Australian Antarctic Treaty and Environmental Protocol Inspections January 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
For Land-Fast Sea Ice at Prydz Bay, East Antarctica: an Operational Service for CHINARE
Annals of Glaciology Fast Ice Prediction System (FIPS) for land-fast sea ice at Prydz Bay, East Antarctica: an operational service for CHINARE Jiechen Zhao1,2, Bin Cheng3 , Timo Vihma3, Petra Heil4, Fengming Hui5,6, Article Qi Shu7,2 , Lin Zhang1 and Qinghua Yang8,6 Cite this article: Zhao J, Cheng B, Vihma T, Heil P, Hui F, Shu Q, Zhang L, Yang Q (2020). 1Key Laboratory of Marine Hazards Forecasting, National Marine Environmental Forecasting Centre (NMEFC), Fast Ice Prediction System (FIPS) for land-fast Ministry of Natural Resources, Beijing 100081, China; 2Laboratory for Regional Oceanography and Numerical sea ice at Prydz Bay, East Antarctica: an Modelling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; 3Finnish operational service for CHINARE. Annals of Meteorological Institute (FMI), Helsinki 00101, Finland; 4Australia Antarctic Division & Australian Antarctic Glaciology 61(83), 271–283. https://doi.org/ Programmer Partnership, Private Bag 80, Hobart, TAS 7001, Australia; 5School of Geospatial Engineering and 10.1017/aog.2020.46 Science, Sun Yat-sen University, Zhuhai 519082, China; 6Southern Marine Science and Engineering Guangdong 7 Received: 26 November 2019 Laboratory (Zhuhai), Zhuhai 519082, China; First Institute of Oceanography, Ministry of Natural Resources, 8 Revised: 1 June 2020 Qingdao 266061, China and School of Atmospheric Sciences, and Guangdong Province Key Laboratory for Accepted: 2 June 2020 Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China First published online: 9 July 2020 Key words: Abstract Antarctica; land-fast sea ice; operational A Fast Ice Prediction System (FIPS) was constructed and is the first regional land-fast sea-ice service; Prydz Bay; snow and ice thickness; forecasting system for the Antarctic. -
Arctic and Antarctic Research Institute” Russian Antarctic Expedition
FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2010 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING State Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN ʋ2 (51) April - June 2010 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2010 Editor-in-Chief - M.O. Krichak (Russian Antarctic Expedition –RAE) Authors and contributors Section 1 M. O. Krichak (RAE), Section 2 Ye. I. Aleksandrov (Department of Meteorology) Section 3 G. Ye. Ryabkov (Department of Long-Range Weather Forecasting) Section 4 A. I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye. Ye. Sibir (Department of Meteorology) Section 6 I. V. Moskvin, Yu.G.Turbin (Department of Geophysics) Section 7 V. V. Lukin (RAE) Section 8 B. R. Mavlyudov (RAS IG) Section 9 V. L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctic Research and Russian Antarctic Expedition, Reports and Glossaries, Quarterly Bulletin. Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE……………………….…………………………………….………………………….1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS…………………………………….…………………………3 2. -
Wastewater Treatment in Antarctica
Wastewater Treatment in Antarctica Sergey Tarasenko Supervisor: Neil Gilbert GCAS 2008/2009 Table of content Acronyms ...........................................................................................................................................3 Introduction .......................................................................................................................................4 1 Basic principles of wastewater treatment for small objects .....................................................5 1.1 Domestic wastewater characteristics....................................................................................5 1.2 Characteristics of main methods of domestic wastewater treatment .............................5 1.3 Designing of treatment facilities for individual sewage disposal systems...................11 2 Wastewater treatment in Antarctica..........................................................................................13 2.1 Problems of transferring treatment technologies to Antarctica .....................................13 2.1.1 Requirements of the Protocol on Environmental Protection to the Antarctic Treaty / Wastewater quality standards ...................................................................................................13 2.1.2 Geographical situation......................................................................................................14 2.1.2.1 Climatic conditions....................................................................................................14 -
