m GEOGRAPHICAL COORDINATES ϕ = 66°33′ S; λ = 93°01′ E GEOMAGNETIC COORDINATES Φ = -76.8°; ∆ = 151.1° BEGINNING AND END OF POLAR DAY 7 December – 5 January BEGINNING AND END OF POLAR NIGHT No NOVOLAZAREVSKAYA STATION STATION SYNOPTIC INDEX 89512 METEOROLOGICAL SITE HEIGHT ABOVE SEA LEVEL 119 m GEOGRAPHICAL COORDINATES ϕ = 70°46′ S; λ = 11°50′ E BEGINNING AND END OF POLAR DAY 15 November - 28 January BEGINNING AND END OF POLAR NIGHT 21 May - 23 July BELLINGSHAUSEN STATION STATION SYNOPTIC INDEX 89050 METEOROLOGICAL SITE HEIGHT ABOVE SEA LEVEL 14.3 m GEOGRAPHICAL COORDINATES ϕ = 62°12′ S; λ = 58°56′ W BEGINNING AND END OF POLAR DAY BEGINNING AND END OF POLAR NIGHT No PROGRESS STATION STATION SYNOPTIC INDEX 89574 METEOROLOGICAL SITE HEIGHT ABOVE SEA LEVEL 64 m GEOGRAPHICAL COORDINATES ϕ = 69°23′ S; λ = 76°23′ E BEGINNING AND END OF POLAR DAY 21 November – 22 January BEGINNING AND END OF POLAR NIGHT 28 May – 16 July VOSTOK STATION STATION SYNOPTIC INDEX 89606 METEOROLOGICAL SITE HEIGHT ABOVE SEA LEVEL 3488 m GEOGRAPHICAL COORDINATES ϕ = 78°27′ S; λ = 106°52′ E GEOMAGNETIC COORDINATES Φ = -89.3°; ∆ = 139.5° BEGINNING AND END OF POLAR DAY 21 October - 21 February BEGINNING AND END OF POLAR NIGHT 23 April - 21 August 3 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS APRIL 2004 MIRNY OBSERVATORY Table 1.1 Monthly averages of meteorological parameters (f) and their deviations from multiyear averages (favg) Mirny, April 2004 Normalized Anomaly Relative anomaly Parameter fmon.avg fmax fmin anomaly f-favg f/favg (f-favg)/σf Sea level pressure, hPa 982.1 1000.1 958.0 -6.1 -1.8 Air temperature, °C -13.6 -2.3 -24.0 0.3 0.2 Relative humidity, % 78 5.7 1.2 Total cloudiness (sky coverage), tenths 6.9 0.2 0.3 Lower cloudiness(sky coverage),tenths 1.4 -1.6 -1.3 Precipitation, mm 26.5 -13 -0.4 0.7 Mean wind speed, m/s 13.7 16.0 1.3 1.0 Prevailing wind direction, deg 158 Total radiation, MJ/m2 105.2 -1.8 -0.2 1.0 Total ozone content (TO), DU 278 317 239 4 A B -2 С 1000 0 -4 , E a R -6 P TU -8 , h 990 A E -10 R U PER -12 S S 980 E TEM R -14 R I -16 L P 970 E E A -18 V C A LE F -20 A R 960 E U -22 S S -24 0 5 10 15 20 25 30 950 APRIL 2004 5 1015202530 APRIL 2004 C D 100 40 s / m , S U % 90 , 30 Y DUL T I O D I M 80 D M U E 20 E H P E S V TI ND 70 I 10 ELA W R E C A 60 F R 5 1015202530 U 0 S APRIL 2004 5 1015202530 APRIL 2004 E F 6 170 m m s m , S, 165 S M E U N S 4 K N C I IO H 160 T T A R E IT V IP O C 2 C 155 E W R O P SN Y IL 150 A D 5 1015202530 0 APRIL 2004 5 1015202530 APRIL 2004 Fig. 1.1. Intra-monthly variation of daily mean values of surface temperature (A, bold line), maximal (А, thin line), minimal (A, dotted line) air temperature, sea level pressure (B), relative humidity (C), mean (D, black circles), maximal (D, crosses) values of surface wind speed, maximal gust of the wind (D, white circles), precipitation (E), snow cover thickness (F) in Mirny Observatory, April 2004.
