Chapter 1 Concepts for Developing Portable Firmware
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nintendo Wii Software
Nintendo wii software A previous update, ( U) introduced the ability to transfer your data from one Wii U console to another. You can transfer save data for Wii U software, Mii. The Wii U video game console's built-in software lets you watch movies and have fun right out of the box. BTW, why does it sound like you guys are crying about me installing homebrew software on my Wii console? I am just wondering because it seems a few of you. The Nintendo Wii was introduced in and, since then, over pay for any of this software, which is provided free of charge to everyone. Perform to Popular Chart-Topping Tunes - Sing up to 30 top hits from Season 1; Gleek Out to Never-Before-Seen Clips from the Show – Perform to video. a wiki dedicated to homebrew on the Nintendo Wii. We have 1, articles. Install the Homebrew Channel on your Wii console by following the homebrew setup tutorial. Browse the Homebrew, Wii hardware, Wii software, Development. The Wii was not designed by Nintendo to support homebrew. There is no guarantee that using homebrew software will not harm your Wii. A crazy software issue has come up. It's been around 10 months since the wii u was turned on at all. Now that we have, it boots up fine and you. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and. In Q1, Nintendo DS software sales were million, up million units Wii software sales reached million units, a million. -
Embedded Linux Systems with the Yocto Project™
OPEN SOURCE SOFTWARE DEVELOPMENT SERIES Embedded Linux Systems with the Yocto Project" FREE SAMPLE CHAPTER SHARE WITH OTHERS �f, � � � � Embedded Linux Systems with the Yocto ProjectTM This page intentionally left blank Embedded Linux Systems with the Yocto ProjectTM Rudolf J. Streif Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals. The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein. For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales depart- ment at [email protected] or (800) 382-3419. For government sales inquiries, please contact [email protected]. For questions about sales outside the U.S., please contact [email protected]. Visit us on the Web: informit.com Cataloging-in-Publication Data is on file with the Library of Congress. -
Design Languages for Embedded Systems
Design Languages for Embedded Systems Stephen A. Edwards Columbia University, New York [email protected] May, 2003 Abstract ward hardware simulation. VHDL’s primitive are assign- ments such as a = b + c or procedural code. Verilog adds Embedded systems are application-specific computers that transistor and logic gate primitives, and allows new ones to interact with the physical world. Each has a diverse set be defined with truth tables. of tasks to perform, and although a very flexible language might be able to handle all of them, instead a variety of Both languages allow concurrent processes to be de- problem-domain-specific languages have evolved that are scribed procedurally. Such processes sleep until awak- easier to write, analyze, and compile. ened by an event that causes them to run, read and write variables, and suspend. Processes may wait for a pe- This paper surveys some of the more important lan- riod of time (e.g., #10 in Verilog, wait for 10ns in guages, introducing their central ideas quickly without go- VHDL), a value change (@(a or b), wait on a,b), ing into detail. A small example of each is included. or an event (@(posedge clk), wait on clk un- 1 Introduction til clk='1'). An embedded system is a computer masquerading as a non- VHDL communication is more disciplined and flexible. computer that must perform a small set of tasks cheaply and Verilog communicates through wires or regs: shared mem- efficiently. A typical system might have communication, ory locations that can cause race conditions. VHDL’s sig- signal processing, and user interface tasks to perform. -
Sr. Firmware - Embedded Software Engineer
SR. FIRMWARE - EMBEDDED SOFTWARE ENGINEER Atel USA is a leading provider of high-performance, small form-factor tracking systems for the vehicle recovery, fleet, heavy trucks, and asset tracking industries. Our team has years of experience in developing complex wireless and communications systems. We have shipped several millions of vehicle tracking devices operating on all major cellular networks. We are seeking an enthusiastic embedded software engineer to be a key team member in the design, implementation, and verification of our asset tracking devices and sensory accessories. The Sr. Firmware Engineer will become an integral part of our company and will work as part of a small, multi-disciplinary development team to design, construct and deliver software/firmware for our current and next generation products. Primary Responsibilities: • Work independently on project tasks as well as work as a team member of