Antarctic Peninsula
Hucke-Gaete, R, Torres, D. & Vallejos, V. 1997c. Entanglement of Antarctic fur seals, Arctocephalus gazella, by marine debris at Cape Shirreff and San Telmo Islets, Livingston Island, Antarctica: 1998-1997. Serie Científica Instituto Antártico Chileno 47: 123-135. Hucke-Gaete, R., Osman, L.P., Moreno, C.A. & Torres, D. 2004. Examining natural population growth from near extinction: the case of the Antarctic fur seal at the South Shetlands, Antarctica. Polar Biology 27 (5): 304–311 Huckstadt, L., Costa, D. P., McDonald, B. I., Tremblay, Y., Crocker, D. E., Goebel, M. E. & Fedak, M. E. 2006. Habitat Selection and Foraging Behavior of Southern Elephant Seals in the Western Antarctic Peninsula. American Geophysical Union, Fall Meeting 2006, abstract #OS33A-1684. INACH (Instituto Antártico Chileno) 2010. Chilean Antarctic Program of Scientific Research 2009-2010. Chilean Antarctic Institute Research Projects Department. Santiago, Chile. Kawaguchi, S., Nicol, S., Taki, K. & Naganobu, M. 2006. Fishing ground selection in the Antarctic krill fishery: Trends in patterns across years, seasons and nations. CCAMLR Science, 13: 117–141. Krause, D. J., Goebel, M. E., Marshall, G. J., & Abernathy, K. (2015). Novel foraging strategies observed in a growing leopard seal (Hydrurga leptonyx) population at Livingston Island, Antarctic Peninsula. Animal Biotelemetry, 3:24. Krause, D.J., Goebel, M.E., Marshall. G.J. & Abernathy, K. In Press. Summer diving and haul-out behavior of leopard seals (Hydrurga leptonyx) near mesopredator breeding colonies at Livingston Island, Antarctic Peninsula. Marine Mammal Science.Leppe, M., Fernandoy, F., Palma-Heldt, S. & Moisan, P 2004. Flora mesozoica en los depósitos morrénicos de cabo Shirreff, isla Livingston, Shetland del Sur, Península Antártica, in Actas del 10º Congreso Geológico Chileno. -
Amanda Bay, Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica
MEASURE 3 - ANNEX Management Plan for Antarctic Specially Protected Area No 169 AMANDA BAY, INGRID CHRISTENSEN COAST, PRINCESS ELIZABETH LAND, EAST ANTARCTICA Introduction Amanda Bay is located on the Ingrid Christensen Coast of Princess Elizabeth Land, East Antarctica at 69°15' S, 76°49’59.9" E. (Map A). The Antarctic Specially Protected Area (ASPA) is designated to protect the breeding colony of several thousand pairs of emperor penguins annually resident in the south-west corner of Amanda Bay, while providing for continued collection of valuable long- term research and monitoring data and comparative studies with colonies elsewhere in East Antarctica. Only two other emperor penguin colonies along the extensive East Antarctic coastline are protected within ASPAs (ASPA 120, Point Géologie Archipelago and ASPA 167 Haswell Island). Amanda Bay is more easily accessed, from vessels or by vehicle from research stations in the Larsemann Hills and Vestfold Hills, than many other emperor penguin colonies in East Antarctica. This accessibility is advantageous for research purposes, but also creates the potential for human disturbance of the birds. The Antarctic coastline in the vicinity of Amanda Bay was first sighted and named the Ingrid Christensen Coast by Captain Mikkelsen in command of the Norwegian ship Thorshavn on 20 February 1935. Oblique aerial photographs of the coastline were taken by the Lars Christensen expedition in 1937 and by the US Operation Highjump in 1947 for reconnaissance purposes. In the 1954/55 summer, the Australian National Antarctic Research Expedition (ANARE) on the Kista Dan explored the waters of Prydz Bay, and the first recorded landing in the area was made by a sledging party led by Dr. -
