Cognitive Impairment and Brain and Peripheral Alterations in a Murine Model of Intraventricular Hemorrhage in the Preterm Newborn

Total Page:16

File Type:pdf, Size:1020Kb

Cognitive Impairment and Brain and Peripheral Alterations in a Murine Model of Intraventricular Hemorrhage in the Preterm Newborn Mol Neurobiol DOI 10.1007/s12035-017-0693-1 Cognitive Impairment and Brain and Peripheral Alterations in a Murine Model of Intraventricular Hemorrhage in the Preterm Newborn Antonio Segado-Arenas1 & Carmen Infante-Garcia2,3 & Isabel Benavente-Fernandez1 & Daniel Sanchez-Sotano1,2 & Juan Jose Ramos-Rodriguez2,3 & Almudena Alonso-Ojembarrena1 & Simon Lubian-Lopez1,4 & Monica Garcia-Alloza2 Received: 9 March 2017 /Accepted: 14 July 2017 # Springer Science+Business Media, LLC 2017 Abstract Germinal matrix hemorrhage-intraventricular hem- newborns, reduced gelsolin levels and increased ubiquitin orrhage (GMH-IVH) remains a serious complication in the carboxy-terminal hydrolase L1 and tau levels were detected preterm newborn. The significant increase of survival rates in GMH-IVH patients at birth. A similar profile was observed in extremelye preterm newborns has also contributed to in- in our mouse model after hemorrhage. Interestingly, early crease the absolute number of patients developing GMH- changes in gelsolin and carboxy-terminal hydrolase L1 levels IVH. However, there are relatively few available animal significantly correlated with the hemorrhage grade in new- models to understand the underlying mechanisms and periph- borns. Altogether, our data support the utility of this animal eral markers or prognostic tools. In order to further character- model to reproduce the central complications and peripheral ize central complications and evolution of GMH-IVH, we changes observed in the clinic, and support the consideration injected collagenase intraventricularly to P7 CD1 mice and of gelsolin, carboxy-terminal hydrolase L1, and tau as feasible assessed them in the short (P14) and the long term (P70). biomarkers to predict the development of GMH-IVH. Early complications at P14 included ventricle enlargement, increased bleeding, and inflammation. These alterations were Keywords Germinal matrix hemorrhage-intraventricular maintained at P70, when increased tau phosphorylation and hemorrhage . Neurogenesis . Tau . Gelsolin . decreased neurogenesis were also observed, resulting in im- Carboxy-terminal hydrolase L1 paired learning and memory in these early adult mice. We additionally analyzed peripheral blood biomarkers in both our mouse model and preterm newborns with GMH-IVH. While MMP9 levels were not significantly altered in mice or Introduction Germinal matrix-intraventricular hemorrhage (GMH-IVH) re- mains a serious problem in the preterm newborn (PTNB). * Simon Lubian-Lopez simonp.lubian.sspa@juntadeandalucia.es Despite the improvement of neonatal critical care in the last decades, the absolute number of infants who develop severe * Monica Garcia-Alloza monica.garcia@uca.es GMH-IVH has not declined, mostly due to a significant in- crease of the survival rates of the very and extremely preterm 1 Division of Neonatology, Hospital Universitario Puerta del Mar, infant (for review [1]). GMH-IVH results from bleeding from Cadiz, Spain the germinal matrix, a complex vascularized layer also corre- 2 Division of Physiology, School of Medicine, Instituto de sponds with the subventricular zone (SVZ), from where neu- Investigación Biomédica e Innovación en Ciencias Biomédicas de la rons and glial cells rise during fetal development [2]. Provincia de Cádiz (INiBICA), Universidad de Cadiz, Plaza Fragela Germinal matrix starts to involute by 28 weeks of gestational sn, 4 piso 410, Cadiz, Spain age, and it is generally absent in term newborns, while the 3 Salus Infirmorum, Universidad de Cadiz, Cadiz, Spain PTNB are susceptible to local hemorrhage due to the extreme 4 Division of Pediatrics, Hospital Universitario Puerta del Mar, Ava. friability of these capillaries, combined with their inability to Ana de Villa sn, Cadiz, Spain autoregulate cerebral blood flow [2]. While GMH-IVH can Mol Neurobiol occur a few days later, it has been reported that ~80% of all indicates the power of such an animal model and allows for cases occur within the first 72 h after birth. GMH-IVH can future exploration of serum UCH-L1, gelsolin, or tau as pos- expand in the following day, leading to adjacent parenchymal sible predictors of GMH-IVH severity in PTNB patients. involvement and the development of ventriculomegaly [3]. The short- and long-term neurodevelopmental outcomes in infants with severe GMH-IVH are a major