Internet Domain Name System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ispconfig Documentation Ispconfig Documentation I
ISPConfig Documentation ISPConfig Documentation I Table of Contents General...............................................................................................................................................1 1 What is ISPConfig?...............................................................................................................1 2 Terms and structure of the manual.......................................................................................1 3 Installation/Upgrade/Deinstallation.......................................................................................1 3.1 Installation....................................................................................................................1 3.2 Upgrade.......................................................................................................................1 3.3 Deinstallation................................................................................................................2 4 Login and Logout..................................................................................................................2 I Administrator Manual......................................................................................................................3 1 General.................................................................................................................................3 1.1 Login and Password.....................................................................................................3 1.2 ISPConfig Interface -
Installation Guide
install_guide.book Page i Monday, May 11, 2015 8:48 PM Installation Guide Installation Guide Schrödinger Software Release 2015-2 Schrödinger Press install_guide.book Page ii Monday, May 11, 2015 8:48 PM Installation Guide Copyright © 2015 Schrödinger, LLC. All rights reserved. While care has been taken in the preparation of this publication, Schrödinger assumes no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein. Canvas, CombiGlide, ConfGen, Epik, Glide, Impact, Jaguar, Liaison, LigPrep, Maestro, Phase, Prime, PrimeX, QikProp, QikFit, QikSim, QSite, SiteMap, Strike, and WaterMap are trademarks of Schrödinger, LLC. Schrödinger, BioLuminate, and MacroModel are registered trademarks of Schrödinger, LLC. MCPRO is a trademark of William L. Jorgensen. DESMOND is a trademark of D. E. Shaw Research, LLC. Desmond is used with the permission of D. E. Shaw Research. All rights reserved. This publication may contain the trademarks of other companies. Schrödinger software includes software and libraries provided by third parties. For details of the copyrights, and terms and conditions associated with such included third party software, use your browser to open third_party_legal.html, which is in the docs folder of your Schrödinger software installation. This publication may refer to other third party software not included in or with Schrödinger software ("such other third party software"), and provide links to third party Web sites ("linked sites"). References to such other third party software or linked sites do not constitute an endorsement by Schrödinger, LLC or its affiliates. Use of such other third party software and linked sites may be subject to third party license agreements and fees. -
Configuring DNS
Configuring DNS The Domain Name System (DNS) is a distributed database in which you can map hostnames to IP addresses through the DNS protocol from a DNS server. Each unique IP address can have an associated hostname. The Cisco IOS software maintains a cache of hostname-to-address mappings for use by the connect, telnet, and ping EXEC commands, and related Telnet support operations. This cache speeds the process of converting names to addresses. Note You can specify IPv4 and IPv6 addresses while performing various tasks in this feature. The resource record type AAAA is used to map a domain name to an IPv6 address. The IP6.ARPA domain is defined to look up a record given an IPv6 address. • Finding Feature Information, page 1 • Prerequisites for Configuring DNS, page 2 • Information About DNS, page 2 • How to Configure DNS, page 4 • Configuration Examples for DNS, page 13 • Additional References, page 14 • Feature Information for DNS, page 15 Finding Feature Information Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. -
Ispconfig 3 Manual]