Hnitflrcitilc
HNiTflRCiTilC A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) ,m — i * Halley, the British Antarctic Survey's station on the Brunt Ice Shelf, Coats Land,, was rebuilt last season for the third time since 1956-57. This picture taken in March shows one of the four wooden tubes, each of which houses a two-storey building, under construction in a pre-shaped and compacted snow hollow. BAS Copyngh! Registered at Post Office Headquarters, Vol. 10, No. 2 Wellington, New Zealand, as a magazine. SOUTH GEORGIA -.. SOUTH SANDWICH Is «C*2K SOUTH ORKNEY Is x \ 6SignyluK //o Orcadas arg SOUTH AMERICA / /\ ^ Borga T"^00Molodezhnaya \^' 4 south , * /weooEii \ ft SA ' r-\ *r\USSR --A if SHETLAND ,J£ / / ^^Jf ORONMIIDROWNING MAUD LAND' E N D E R B Y \ ] > * \ /' _ "iV**VlX" JN- S VDruzhnaya/General /SfA/ S f Auk/COATS ' " y C O A TBelirano SLd L d l arg L A N D p r \ ' — V&^y D««hjiaya/cenera.1 Beld ANTARCTIC •^W^fCN, uSS- fi?^^ /K\ Mawson \ MAC ROBERTSON LAN0\ \ *usi \ /PENINSULA' ^V^/^CRp^e J ^Vf (set mjp Mow) C^j V^^W^gSobralARG - Davis aust L Siple USA Amundsen-Scon OUEEN MARY LAND flMimy ELLSWORTH , U S A / ^ U S S R ') LAND °Vos1okussR/ r». / f c i i \ \ MARIE BYRO fee Shelf V\ . IAND WILKES LAND Scon ROSS|N2i? SEA jp>r/VICTORIAIj^V .TERRE ,; ' v / I ALAND n n \ \^S/ »ADEUL. n f i i f / / GEORGE V Ld .m^t Dumom d'Urville iranu Leningradskayra V' USSR,.'' \ -------"'•BAlLENYIs^ ANTARCTIC PENINSULA 1 Teniente Matienzo arc 2 Esperanza arg 3 Almirante Brown arg 4 Petrel arg 5 Decepcion arg 6 Vicecomodoro Marambio arg ' ANTARCTICA 7 Ariuro Prat chile 500 1000 Miles 8 Bernardo O'Higgms chile 9 Presidente Frei chile - • 1000 Kilomnre 10 Stonington I. -
Mount Harding, Grove Mountains, East Antarctica
MEASURE 2 - ANNEX Management Plan for Antarctic Specially Protected Area No 168 MOUNT HARDING, GROVE MOUNTAINS, EAST ANTARCTICA 1. Introduction The Grove Mountains (72o20’-73o10’S, 73o50’-75o40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°512 -72°572 S, 74°532 -75°122 E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the past climatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc. -
Appendix D : Cartographic Materials Codes
Appendix D : Cartographic Materials Codes These lists are based on Ministry of Defence Mapping and Charting Establishment practice. Field 31 - Character positions 1-4: Relief codes CODE DEFINITION a Contours b Tonal hill shading c Hypsometric tints – layer method d Hachures e Bathymetry – sounding f Form lines g Spot heights h Other methods in colour (e.g. in the style of Imhof) i Pictorial j Land forms (e.g. in the sytle of Lobeck, Raisz, Fenneman) k Bathymetry – isolines l Bathymetry – tints m Ridge lines z Other Field 031 - Character positions 5-6: Projection type codes AZIMUTHAL OR ZENITHAL CONIC PROJECTIONS PROJECTIONS aa Aitoff ca Alber’s equal area ab Gnomonic cb Bonne ac Lambert’s azimuthal equal area cc Lambert’s conformal conic ad Orthographic cd Polyconic (simple) ae Azimuthal equidistant ce Miller’s bipolar oblique conformal conic af Stereographic cf D Lisle ag Other Azimuthal equal area cg Projection of the International Map of World au Azimuthal, specific type unknown ch Tissot’s conformal conic az Azimuthal, other known specific cu Conic, specific type unknown type cz Conic, other known specific type CYLINDRICAL OTHER PROJECTIONS PROJECTIONS ba Gall da Armadillo bb Homolographic db Butterfly bc Lambert’s cylindrical equal area dd Goode’s homolosine bd Mercator df Van der Grinten be Miller’s cylindrical dg Dymaxion bf Molweide dh Cordiform bg Sinusoidal di Polyhedric bh Transverse Mercator uu Type of projection unknown bj Plate Carree zz Other known type bk Cassini’s bl Laborde bm Oblique Mercator bu Cylindrical, specific -
Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes. -
IP31 XII Special Consultative Meeting October, 2000 Traité De L'antarctique Original: English E XII Réunion Consultative Spéciale