concern, as GMH- Material and Methods IVH increases the risk of cerebral palsy and neurodevelopmental or psychomotor alterations [4, 5]. Even Animals and Treatments mild GMH-IVH has been associated with major neurological abnormalities and neurodevelopmental impairment in preterm Male and female CD1 offspring underwent a lesion by a col- infants [6, 7]. Whereas the relevance of these consequences is lagenase VII (Col) (Sigma, St. Louis, MO) intracerebroven- out of question, there is no consensus regarding timing of tricular (icv) infusion at P7, as previously described with mi- intervention, markers, predictors, or treatment [8]. Therefore, nor modifications [11]. Briefly, mice were anesthetized with controllable and reproducible animal models of GMH-IVH isoflurane and immobilized in a stereotactic frame (David- are essential to study feasible markers, therapies, and preven- Kopf, CA, USA); 0.1 or 0.3 IU of Col in 1 μlofTESCA tive measures [9]. In this regard, diverse options have been was administered in the right ventricle (AP −3mm,ML explored with variable success, including physiologic manip- −1 mm, and DV +4 mm, using bregma as a reference) at ulations (hyperosmolar or hypertensive agents, induction of 0.2 μl/min, using a Hamilton syringe, which was left in the hypoxia, hypercapnia, or hypervolemia) or injections of donor lesion site for five more minutes after completing the admin- or autologous blood into the periventricular region (for review istration process. Sham animals underwent the same surgical [10]). On the other hand, intraventricular administration of approach but received 1 μl PBS. Newborn mice were allowed collagenase might provide a simple and reproducible method to recover and returned to the cage with their mothers. All to induce GMH-IVH, as previously shown in rats [9]. animals were weighted before the lesions and before sacrifice, Collagenases are proteolytic intracellular enzymes that hydro- at P14 or P70. For proliferation and neurogenesis studies, lyze collagen, a major component of the basal lamina of blood animals received ip 5-bromo-3-deoxyuridine (BrdU; 70 mg/ vessels. Therefore, direct injection of collagenase dissolves kg) for three consecutive days before sacrifice. All experimen- the extracellular matrix surrounding capillaries, opens the tal procedures were approved by Junta de Andalucia blood-brain barrier, and induces intracranial bleeding [9]. To (Guidelines for Care and Use of Experimental Animals, our knowledge, this approach has not been used in mice, and European Commission Directive 2010/63/UE and Spanish long-term (up to early adulthood) morphopathological and Royal Decree 53/2013) and the University of Cadiz behavioral changes have not been addressed. Moreover, fea- Bioethical Committee. sible markers have not been explored, and observations have not been correlated to outcomes in PTNB patients with GMH- Rotarod IVH. We have found that induction of GMH-IVH to newborn mice results in early central bleeding, brain atrophy, neuronal Motor skills were evaluated in the rotarod (Ugo Basile Srl; loss, impaired neurogenesis, and inflammation. These alter- Varese, Italia) as previously described with minor modifica- ations, as well as increased tau hyperphosphorylation as a tions [12]. Animals were placed on the apparatus for 3 min at marker of neuronal damage, and behavioral impairments are 4 rpm for habituation purposes. During the test probe, the observed up to the early adulthood in collagenase-treated speed was increased from 4 to 60 rpm within 1 min, and the mice. Exploring peripheral feasible markers of GMH-IVH time spent on the rotarod was recorded. complications revealed that while matrix-metalloproteinase 9 (MMP9) was not altered, ubiquitin carboxy-terminal hydro- New Object Discrimination Task lase L1 (UCH-L1), gelsolin, and tau levels were signficantly affected early on in our animal model. Moreover, PTNB with Seven days prior to sacrifice at P70, episodic memory was GMH-IVH exhibited a similar profile of changes in UCH-L1, assessed as previously described [13]. For the purpose of gelsolin, and tau levels at birth. Interestingly, early changes in habituation, mice were exposed to two objects in a trans- UCH-L1 and gelsolin were significantly correlated with hem- parent rectangular box (22 cm long × 44 cm width × 40 cm orrhage severity grade in PTNB patients. Altogether, our high), which were not used again during the object explo- mouse model mimics morphopathological and functional ration task. The next day, each mouse underwent two changes observed in GMH-IVH patients in the short and the sample trials and a test trial. On the first sample trial, long term, allowing for therapeutic alternatives in a chronic mice were placed in the center of a box containing four neuropathological situation to be developed. Additionally, are copies of a novel object (blue balls) arranged in a triangle- similar, in both our animal model and human samples, shaped spatial configuration and were allowed to explore Mol Neurobiol them for 5 min. After a delay of 30 min, the mice Cresyl Violet Staining underwent a second sample trial with four novel objects (red cones), arranged in a quadratic-shaped spatial config-