[ISPConfig 3 Manual] ISPConfig 3 Manual Version 1.0 for ISPConfig 3.0.3 Author: Falko Timme <[email protected]> Last edited 09/30/2010 1 The ISPConfig 3 manual is protected by copyright. No part of the manual may be reproduced, adapted, translated, or made available to a third party in any form by any process (electronic or otherwise) without the written specific consent of projektfarm GmbH. You may keep backup copies of the manual in digital or printed form for your personal use. All rights reserved. This copy was issued to: Thomas CARTER - [email protected] - Date: 2010-11-20 [ISPConfig 3 Manual] ISPConfig 3 is an open source hosting control panel for Linux and is capable of managing multiple servers from one control panel. ISPConfig 3 is licensed under BSD license. Managed Services and Features • Manage one or more servers from one control panel (multiserver management) • Different permission levels (administrators, resellers and clients) + email user level provided by a roundcube plugin for ISPConfig • Httpd (virtual hosts, domain- and IP-based) • FTP, SFTP, SCP • WebDAV • DNS (A, AAAA, ALIAS, CNAME, HINFO, MX, NS, PTR, RP, SRV, TXT records) • POP3, IMAP • Email autoresponder • Server-based mail filtering • Advanced email spamfilter and antivirus filter • MySQL client-databases • Webalizer and/or AWStats statistics • Harddisk quota • Mail quota • Traffic limits and statistics • IP addresses 2 The ISPConfig 3 manual is protected by copyright. No part of the manual may be reproduced, adapted, translated, or made available to a third party in any form by any process (electronic or otherwise) without the written specific consent of projektfarm GmbH. -
Adopting Encrypted DNS in Enterprise Environments
National Security Agency | Cybersecurity Information Adopting Encrypted DNS in Enterprise Environments Executive summary Use of the Internet relies on translating domain names (like “nsa.gov”) to Internet Protocol addresses. This is the job of the Domain Name System (DNS). In the past, DNS lookups were generally unencrypted, since they have to be handled by the network to direct traffic to the right locations. DNS over Hypertext Transfer Protocol over Transport Layer Security (HTTPS), often referred to as DNS over HTTPS (DoH), encrypts DNS requests by using HTTPS to provide privacy, integrity, and “last mile” source authentication with a client’s DNS resolver. It is useful to prevent eavesdropping and manipulation of DNS traffic. While DoH can help protect the privacy of DNS requests and the integrity of responses, enterprises that use DoH will lose some of the control needed to govern DNS usage within their networks unless they allow only their chosen DoH resolver to be used. Enterprise DNS controls can prevent numerous threat techniques used by cyber threat actors for initial access, command and control, and exfiltration. Using DoH with external resolvers can be good for home or mobile users and networks that do not use DNS security controls. For enterprise networks, however, NSA recommends using only designated enterprise DNS resolvers in order to properly leverage essential enterprise cybersecurity defenses, facilitate access to local network resources, and protect internal network information. The enterprise DNS resolver may be either an enterprise-operated DNS server or an externally hosted service. Either way, the enterprise resolver should support encrypted DNS requests, such as DoH, for local privacy and integrity protections, but all other encrypted DNS resolvers should be disabled and blocked. -
Chapter 2. Application Layer Table of Contents 1. Context
Chapter 2. Application Layer Table of Contents 1. Context ........................................................................................................................................... 1 2. Introduction .................................................................................................................................... 2 3. Objectives ....................................................................................................................................... 2 4. Network application software ....................................................................................................... 2 5. Process communication ................................................................................................................. 3 6. Transport Layer services provided by the Internet ....................................................................... 3 7. Application Layer Protocols ........................................................................................................... 4 8. The web and HTTP .......................................................................................................................... 4 8.1. Web Terminology ................................................................................................................... 5 8.2. Overview of HTTP protocol .................................................................................................... 6 8.3. HTTP message format ........................................................................................................... -
Analysis of Malware and Domain Name System Traffic