Antarctic Treaty XII SATCM/IP31 XII Special Consultative Meeting October, 2000 Traité de l'Antarctique Original: English XIIe Réunion consultative spéciale Tratado Antártico Agenda Item XII Reunión Consultiva Especial (CEP) 4e Антарктический Договор XII Специальное Консультативное Совещание Environmental protection activities at the Russian Antarctic station Progress in 1999-2000 Submitted by Russian Federation Environmental protection activities at the Russian Antarctic station Progress in 1999-2000 (Special ATCM, 11-16 September, 2000,CEP III, IP, Item 4a, submitted by the Russian Federation) The Antarctic field base Druzhnaya-4 and the Progress station were set up on the Amery Ice Shelf and in the Larsemann Hills oasis as the basic points for organizing Russian geological-geophysical studies of the area of Prince Charles Mountains and the Lambert glacier in 1987 and 1988, respectively. During the 1988-1989 season, the Progress station was moved to a new location closer to the ship unloading area. During the 1990-1992 period, large construction activities were undertaken at the Progress station presenting the first stage of establishing a large Antarctic base with the design dimensions similar to the USA McMurdo station. With this aim, a package of the necessary design-construction documentation was developed meeting the standard-legal base existing at that time in the USSR including the environmental protection issues. It also included the documentation on construction of the snow-ice runway to receive heavy wheeled aircraft. The political and economical changes that occurred in the country in the late 1980s-early 1990s interrupted these activities resulting in the temporary closing down of the station in 1992. -
Frozen Politics on a Thawing Continent
FROZEN POLITICS ON A THAWING CONTINENT A Political Ecology Approach to Understanding Science and its Relationship to Neocolonial and Capitalist Processes in Antarctica MANON KATRINA BURBIDGE LUND UNIVERSITY MSc Human Ecology: Culture, Power and Sustainability (2 years) Supervisor: Alf Hornborg Department of Human Geography 30 ECTS Spring 2019 Abstract Despite possessing a unique relationship between humankind and the environment, and its occupation of a large proportion of the planet’s surface area, Antarctica is markedly absent from literature produced within the disciplines of human and political ecology. With no states or indigenous peoples, Antarctica is instead governed by a conglomeration of states as part of the Antarctic Treaty System, which places high values upon scientific research, peace and conservation. By connecting political ecology with neocolonial, world-systems and politically-situated science perspectives, this research addressed the question of how neocolonialism and the prospects of capital accumulation are legitimised by scientific research in Antarctica, as a result of science’s privileged position in the Treaty. Three methods were applied, namely GIS, critical-political content analysis and semi-structured interviews, which were then triangulated to create an overall case study. These methods explored the intersections between Antarctic power structures, the spatial patterns of the built environment and the discourses of six national scientific programmes, complemented by insights from eight expert interviews. This thesis constitutes an important contribution to the fields of human and political ecology, firstly by intersecting it with critical Antarctic studies, something which has not previously been attempted, but also by expanding the application of a world-systems perspective to a continent very rarely included in this field’s academia. -
Management Plan for Antarctic Specially Protected Area No. 167
Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction -west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land near Mawson Station; ASPA 160, Frazier Islands, Wilkes , Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula. The southern giant petrel colony at Hawker Island was discovered in December 1963; at that time there were 40- but it is unclear how many nests were occupied. Between 1963 and 2007, intermittent counts of adults, eggs or chicks were undertaken at various stages of the breeding cycle.