a larger project team. • Collaborate with hardware/system design engineers to define the product feature set and work within a product development team to deliver firmware that meets or exceeds product requirements. • Engage with customers and product managers to define requirements, develop software architecture, and plan development in dynamic, evolving customer driven environment. • Deliver innovative solutions from concept to prototype to production. • Conduct/participate in engineering reviews to provide technical input on product designs and quality. • Conduct software unit tests to exercise implemented functionality. • Document software designs. • Troubleshoot and remove defects from production software. • Communicate and interact with team and customers to clearly set expectations, share technical details, resolve issues, and report progress. • Participate in brainstorms and otherwise contribute outside your area of expertise. -
Sr. Embedded Software/ Firmware Engineer This Position Is Located at the Corporate Headquarters in Henderson, Nevada
Sr. Embedded Software/ Firmware Engineer This position is located at the Corporate Headquarters in Henderson, Nevada VadaTech, Inc. is seeking experienced candidates for Senior Embedded Software/Firmware Engineer. Primary Responsibilities: • Responsible for the focus on BIOS and board bring up • Responsible for the coordinating and prioritizing application modifications and bug fixes • Responsible for working with the customer support team to troubleshoot and resolve production issues • Responsible for the support, maintenance and documentation of software functionality • Responsible for Contributing to the development of internal tools to streamline the engineering and build and release processes • Responsible for the production of functional specifications and design documents Desired Skills and Experience • Bachelor’s degree in computer science or related field; master’s degree preferred • 8+ years of related work experience • Fluency in C programming required • Experience with Embedded Bootloader/OS porting required • Experience with U-Boot/Embedded Linux porting and PC BIOS maintenance preferred • Experience with new/untested hardware board bring-up required • Demonstrated ability to read hardware schematics and use lab instruments such as oscilloscopes, multimeters and JTAG probes to resolve problems required • Must be knowledgeable in low-level board-support software/hardware interfacing for DDR3 memory, local bus timings, Ethernet PHYs, NOR/NAND flash, I2C/SPI, and others • Experience with diverse CPU types such as PowerPC/PowerQUICC/QorIQ, -
Embedded Linux Systems
Dpto Sistemas Electrónicos y de Control Universidad Politécnica de Madrid Embedded Linux Systems Using Buildroot for building Embedded Linux Systems with the Raspberry-PI V1.2 Mariano Ruiz 2014 EUIT Telecomunicación Dpto. Sistemas Electrónicos y de C o n t r o l Page 1 of 41 Page 2 of 41 Table of contents 1 SCOPE ........................................................................................................................................ 6 1.1 Document Overview .............................................................................................................. 6 1.2 Acronyms .............................................................................................................................. 6 2 REFERENCED DOCUMENTS ......................................................................................................... 7 2.1 References ............................................................................................................................. 7 3 LAB1: BUILDING LINUX USING BUILDROOT ................................................................................. 8 3.1 Elements needed for the execution of these LABS. .................................................................. 8 3.2 Starting the VMware .............................................................................................................. 8 3.3 Configuring Buildroot. .......................................................................................................... 11 3.4 Compiling buildroot. ........................................................................................................... -
1.1 Purpose of Embedded System 1.2 Host and Target Machine 1.2.1