Recommended publications
  • Apparent Atypical Callosal Dysgenesis: Analysis of MR Findings in Six Cases and Their Relationship to Holoprosencephaly
    333 Apparent Atypical Callosal Dysgenesis: Analysis of MR Findings in Six Cases and Their Relationship to Holoprosencephaly A. James Barkovich 1 The MR scans of six pediatric patients with apparent atypical callosal dysgenesis (presence of the dorsal corpus callosum in the absence of a rostral corpus callosum) were critically analyzed and correlated with developmental information in order to assess the anatomic, embryologic, and developmental implications of this unusual anomaly. Four patients had semilobar holoprosencephaly; the dorsal interhemispheric commis­ sure in these four infants resembled a true callosal splenium. All patients in this group had severe developmental delay. The other two patients had complete callosal agenesis with an enlarged hippocampal commissure mimicking a callosal splenium; both were developmentally and neurologically normal. The embryologic implications of the pres­ ence of these atypical interhemispheric connections are discussed. Differentiation between semilobar holoprosencephaly and agenesis of the corpus callosum with enlarged hippocampal commissure-two types of apparent atypical callosal dysgenesis-can be made by obtaining coronal, short TR/TE MR images through the frontal lobes. Such differentiation has critical prognostic implications. AJNR 11:333-339, March{Apri11990 Abnormalities of the corpus callosum are frequently seen in patients with con­ genital brain malformations [1-5); a recent publication [5) reports an incidence of 47%. The corpus callosum normally develops in an anterior to posterior direction. The genu forms first, followed by the body, splenium, and rostrum. Dysgenesis of the corpus callosum is manifested by the presence of the earlier-formed segments (genu , body) and absence of the later-formed segments (splenium, rostrum) [4-6]. We have recently encountered six patients with findings suggestive of atypical callosal dysgenesis in whom there was apparent formation of the callosal splenium in the absence of the genu and body.
    [Show full text]
  • CONGENITAL ABNORMALITIES of the CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles Ffrench-Constant *I3
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_1.i3 on 1 March 2003. Downloaded from CONGENITAL ABNORMALITIES OF THE CENTRAL NERVOUS SYSTEM Christopher Verity, Helen Firth, Charles ffrench-Constant *i3 J Neurol Neurosurg Psychiatry 2003;74(Suppl I):i3–i8 dvances in genetics and molecular biology have led to a better understanding of the control of central nervous system (CNS) development. It is possible to classify CNS abnormalities Aaccording to the developmental stages at which they occur, as is shown below. The careful assessment of patients with these abnormalities is important in order to provide an accurate prog- nosis and genetic counselling. c NORMAL DEVELOPMENT OF THE CNS Before we review the various abnormalities that can affect the CNS, a brief overview of the normal development of the CNS is appropriate. c Induction—After development of the three cell layers of the early embryo (ectoderm, mesoderm, and endoderm), the underlying mesoderm (the “inducer”) sends signals to a region of the ecto- derm (the “induced tissue”), instructing it to develop into neural tissue. c Neural tube formation—The neural ectoderm folds to form a tube, which runs for most of the length of the embryo. c Regionalisation and specification—Specification of different regions and individual cells within the neural tube occurs in both the rostral/caudal and dorsal/ventral axis. The three basic regions of copyright. the CNS (forebrain, midbrain, and hindbrain) develop at the rostral end of the tube, with the spinal cord more caudally. Within the developing spinal cord specification of the different popu- lations of neural precursors (neural crest, sensory neurones, interneurones, glial cells, and motor neurones) is observed in progressively more ventral locations.