Recommended publications
  • For Land-Fast Sea Ice at Prydz Bay, East Antarctica: an Operational Service for CHINARE
    Annals of Glaciology Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: an operational service for CHINARE Jiechen Zhao1,2, Bin Cheng3 , Timo Vihma3, Petra Heil4, Fengming Hui5,6, Article Qi Shu7,2 , Lin Zhang1 and Qinghua Yang8,6 Cite this article: Zhao J, Cheng B, Vihma T, Heil P, Hui F, Shu Q, Zhang L, Yang Q (2020). 1Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Centre (NMEFC), Fast Ice Prediction System (FIPS) for land-fast Ministry of Natural Resources, Beijing 100081, China; 2Laboratory for Regional Oceanography and Numerical sea ice at Prydz Bay, East Antarctica: an Modelling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3Finnish operational service for CHINARE. Annals of Meteorological Institute (FMI), Helsinki 00101, Finland; 4Australia Antarctic Division & Australian Antarctic Glaciology 61(83), 271–283. https://doi.org/ Programmer Partnership, Private Bag 80, Hobart, TAS 7001, Australia; 5School of Geospatial Engineering and 10.1017/aog.2020.46 Science, Sun Yat-sen University, Zhuhai 519082, China; 6Southern Marine Science and Engineering Guangdong 7 Received: 26 November 2019 Laboratory (Zhuhai), Zhuhai 519082, China; First Institute of Oceanography, Ministry of Natural Resources, 8 Revised: 1 June 2020 Qingdao 266061, China and School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Accepted: 2 June 2020 Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China First published online: 9 July 2020 Key words: Abstract Antarctica; land-fast sea ice; operational A Fast Ice Prediction System (FIPS) was constructed and is the first regional land-fast sea-ice service; Prydz Bay; snow and ice thickness; forecasting system for the Antarctic.
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2010 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2010 Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition –RAE) Authors and contributors Section 1 M. O. Krichak (RAE), Section 2 Ye. I. Aleksandrov (Department of Meteorology) Section 3 G. Ye. Ryabkov (Department of Long-Range Weather Forecasting) Section 4 A. I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye. Ye. Sibir (Department of Meteorology) Section 6 I. V. Moskvin, Yu.G.Turbin (Department of Geophysics) Section 7 V. V. Lukin (RAE) Section 8 B. R. Mavlyudov (RAS IG) Section 9 V. L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctic Research and Russian Antarctic Expedition, Reports and Glossaries, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….………………………….1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS…………………………………….…………………………3 2.
    [Show full text]
  • Wastewater Treatment in Antarctica
    Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14
    [Show full text]
  • Mount Harding, Grove Mountains, East Antarctica
    MEASURE 2 - ANNEX Management Plan for Antarctic Specially Protected Area No 168 MOUNT HARDING, GROVE MOUNTAINS, EAST ANTARCTICA 1. Introduction The Grove Mountains (72o20’-73o10’S, 73o50’-75o40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°512 -72°572 S, 74°532 -75°122 E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the past climatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc.