e-PG Pathshala Subject : Computer Science Paper: Embedded System Module: Embedded Software Development Tools Module No: CS/ES/36 Quadrant 1 – e-text In this module, we will discuss about the host and target machine, Embedded Software development process and Embedded tools. 1.1 Purpose of Embedded System An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls. Each embedded system has unique characteristics. The components and functions of hardware and software can be different for each system. Nowadays, embedded software is used in all the electronic devices such as watches, cellular phones etc. This embedded software is similar to general programming. But the embedded hardware is unique. The method of communication between interfaces can vary from processor to processor. It leads to more complexity of software. Engineers need to be aware of the software developing process and tools. There are a lot of things that software development tools can do automatically when the target platform is well defined. This automation is possible because the tools can exploit features of the hardware and operating system on which your program will execute. Embedded software development tools can rarely make assumptions about the target platform. Hence the user has to provide some explicit instructions of the system to the tools. Figure 1.1 shows how an embedded system is developed using a host and a target machine. 1.2 Host and Target machine Figure 1.1 Embedded system using host and target machine 1.2.1 Performance of Host machine The application program developed runs on the host computer. -
Enhancing Plug and Play Capabilities in Body Area Network Protocols
Enhancing Plug and Play Capabilities in Body Area Network Protocols A Major Qualifying Project Report: Submitted to the Faculty Of the WORCESTER POLYTECHNIC INSTITUTE In partial fulfillment of the requirements for the Degree of Bachelor of Science By: ____________________________ Ryan Danas ____________________________ Douglas Lally ____________________________ Nathaniel Miller ____________________________ John Synnott Date: March 10, 2014 Approved: ____________________________ Prof. Krishna Kumar Venkatasubramanian, Advisor ____________________________ Prof. Craig A. Shue, Co-Advisor 1 Abstract This project aimed to create a plug-and-play protocol for Body Area Networks (BANs). This protocol enables communication between a diverse number of devices and a base station, regardless of equipment manufacturer. Previous BANs rely on either proprietary software, or protocols that are specialized to the physical device. This protocol takes a more universal approach, allowing any arbitrary device to participate in a BAN without introducing any significant overhead or running cost to the operation of that BAN. Unlike previous approaches, any existing motes and the base station will not have to be updated. Only new devices being added to the BAN will have to implement the protocol before connecting. Our protocol introduces overhead that reduced the performance and lifetime of the motes used in our BAN. 2 Table of Contents Contents Abstract ........................................................................................................................................................ -
Asurvey of Embedded Software Profiling Methodologies
International Journal of Embedded Systems and Applications (IJESA) Vol.1, No.2, December 2011 A SURVEY OF EMBEDDED SOFTWARE PROFILING METHODOLOGIES Rajendra Patel1 and Arvind Rajawat 2 1,2 Department of Electronics and Communication Engineering, Maulana Azad National Institute of Technology, Bhopal, India 1 [email protected] [email protected] 2 ABSTRACT Embedded Systems combine one or more processor cores with dedicated logic running on an ASIC or FPGA to meet design goals at reasonable cost. It is achieved by profiling the application with variety of aspects like performance, memory usage, cache hit versus cache miss, energy consumption, etc. Out of these, performance estimation is more important than others. With ever increasing system complexities, it becomes quite necessary to carry out performance estimation of embedded software implemented in a particular processor for fast design space exploration. Such profiled data also guides the designer how to partition the system for Hardware (HW) and Software (SW) environments. In this paper, we propose a classification for currently available Embedded Software Profiling Tools, and we present different academic and industrial approaches in this context. Based on these observations, it will be easy to identify such common principles and needs which are required for a true Software Profiling Tool for a particular application. KEYWORDS Profiling, Embedded, Software, Performance, Methodology 1. INTRODUCTION In the design of embedded systems, design space exploration is performed to satisfy the application requirements. This can be achieved either by different architectural choices or by appropriate task partitioning. At the end the synthesis process generates the final solution with proper combination of Software, Hardware and Communication Structures. -
Embedded Software Development Process and Tools: Lesson-1 Introduction to Embedded Software Development Process and Tools