Analysis of Malware and Domain Name System Traffic Hamad Mohammed Binsalleeh A Thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at Concordia University Montréal, Québec, Canada July 2014 c Hamad Mohammed Binsalleeh, 2014 CONCORDIA UNIVERSITY Division of Graduate Studies This is to certify that the thesis prepared By: Hamad Mohammed Binsalleeh Entitled: Analysis of Malware and Domain Name System Traffic and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Chair Dr. Christian Moreau External Examiner Dr. Nadia Tawbi Examiner to Program Dr. Lingyu Wang Examiner Dr. Peter Grogono Examiner Dr. Olga Ormandjieva Thesis Co-Supervisor Dr. Mourad Debbabi Thesis Co-Supervisor Dr. Amr Youssef Approved by Chair of the CSE Department 2014 Dean of Engineering ABSTRACT Analysis of Malware and Domain Name System Traffic Hamad Mohammed Binsalleeh Concordia University, 2014 Malicious domains host Command and Control servers that are used to instruct in- fected machines to perpetuate malicious activities such as sending spam, stealing creden- tials, and launching denial of service attacks. Both static and dynamic analysis of malware as well as monitoring Domain Name System (DNS) traffic provide valuable insight into such malicious activities and help security experts detect and protect against many cyber attacks. Advanced crimeware toolkits were responsible for many recent cyber attacks. In order to understand the inner workings of such toolkits, we present a detailed reverse en- gineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture and enable its mitigation. -
Implementation of Embedded Web Server Based on ARM11 and Linux Using Raspberry PI
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-3 Issue-3, July 2014 Implementation of Embedded Web Server Based on ARM11 and Linux using Raspberry PI Girish Birajdar Abstract— As ARM processor based web servers not uses III. HARDWARE USED computer directly, it helps a lot in reduction of cost. In this We will use different hardware to implement this embedded project our aim is to implement an Embedded Web Server (EWS) based on ARM11 processor and Linux operating system using web server, which are described in this section. Raspberry Pi. it will provide a powerful networking solution with 1. Raspberry Pi : The Raspberry Pi is low cost ARM wide range of application areas over internet. We will run web based palm-size computer. The Raspberry Pi has server on an embedded system having limited resources to serve microprocessor ARM1176JZF-S which is a member of embedded web page to a web browser. ARM11 family and has ARMv6 architecture. It is build Index Terms— Embedded Web Server, Raspberry Pi, ARM, around a BCM2835 broadcom processor. ARM processor Ethernet etc. operates at 700 MHz & it has 512 MB RAM. It consumes 5V electricity at 1A current due to which power I. INTRODUCTION consumption of raspberry pi is less. It has many peripherals such as USB port, 10/100 ethernet, GPIO, HDMI & With evolution of World-Wide Web (WWW), its composite video outputs and SD card slot.SD card slot is application areas are increasing day by day. Web access used to connect the SD card which consist of raspberry linux functionality can be embedded in a low cost device which operating system. -
Secure Shell- Its Significance in Networking (Ssh)
International Journal of Application or Innovation in Engineering & Management (IJAIEM) Web Site: www.ijaiem.org Email: [email protected] Volume 4, Issue 3, March 2015 ISSN 2319 - 4847 SECURE SHELL- ITS SIGNIFICANCE IN NETWORKING (SSH) ANOOSHA GARIMELLA , D.RAKESH KUMAR 1. B. TECH, COMPUTER SCIENCE AND ENGINEERING Student, 3rd year-2nd Semester GITAM UNIVERSITY Visakhapatnam, Andhra Pradesh India 2.Assistant Professor Computer Science and Engineering GITAM UNIVERSITY Visakhapatnam, Andhra Pradesh India ABSTRACT This paper is focused on the evolution of SSH, the need for SSH, working of SSH, its major components and features of SSH. As the number of users over the Internet is increasing, there is a greater threat of your data being vulnerable. Secure Shell (SSH) Protocol provides a secure method for remote login and other secure network services over an insecure network. The SSH protocol has been designed to support many features along with proper security. This architecture with the help of its inbuilt layers which are independent of each other provides user authentication, integrity, and confidentiality, connection- oriented end to end delivery, multiplexes encrypted tunnel into several logical channels, provides datagram delivery across multiple networks and may optionally provide compression. Here, we have also described in detail what every layer of the architecture does along with the connection establishment. Some of the threats which Ssh can encounter, applications, advantages and disadvantages have also been mentioned in this document. Keywords: SSH, Cryptography, Port Forwarding, Secure SSH Tunnel, Key Exchange, IP spoofing, Connection- Hijacking. 1. INTRODUCTION SSH Secure Shell was first created in 1995 by Tatu Ylonen with the release of version 1.0 of SSH Secure Shell and the Internet Draft “The SSH Secure Shell Remote Login Protocol”. -
A Diversified Set of Security Features for XMPP Communication Systems