    [Show full text]
  • Germinal Matrix-Intraventricular Hemorrhage: a Tale of Preterm Infants
    Hindawi International Journal of Pediatrics Volume 2021, Article ID 6622598, 14 pages https://doi.org/10.1155/2021/6622598 Review Article Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants Walufu Ivan Egesa ,1 Simon Odoch,1 Richard Justin Odong,1 Gloria Nakalema,1 Daniel Asiimwe ,2 Eddymond Ekuk,3 Sabinah Twesigemukama,1 Munanura Turyasiima ,1 Rachel Kwambele Lokengama,1 William Mugowa Waibi ,1 Said Abdirashid,1 Dickson Kajoba,1 and Patrick Kumbowi Kumbakulu1 1Department of Paediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda 2Department of Surgery, Faculty of Clinical Medicine and Dentistry, Kampala International University, Uganda 3Department of Surgery, Faculty of Medicine, Mbarara University of Science and Technology, Uganda Correspondence should be addressed to Walufu Ivan Egesa; ivanwalufu@kiu.ac.ug Received 20 December 2020; Accepted 26 February 2021; Published 16 March 2021 Academic Editor: Somashekhar Marutirao Nimbalkar Copyright © 2021 Walufu Ivan Egesa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Germinal matrix-intraventricular hemorrhage (GM-IVH) is a common intracranial complication in preterm infants, especially those born before 32 weeks of gestation and very-low-birth-weight infants. Hemorrhage originates in the fragile capillary network of the subependymal germinal matrix of the developing brain and may disrupt the ependymal lining and progress into the lateral cerebral ventricle. GM-IVH is associated with increased mortality and abnormal neurodevelopmental outcomes such as posthemorrhagic hydrocephalus, cerebral palsy, epilepsy, severe cognitive impairment, and visual and hearing impairment.
    [Show full text]
  • Sonic Hedgehog Regulates Proliferation and Inhibits Differentiation of CNS Precursor Cells
    The Journal of Neuroscience, October 15, 1999, 19(20):8954–8965 Sonic hedgehog Regulates Proliferation and Inhibits Differentiation of CNS Precursor Cells David H. Rowitch,1,2 Benoit St.-Jacques,1 Scott M. K. Lee,1 Jonathon D. Flax,2 Evan Y. Snyder,2 and Andrew P. McMahon1 1Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, and 2Division of Newborn Medicine, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115 Activation of the Sonic hedgehog (Shh) signal transduction Shh-responsive but postmitotic were present in persistent pathway is essential for normal pattern formation and cellular structures reminiscent of the ventricular zone germinal matrix. differentiation in the developing CNS. However, it is also This tissue remained blocked in an undifferentiated state. These thought to be etiological in primitive neuroectodermal tumors. results indicate that cellular competence restricts the prolifera- We adapted GAL4/UAS methodology to ectopically express tive response to Shh in vivo and provide evidence that prolifer- full-length Shh in the dorsal neural tube of transgenic mouse ation and differentiation can be regulated separately in precur- embryos commencing at 10 d postcoitum (dpc), beyond the sor cells of the spinal cord. Thus, Hedgehog signaling may period of primary dorsal–ventral pattern formation and floor- contribute to CNS tumorigenesis by directly enhancing prolif- plate induction. Expression of Shh was maintained until birth, eration and preventing neural differentiation in selected precur- permitting us to investigate effects of ongoing exposure to Shh sor cells. on CNS precursors in vivo. Proliferative rates of spinal cord Key words: Sonic hedgehog; tumorigenesis; GAL4; central precursors were twice that of wild-type littermates at 12.5 dpc.