    [Show full text]
  • IP31 XII Special Consultative Meeting October, 2000 Traité De L'antarctique Original: English E XII Réunion Consultative Spéciale
    Antarctic Treaty XII SATCM/IP31 XII Special Consultative Meeting October, 2000 Traité de l'Antarctique Original: English XIIe Réunion consultative spéciale Tratado Antártico Agenda Item XII Reunión Consultiva Especial (CEP) 4e Антарктический Договор XII Специальное Консультативное Совещание Environmental protection activities at the Russian Antarctic station Progress in 1999-2000 Submitted by Russian Federation Environmental protection activities at the Russian Antarctic station Progress in 1999-2000 (Special ATCM, 11-16 September, 2000,CEP III, IP, Item 4a, submitted by the Russian Federation) The Antarctic field base Druzhnaya-4 and the Progress station were set up on the Amery Ice Shelf and in the Larsemann Hills oasis as the basic points for organizing Russian geological-geophysical studies of the area of Prince Charles Mountains and the Lambert glacier in 1987 and 1988, respectively. During the 1988-1989 season, the Progress station was moved to a new location closer to the ship unloading area. During the 1990-1992 period, large construction activities were undertaken at the Progress station presenting the first stage of establishing a large Antarctic base with the design dimensions similar to the USA McMurdo station. With this aim, a package of the necessary design-construction documentation was developed meeting the standard-legal base existing at that time in the USSR including the environmental protection issues. It also included the documentation on construction of the snow-ice runway to receive heavy wheeled aircraft. The political and economical changes that occurred in the country in the late 1980s-early 1990s interrupted these activities resulting in the temporary closing down of the station in 1992.
    [Show full text]
  • Australian Antarctic Treaty and Environmental Protocol Inspections January 2010
    IP 39 Agenda Item: ATCM 11, CEP 10 Presented by: Australia Original: English Australian Antarctic Treaty and Environmental Protocol inspections January 2010 Attachments: Report of Australian inspections 2010.pdf 1 Antarctic Treaty – Australian Inspection Team 2010 AUSTRALIAN ANTARCTIC TREATY INSPECTIONS January 2010 Syowa Station (Japan) Molodezhnaya, Druzhnaya IV and Soyuz Stations (Russian Federation) Mount Harding Antarctic Specially Protected Area (ASPA) 168 Report of an Inspection under Article VII of the Antarctic Treaty and Article 14 of the Protocol on Environment Protection May 2011 REPORT OF AN INSPECTION UNDER ARTICLE VII OF THE ANTARCTIC TREATY AND ARTICLE 14 OF THE PROTOCOL ON ENVIRONMENTAL PROTECTION 1. Introduction 2. Overview 2.1 Conduct of the inspections 3. Acknowledgments 4. Molodezhnaya station (Russian Federation) 4.1 General information 4.2 Observations 4.3 Other comments 5. Syowa Station (Japan) 5.1 General information 5.2 Observations 5.3 Other comments 6. Druzhnaya IV Station (Russian Federation) 6.1 General information 6.2 Observations 6.3 Other comments 7. Soyuz Station (Russian Federation) 7.1 General information 7.2 Observations 7.3 Other comments 8. Mount Harding ASPA 168 9. Photographs 9.1 Molodezhnaya Station 9.2 Syowa Station 9.3 Druzhnaya IV Station 9.4 Soyuz Station 9.5 Mount Harding ASPA 168 1. INTRODUCTION Article VII of the Antarctic Treaty provides that each Consultative Party has the right to designate observers to undertake inspections in Antarctica. Observers have complete freedom of access at any time to any and all areas in Antarctica. Parties are obliged to have all areas of Antarctica, including stations, installations and equipment, open at all times to inspection by designated observers.