International Journal on Advances in Security, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/security/ 99 A Diversified Set of Security Features for XMPP Communication Systems Useful in Cloud Computing Federation Antonio Celesti, Massimo Villari, and Antonio Puliafito DICIEAMA, University of Messina Contrada di Dio, S. Agata, 98166 Messina, Italy. e-mail: facelesti, mvillari, apuliafi[email protected] Abstract—Nowadays, in the panorama of Cloud Computing, Presence Protocol (XMPP), i.e., an open-standard commu- finding a right compromise between interactivity and security nications protocol for message-oriented middleware based is not trivial at all. Currently, most of Cloud providers base on the XML (Extensible Markup Language). On one hand, their communication systems on the web service technology. The problem is that both Cloud architectures and services the XMPP is able to overcome the disadvantages of web have started as simple but they are becoming increasingly services in terms of performance, but on the other hand complex. Consequently, web services are often inappropriate. it lacks of native security features for addressing the new Recently, many operators in both academia and industry are emerging Cloud computing scenarios. evaluating the eXtensible Messaging and Presence Protocol for In this paper, we discuss how the XMPP can be adopted the implementation of Cloud communication systems. In fact, the XMPP offers many advantages in term of real-time capa- for the development of secure Cloud communication sys- bilities, efficient data distribution, service discovery, and inter- tems. In particular, we combine and generalize the assump- domain communication compared to web service technologies. tions made in our previous works respectively regarding how Nevertheless, the protocol lacks of native security features. -
Domain Name System System Work?
What is the DNS? - how it works Isaac Maposa | Dev Anand Teelucksingh | Beran Gillen Community Onboarding Program | 11 March 2017 Agenda 1 2 3 What is the Domain Structure of the How does the Name System? Domain Name Domain Name System System Work? 4 5 6 Who makes the Stakeholders in the Engage with ICANN Domain Name Domain Name ??? System Work? System. | 2 What is the Domain Name System (DNS)? The Internet, what is it..? ● The Internet is a network of networks that interconnects devices to exchange information. ● In order to “talk” to each other, all of these devices must have a unique numerical address called an Internet Protocol address or IP Address. An example of an IP address is 94.127.53.132 ● When you visit a website from your browser, you are requesting the website from your device’s IP address to the web server’s IP address. ● However, you don’t type in the ip address of the web server, rather the domain name of for example www.google.com ● In so doing, you have queried the DNS. ● So what is this DNS???? | 4 What is the Domain Name System? ● The Domain Name System or DNS overcomes this problem of remembering IP addresses by mapping domain names to IP addresses. ● While this sounds like a phone book, it is not a centralised database. ● The DNS is a distributed database across a hierarchy of networks of servers and provide ways for devices and software (like browsers and email) to query the DNS to get an IP address. ● Domain names must be unique. -
Iot Communications a 5G Smart Cities Case Study Approach
1 End to End VANET/ IoT Communications A 5G Smart Cities Case Study Approach Melvin Hayes1 and Tamer Omar2 Department of Technology Management, Indiana State University Terre Haute 1 Department of Electrical and Computer Engineering, Cal-Poly Pomona 2 Email: [email protected], [email protected] Abstract—This paper investigates the infrastructure to vehi- in achieving end-to-end communications for IoT datum and cle and infrastructure to cloud connectivity and reliability in meta-data collection and dissemination platform for IoV. the vehicular ad hoc networks (VANET) area of Intelligent Transportation Systems (ITS). A key focus of this work is to Furthermore, this work highlights and investigates the role investigate protocols that will enhance real-time, robust and that Zero-Configuration a set of technologies that can auto- reliable communication methods, and complement autonomous vehicles’ navigation experiences within smart cities. The main matically creates a usable RSUs network based on the Internet areas of study include highway infrastructure that include the Protocol Suite to support the proposed end to end communi- Wireless Sensor Networks (WSN) to the Cloud (web service) and cations systems design. This work is predominately interested vice-versa. The pertinent cloud-based data will be communicated in the upper layers of the data communication protocols for to subscribed vehicles (with password access) to complete the the Internet of Things (IoT) harmonization of WSN devices V2I and I2V communication cycle. The data collected from the WSN is communicated to the cloud via XML over XMPP, that can be used for a Vehicular Ad-Hoc Network (VANET) zero configuration, and mDNS protocols.