Embedded Software development Process and Tools: Lesson-1 Introduction to Embedded Software Development Process and Tools 2015 Chapter-14L01: "Embedded Software Development Process and 1 Tools, Publs.: McGraw-Hill Education 1. Development Process and Hardware─ Software 2015 Chapter-14L01: "Embedded Software Development Process and 2 Tools, Publs.: McGraw-Hill Education Cost of developing a final targeted system • Small processor cost • Larger time frame needed than the hardware circuit design • High development cost for final targeted system 2015 Chapter-14L01: "Embedded Software Development Process and 3 Tools, Publs.: McGraw-Hill Education Development Process • Edit-test-debug cycles • Fixed Processor and hardware parts once chosen • Application software codes perfected by a number of runs and tests. 2015 Chapter-14L01: "Embedded Software Development Process and 4 Tools, Publs.: McGraw-Hill Education Development process of an embedded system 2015 Chapter-14L01: "Embedded Software Development Process and 5 Tools, Publs.: McGraw-Hill Education Edit-Test-Debug Cycle implementation phase of the development process 2015 Chapter-14L01: "Embedded Software Development Process and 6 Tools, Publs.: McGraw-Hill Education 2. Software Tools 2015 Chapter-14L01: "Embedded Software Development Process and 7 Tools, Publs.: McGraw-Hill Education Software Tools • Software Development Lit (SDK) • Source-code Engineering Software • RTOS • Integrated Development Environment • Prototyper • Editor • Interpreter 2015 Chapter-14L01: "Embedded Software Development -
Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers
S S symmetry Article Timing Comparison of the Real-Time Operating Systems for Small Microcontrollers Ioan Ungurean 1,2 1 Faculty of Electrical Engineering and Computer Science; Stefan cel Mare University of Suceava, 720229 Suceava, Romania; [email protected] 2 MANSiD Integrated Center, Stefan cel Mare University, 720229 Suceava, Romania Received: 9 March 2020; Accepted: 1 April 2020; Published: 8 April 2020 Abstract: In automatic systems used in the control and monitoring of industrial processes, fieldbuses with specific real-time requirements are used. Often, the sensors are connected to these fieldbuses through embedded systems, which also have real-time features specific to the industrial environment in which it operates. The embedded operating systems are very important in the design and development of embedded systems. A distinct class of these operating systems is real-time operating systems (RTOSs) that can be used to develop embedded systems, which have hard and/or soft real-time requirements on small microcontrollers (MCUs). RTOSs offer the basic support for developing embedded systems with applicability in a wide range of fields such as data acquisition, internet of things, data compression, pattern recognition, diversity, similarity, symmetry, and so on. The RTOSs provide basic services for multitasking applications with deterministic behavior on MCUs. The services provided by the RTOSs are task management and inter-task synchronization and communication. The selection of the RTOS is very important in the development of the embedded system with real-time requirements and it must be based on the latency in the handling of the critical operations triggered by internal or external events, predictability/determinism in the execution of the RTOS primitives, license costs, and memory footprint. -
Rootfs Made Easy with Buildroot
Kernel Recipes 2013 Rootfs made easy with Buildroot How kernel developers can finally solve the rootfs problem. Thomas Petazzoni Bootlin [email protected] - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1 Thomas Petazzoni I CTO and embedded Linux engineer at Bootlin I Embedded Linux development: kernel and driver development, system integration, boot time and power consumption optimization, consulting, etc. I Embedded Linux training, Linux driver development training and Android system development training, with materials freely available under a Creative Commons license. I We're hiring! I http://bootlin.com I Contributing the kernel support for the new Armada 370 and Armada XP ARM SoCs from Marvell (widely used in NAS devices). I Major contributor to Buildroot, an open-source, simple and fast embedded Linux build system I Living in Toulouse, south west of France - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 Doing kernel development is awesome, but... - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1 A kernel without a root filesystem is kind of useless input: ImExPS/2 Generic Explorer Mouse as /devices/fpga:07/serio1/input/input1 Root-NFS: no NFS server address VFS: Unable to mount root fs via NFS, trying floppy. VFS: Cannot open root device "(null)" or unknown-block(2,0) Please append a correct "root=" boot option; here are the available partitions: Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(2,0) - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1 Solutions often used by kernel dev I A complete Linux distribution + Readily available - Large (can hardly be used as an initramfs) - Not available for all architectures - Not easy to customize.