    [Show full text]
  • Development of the Skin and Its Derivatives
    Development of the skin and its derivatives Resources: http://php.med.unsw.edu.au/embryology/ Larsen’s Human Embryology – Chapter 7 The Developing Human: Clinically Oriented Embryology Dr Annemiek Beverdam – School of Medical Sciences, UNSW Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au Lecture overview Skin function and anatomy Skin origins Development of the overlying epidermis Development of epidermal appendages: Hair follicles Glands Nails Teeth Development of melanocytes Development of the Dermis Resources: http://php.med.unsw.edu.au/embryology/ Larsen’s Human Embryology – Chapter 7 The Developing Human: Clinically Oriented Embryology Dr Annemiek Beverdam – School of Medical Sciences, UNSW Wallace Wurth Building Room 234 – A.Beverdam@unsw.edu.au Skin Function and Anatomy Largest organ of our body Protects inner body from outside world (pathogens, water, sun) Thermoregulation Diverse: thick vs thin skin, scalp skin vs face skin, etc Consists of: - Overlying epidermis - Epidermal appendages: - Hair follicles, - Glands: sebaceous, sweat, apocrine, mammary - Nails - Teeth - Melanocytes - (Merkel Cells - Langerhans cells) - Dermis - Hypodermis Skin origins Trilaminar embryo Ectoderm (Neural crest) brain, spinal cord, eyes, peripheral nervous system epidermis of skin and associated structures, melanocytes, cranial connective tissues (dermis) Mesoderm musculo-skeletal system, limbs connective tissue of skin and organs urogenital system, heart, blood cells Endoderm epithelial linings of gastrointestinal and respiratory tracts Ectoderm
    [Show full text]
  • Moderate-Grade Germinal Matrix Haemorrhage Activates Cell Division in the 1 Neonatal Mouse Subventricular Zone. 2 3 William J Da
    1 Moderate-grade germinal matrix haemorrhage activates cell division in the 2 neonatal mouse subventricular zone. 3 4 William J Dawes1*, Xinyu Zhang1, Stephen P.J. Fancy2, David Rowitch2 and Silvia 5 Marino1* 6 7 1 Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen 8 Mary University of London, 4 Newark Street, London E1 2AT, UK 9 2 Departments of Pediatrics and Neurosurgery, Eli and Edythe Broad Institute for 10 Stem Cell Research and Regeneration Medicine and Howard Hughes Medical 11 Institute, University of California San Francisco, 513 Parnassus Avenue, San 12 Francisco, CA, 94143, USA 13 * Corresponding authors 14 William J Dawes and Silvia Marino 15 Blizard Institute, 4 Newark Street, London E1 2AT 16 Tel +44 207 882 2585, 17 Fax +44 207 882 2180, 18 Email: s.marino@qmul.ac.uk 19 20 Running title: Neural stem cells and neonatal brain haemorrhage 21 22 Abstract 23 Precise temporal and spatial control of the neural stem progenitor cells within the 24 subventricular zone germinal matrix of the brain is important for normal development 25 in the third trimester and early postnatal period. High metabolic demands of 26 proliferating germinal matrix precursors, coupled with the flimsy structure of the 27 germinal matrix cerebral vasculature, are thought to account for high rates of 28 haemorrhage in extremely- and very-low birth weight preterm infants. Germinal 29 matrix haemorrhage can commonly extend to intraventricular haemorrhage. Because 30 neural stem progenitor cells are sensitive to micro-environmental cues from the 31 ventricular, intermediate and basal domains within the germinal matrix, haemorrhage 32 has been postulated to impact neurological outcome through aberration of normal 33 neural stem/progenitor cells behaviour 34 35 We have developed an animal model of neonatal germinal matrix haemorrhage using 36 stereotactic injection of autologous blood into the mouse neonatal germinal matrix.