    [Show full text]
  • Waba Directory 2003
    DIAMOND DX CLUB www.ddxc.net WABA DIRECTORY 2003 1 January 2003 DIAMOND DX CLUB WABA DIRECTORY 2003 ARGENTINA LU-01 Alférez de Navió José María Sobral Base (Army)1 Filchner Ice Shelf 81°04 S 40°31 W AN-016 LU-02 Almirante Brown Station (IAA)2 Coughtrey Peninsula, Paradise Harbour, 64°53 S 62°53 W AN-016 Danco Coast, Graham Land (West), Antarctic Peninsula LU-19 Byers Camp (IAA) Byers Peninsula, Livingston Island, South 62°39 S 61°00 W AN-010 Shetland Islands LU-04 Decepción Detachment (Navy)3 Primero de Mayo Bay, Port Foster, 62°59 S 60°43 W AN-010 Deception Island, South Shetland Islands LU-07 Ellsworth Station4 Filchner Ice Shelf 77°38 S 41°08 W AN-016 LU-06 Esperanza Base (Army)5 Seal Point, Hope Bay, Trinity Peninsula 63°24 S 56°59 W AN-016 (Antarctic Peninsula) LU- Francisco de Gurruchaga Refuge (Navy)6 Harmony Cove, Nelson Island, South 62°18 S 59°13 W AN-010 Shetland Islands LU-10 General Manuel Belgrano Base (Army)7 Filchner Ice Shelf 77°46 S 38°11 W AN-016 LU-08 General Manuel Belgrano II Base (Army)8 Bertrab Nunatak, Vahsel Bay, Luitpold 77°52 S 34°37 W AN-016 Coast, Coats Land LU-09 General Manuel Belgrano III Base (Army)9 Berkner Island, Filchner-Ronne Ice 77°34 S 45°59 W AN-014 Shelves LU-11 General San Martín Base (Army)10 Barry Island in Marguerite Bay, along 68°07 S 67°06 W AN-016 Fallières Coast of Graham Land (West), Antarctic Peninsula LU-21 Groussac Refuge (Navy)11 Petermann Island, off Graham Coast of 65°11 S 64°10 W AN-006 Graham Land (West); Antarctic Peninsula LU-05 Melchior Detachment (Navy)12 Isla Observatorio
    [Show full text]
  • K4MZU Record WAP WACA Antarctic Program Award
    W.A.P. - W.A.C.A. Sheet (Page 1 of 10) Callsign: K4MZU Ex Call: - Country: U.S.A. Name: Robert Surname: Hines City: McDonough Address: 1978 Snapping Shoals Road Zip Code: GA-30252 Province: GA Award: 146 Send Record Sheet E-mail 23/07/2020 Check QSLs: IK1GPG & IK1QFM Date: 17/05/2012 Total Stations: 490 Tipo Award: Hunter H.R.: YES TOP H.R.: YES Date update: 23/07/2020 Date: - Date Top H.R.: - E-mail: [email protected] Ref. Call worked Date QSO Base Name o Station . ARGENTINA ARG-Ø1 LU1ZAB 15/02/1996 . Teniente Benjamin Matienzo Base (Air Force) ARG-Ø2 LU1ZE 30/01/1996 . Almirante Brown Base (Army) ARG-Ø2 LU5ZE 15/01/1982 . Almirante Brown Base (Army) ARG-Ø4 LU1ZV 17/11/1993 . Esperanza Base (Army) ARG-Ø6 LU1ZG 09/10/1990 . General Manuel Belgrano II Base (Army) ARG-Ø6 LU2ZG 27/12/1981 . General Manuel Belgrano II Base (Army) ARG-Ø8 LU1ZD 19/12/1993 . General San Martin Base (Army) ARG-Ø9 LU2ZD 19/01/1994 . Primavera Base (Army) (aka Capitan Cobett Base) ARG-11 LW7EYK/Z 01/02/1994 . Byers Camp (IAA) ARG-11 LW8EYK/Z 23/12/1994 . Byers Camp (IAA) ARG-12 LU1ZC 28/01/1973 . Destacamento Naval Decepción Base (Navy) ARG-12 LU2ZI 19/08/1967 . Destacamento Naval Decepción Base (Navy) ARG-13 LU1ZB 13/12/1995 . Destacamento Naval Melchior Base (Navy) ARG-15 AY1ZA 31/01/2004 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU1ZA 19/02/1995 . Destacamento Naval Orcadas del Sur Base (Navy) ARG-15 LU5ZA 02/01/1983 .
    [Show full text]
  • Larsemann Hills, East Antarctica
    Journal of Glaciology Formation of a large ice depression on Dålk Glacier (Larsemann Hills, East Antarctica) caused by the rapid drainage of an englacial cavity Article Cite this article: Boronina A, Popov S, Alina Boronina1,2 , Sergey Popov2,3 , Galina Pryakhina2, Pryakhina G, Chetverova A, Ryzhova E, Grigoreva S (2021). Formation of a large ice Antonina Chetverova2,4, Ekaterina Ryzhova5 and Svetlana Grigoreva2,4 depression on Dålk Glacier (Larsemann Hills, East Antarctica) caused by the rapid drainage 1State Hydrological Institute (SHI), 23 2nd line Vasilyevsky Island, St. Petersburg 199004, Russia; 2Saint Petersburg of an englacial cavity. Journal of Glaciology State University (SPbU), 7-9 Universitetskaya Emb., St. Petersburg 199034, Russia; 3Polar Marine Geosurvey 1–16. https://doi.org/10.1017/jog.2021.58 Expedition (PMGE), 24 Pobedy Str., Lomonosov, St. Petersburg 198412, Russia; 4Arctic and Antarctic Research 5 Received: 21 November 2020 Institute (AARI), 38 Bering Str., St. Petersburg 199397, Russia and Geophyspoisk LLC, 15 26th line Vasilyevsky Revised: 1 May 2021 Island, St. Petersburg 199106, Russia Accepted: 4 May 2021 Abstract Keywords: Antarctic glaciology; glacier hazards; glacier In the afternoon of 30 January 2017, a catastrophic outburst flood occurred in the Larsemann hydrology; glacier modelling; ground- Hills (Princess Elizabeth Land, East Antarctica). The rapid drainage of both a thin supraglacial penetrating radar layer of water (near Boulder Lake) and Lake Ledyanoe into the englacial Lake Dålk provoked Author for correspondence: its overfill and outburst. As a result, a depression of 183 m × 220 m was formed in the place Alina Boronina, where Lake Dålk was located. This study summarises and clarifies the current state of knowledge E-mail: [email protected] on the flood that occurred in 2017.
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №1 (58) January - March 2012 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2012 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №1 (58) January - March 2012 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2012 Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M. O. Krichak (RAE), Section 2 Ye .I. Aleksandrov (Department of Sea – Air Interaction), Section 3 L. Yu. Ryzhakov (Department of Ice Regime and Forecasting), Section 4 A. I. Korotkov (Department of Ice Regime and Forecasting), Section 5 Ye. Ye. Sibir (Department of Sea – Air Interaction), Section 6 I. V. Moskvin, Yu.G. Turbin (Department of Geophysics), Section 7 V. V. Lukin (RAE), Section 8 V. L. Martyanov (RAE), Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2.
    [Show full text]
  • Wilhelm Filchner and Antarctica Helmut Hornik and Cornelia Lüdecke
    Berichte ??? / 2007 zur Polar- und Meeresforschung Reports on Polar and Marine Research Steps of Foundation of Institutionalized Antarctic Research Proceedings of the 1 st SCAR Workshop on the History of Antarctic Research Bavarian Academy of Sciences and Humanities, Munich (Germany), 2-3 June, 2005 Edited by Cornelia Lüdecke Rückseite Titelblatt Steps of Foundation of Institutionalized Antarctic Research Proceedings of the 1 st SCAR Workshop on the History of Antarctic Research Bavarian Academy of Sciences and Humanities, Munich (Germany) 2-3 June, 2005 Edited by Cornelia Lüdecke Ber. Polarforsch. Meeresfor. Xxx (2007) ISSN 1618-3193 Cornelia Lüdecke, SCAR History Action Group, Valleystrasse 40, D- 81371 Munich, Germany Contents Table of Contents Table of Contents .......... ................................................................................................I Figures List ....................................................................................................................V List of Abbreviations ...................................................................................................VI Preface .................................................................................................................iX Introduction ........................................................................................................1 1 The Dawn of Antarctic Consciousnes J. Berguño ............................................................................................................3 1.1 Introduction ...................................................................................................3
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No 168
    Measure 17 (2015) Management Plan for Antarctic Specially Protected Area No 168 Mount Harding, Grove Mountains, East Antarctica Introduction The Grove Mountains (72°20’-73°10’S, 73°50’-75°40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°51’ -72°57’ S, 74°53’ -75°12’ E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the paleoclimatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc.
    [Show full text]