    [Show full text]
  • Pericytes in Microvessels: from “Mural” Function to Brain and Retina Regeneration
    International Journal of Molecular Sciences Review Pericytes in Microvessels: From “Mural” Function to Brain and Retina Regeneration 1, 2, 2 3 Nunzia Caporarello y, Floriana D’Angeli y, Maria Teresa Cambria , Saverio Candido , Cesarina Giallongo 4, Mario Salmeri 5, Cinzia Lombardo 5, Anna Longo 2, Giovanni Giurdanella 2, Carmelina Daniela Anfuso 2,* and Gabriella Lupo 2,* 1 Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Caporarello.Nunzia@mayo.edu 2 Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; floriana.dangeli@hotmail.it (F.D.); cambrimt@unict.it (M.T.C.); longo.anna@hotmail.it (A.L.); g.giurdanella@unict.it (G.G.) 3 Section of General and Clinical Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; saverio.candido@unict.it 4 Section of Haematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; cesarinagiallongo@yahoo.it 5 Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; msalmeri@unict.it (M.S.); cinzialombardo@hotmail.com (C.L.) * Correspondence: gabriella.lupo@unict.it (G.L.); daniela.anfuso@unict.it (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.) These authors contributed equally to this work. y Received: 31 October 2019; Accepted: 14 December 2019; Published: 17 December 2019 Abstract: Pericytes are branched cells located in the wall of capillary blood vessels that are found throughout the body, embedded within the microvascular basement membrane and wrapping endothelial cells, with which they establish a strong physical contact.
    [Show full text]
  • Brain Fetal Neuroradiology: a Beginner's Guide
    1077 Review Article on Pediatric Neuroradiology for Trainees and Fellows: An Updated Practical Guide Brain fetal neuroradiology: a beginner’s guide Giulia Moltoni1, Giacomo Talenti2, Andrea Righini3 1Neuroradiology Unit, NESMOS (Neurosciences, Mental Health and Sensory Organs) Department, S. Andrea Hospital, University Sapienza, Rome, Italy; 2Neuroradiology Unit, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy; 3Neuroradiology Unit, Pediatric Radiology Department, Vittore Buzzi Children’s Hospital, Milan, Italy Contributions: (I) Conception and design: A Righini, G Talenti; (II) Administrative support: A Righini; (III) Provision of study materials or patients: A Righini; (IV) Collection and assembly of data: G Moltoni, G Talenti; (V) Data analysis and interpretation: A Righini; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Dr. Giacomo Talenti. Neuroradiology Unit, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy. Email: giacomo.talenti@aovr.veneto.it. Abstract: The importance of fetal magnetic resonance imaging (MRI) in the prenatal diagnosis of central nervous system (CNS) anomalies is rapidly increasing. Fetal MRI represents a third level examination usually performed, as early as 18–20 weeks of gestational age, when a second level (expert) neuro-ultrasonography (US) evaluation raises the suspicion of a CNS anomaly or when a genetic disorder is known. Compared to the US, MRI has the advantage to allow a better visualization and characterization of brain structures so to detect anomalies not visible in the US, thus resulting in relevant implications for parent counselling and pregnancy management. Moreover, the improvement of MRI technologies permits to obtain ultrafast sequences, which minimize the drawback of movement artifacts, and to perform advanced studies.
    [Show full text]
  • Assembly and Localization of the Intermediate Filament Protein, Nestin Martha Jean Marvin Submitted to the Department of Biology
    Assembly and Localization of the Intermediate Filament Protein, Nestin by Martha Jean Marvin B.A., University of California, Berkeley, 1984 Submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology January, 1995 ©()Massachusetts Institute of Technology 1994 All rights reserved Signature of Authorr ---- L-f-~Cf~L-.-----·~f-------- < / Department of Biology December 20, 1994 Certified by Ronald D.G. McKay Lab Chief, Laboratory of Molecular Biology National Institute of Neurological Diseases and Stroke National Institutes of Health Accepted by Frank Solomon Professor, Biology Chair, Department Graduate Committee MA.Z. `T,,t,'.:!NSTTUTE JAN 17 995 Assembly and Localization of the Intermediate Filament Protein, Nestin by Martha Jean Marvin Submitted to the Department of Biology on December 20, 1994 in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Biology Abstract Neuroepithelial stem cells can be identified by their expression of the intermediate filament proteins vimentin and nestin. Vimentin is found in many cell types but nestin shows a more restricted pattern of expression. To improve the detection of nestin, antisera were raised against a portion of the protein expressed in bacteria and against a synthetic peptide. The antisera have been widely used to analyse cell types in the developing and adult central nervous systems of mammals. In cultured cells lacking vimentin protein, nestin was soluble, but when coexpressed with vimentin it was incorporated into intermediate filaments. The molecular basis of nestin assembly was explored by introducing the nestin gene with specific mutations into cultured cells and into transgenic mice.
    [Show full text]
  • VAGUS NERVE (GANLION DISTALE NERVI VAGI) 480 Ultramicrotome and Stained with Buffered 1% Toluidine Blue
    Abstracts THE INFLUENCE OF COWS’ NUTRITION DURING extraction, some of the teeth were treated with small charges of electric PREGNANCY ON THE DEVELOPMENT OF THE DISTAL current. Hemithin sections were taken with the use of a Tesla BS VAGUS NERVE (GANLION DISTALE NERVI VAGI) 480 ultramicrotome and stained with buffered 1% toluidine blue. Ultra IN NEWBORN CALVES thin sections were cut with an MTI ultramicrotome and contrasted with uranyl acetate and lead citrate. They were investigated and photographed 1 2 2 Adamski M , Pospieszny N , Kuropka P using a JEOL electron microscope. 1Institute of Animal Breeding, Faculty of Biology and Animal Breeding, In the electron microscopic pictures of the lateral surfaces of the cells (be- University of Environmental and Life Sciences, Wrocław, Poland tween the odontoblasts, odontoblasts and nerve fibres, odontoblasts — leu- 2Department of Anatomy and Histology, Faculty of Veterinary Medicine, cocytes as well as in the blood vessel walls), the junctions are visible as short University of Environmental and Life Sciences, Wrocław, Poland callosities of plasmolemma. Such junctions between the cells enable a so- called junctional transfer — a free flow of ions, so they act as electric syn- In the literature available, there is a lack of morphological-breeding apses. The junctional complex is formed by gap junctions, desmosomes works concerning the influence of nutrition of pregnant cows on the and tight junctions. Hemidesmosomes were also present. Belt desmosomes development of distal ganglion of the vagus nerve. Animals are fed with provide strong bonds between the cells. Small spot desmosomes are also fodders of known qualitative-quantitative composition. The data of present between the odontoblasts.
    [Show full text]
  • High-Yield Embryology 4
    LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page i Aptara Inc High-Yield TM Embryology FOURTH EDITION LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page ii Aptara Inc LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page iii Aptara Inc High-Yield TM Embryology FOURTH EDITION Ronald W. Dudek, PhD Professor Brody School of Medicine East Carolina University Department of Anatomy and Cell Biology Greenville, North Carolina LWBK356-FM_pi-xii.qxd 7/14/09 2:03 AM Page iv Aptara Inc Acquisitions Editor: Crystal Taylor Product Manager: Sirkka E. Howes Marketing Manager: Jennifer Kuklinski Vendor Manager: Bridgett Dougherty Manufacturing Manager: Margie Orzech Design Coordinator: Terry Mallon Compositor: Aptara, Inc. Copyright © 2010, 2007, 2001, 1996 Lippincott Williams & Wilkins, a Wolters Kluwer business. 351 West Camden Street 530 Walnut Street Baltimore, MD 21201 Philadelphia, PA 19106 Printed in China All rights reserved. This book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appear- ing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Lippincott Williams & Wilkins at 530 Walnut Street, Philadelphia, PA 19106, via email at permissions@lww.com, or via website at lww.com (products and services).
    [Show full text]
  • A Study of Neuronal Precursors Using Retrovirus-Mediated Gene Transfer
    In the name of God, the almighty A Study of Neuronal Precursors Using Retrovirus-Mediated Gene Transfer by Mohammad Hajihosseini A thesis submitted to the University of London in part fulfilment for the degree of Doctor of Philosophy (Ph.D) Laboratory of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London. May 1994 ProQuest Number: 10105736 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10105736 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This study concerns an investigation of factors that may influence the behaviour and development of neuronal precursors derived from embryonic rat cerebral cortex. In this study, single retrovirally-labelled E16 or E14 cortical precursors were cultured amongst unlabelled cells, on monolayers of cortical astrocytes in the presence or absence of basic fibroblast growth factor (bPGF). Several important observation were made when the fate of such cells was analysed after seven days in culture. Most virally-labelled E16 and E14 cortical cells were found to produce clones that were composed of only one of the cell types found in the adult brain; namely neurones, oligodendrocytes, or astrocytes, showing that cortical precursor cells are specified in the phenotypic fate at the time of their isolation from the embryonic cortex.
    [Show full text]