Secure Shell- Its Significance in Networking (Ssh)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Secure Peer-To-Peer Web Framework
A Secure Peer-to-Peer Web Framework Joakim Koskela Andrei Gurtov Helsinki Institute for Information Technology Helsinki Institute for Information Technology PO Box 19800, 00076 Aalto PO Box 19800, 00076 Aalto Email: joakim.koskela@hiit.fi Email: andrei.gurtov@hiit.fi Abstract—We present the design and evaluation of a se- application, that can be deployed without investing in dedi- cure peer-to-peer HTTP middleware framework that enables cated infrastructure while addressing issues such as middlebox a multitude of web applications without relying on service traversal, mobility, security and identity management. providers. The framework is designed to be deployed in existing network environments, allowing ordinary users to create private II. PEER-TO-PEER HTTP services without investing in network infrastructure. Compared to previous work, scalability, NAT/firewall traversal and peer From its launch in the early 1990s, the HyperText Transfer mobility is achieved without the need for maintaining dedicated Protocol (HTTP) had grown to be one of the most popular servers by utilizing new network protocols and re-using existing protocols on the Internet today. It is used daily for everything network resources. from past-time activities, such as recreational browsing, gam- I. INTRODUCTION ing and media downloads, to business- and security-critical Peer-to-peer (P2P) systems have been popular within net- applications such as payment systems and on-line banking. work research during the past years as they have the potential The success of HTTP has clearly grown beyond its original to offer more reliable, fault-tolerant and cost-efficient network- design as a simple, easy to manage protocol for exchanging ing. -
Configuring DNS
Configuring DNS The Domain Name System (DNS) is a distributed database in which you can map hostnames to IP addresses through the DNS protocol from a DNS server. Each unique IP address can have an associated hostname. The Cisco IOS software maintains a cache of hostname-to-address mappings for use by the connect, telnet, and ping EXEC commands, and related Telnet support operations. This cache speeds the process of converting names to addresses. Note You can specify IPv4 and IPv6 addresses while performing various tasks in this feature. The resource record type AAAA is used to map a domain name to an IPv6 address. The IP6.ARPA domain is defined to look up a record given an IPv6 address. • Finding Feature Information, page 1 • Prerequisites for Configuring DNS, page 2 • Information About DNS, page 2 • How to Configure DNS, page 4 • Configuration Examples for DNS, page 13 • Additional References, page 14 • Feature Information for DNS, page 15 Finding Feature Information Your software release may not support all the features documented in this module. For the latest caveats and feature information, see Bug Search Tool and the release notes for your platform and software release. To find information about the features documented in this module, and to see a list of the releases in which each feature is supported, see the feature information table at the end of this module. Use Cisco Feature Navigator to find information about platform support and Cisco software image support. To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required. -
I.L. 40-614A 1 1. INTRODUCTION the Basic Interface to Remote Terminal, Or BIRT, Is an INCOM Network Master. BIRT Gives Users An
I.L. 40-614A 1. INTRODUCTION 3. DESCRIPTION The Basic Interface to Remote Terminal, or BIRT, is 3.1. Power Requirements an INCOM Network Master. BIRT gives users an economical way of getting information from their Range: 48 Vdc to 250 Vdc and 120 Vac INCOM-compatible devices since it connects directly between a user’s external MODEM or personal com- Burden: 3.5 W @ 48 Vdc puter and the INCOM network. 9 W @ 250 Vdc 5 W @ 120 Vac BIRT can directly replace Westinghouse MINTs, talk- ing to all INCOM-based communication devices. 3.2. Temperature Range BIRTs also include a special high-speed mode for communicating with SADIs – allowing users to collect For Operation: 0˚ to +55˚ C data from other manufacturer’s relays more rapidly For Storage: -20˚ to +80˚ C than ever before. 3.3. Physical Dimensions BIRTs are built to handle the abuse of substation environment; their “hardened” RS-232 serial port can The BIRT enclosure dimensions are identical to the handle surges and sustained high voltages that ERNI and SADI, as shown in figure 1. would destroy ordinary serial ports, and BIRTs can run on a wide range of voltages, from 48 to 250 Vdc Dimensions and weight of chassis or even 120 Vac, with no jumpers or adjustments needed. Height: 5.26” (133.6) mm) Width: 3.32” (84.3) mm) Depth: 5.92” (150.4) mm) 2. FEATURES Weight: 2.0 lbs (0.9 kg) BIRT is designed to be very flexible in its RS-232 External Wiring: See figures 2 and 3. -
Adopting Encrypted DNS in Enterprise Environments
National Security Agency | Cybersecurity Information Adopting Encrypted DNS in Enterprise Environments Executive summary Use of the Internet relies on translating domain names (like “nsa.gov”) to Internet Protocol addresses. This is the job of the Domain Name System (DNS). In the past, DNS lookups were generally unencrypted, since they have to be handled by the network to direct traffic to the right locations. DNS over Hypertext Transfer Protocol over Transport Layer Security (HTTPS), often referred to as DNS over HTTPS (DoH), encrypts DNS requests by using HTTPS to provide privacy, integrity, and “last mile” source authentication with a client’s DNS resolver. It is useful to prevent eavesdropping and manipulation of DNS traffic. While DoH can help protect the privacy of DNS requests and the integrity of responses, enterprises that use DoH will lose some of the control needed to govern DNS usage within their networks unless they allow only their chosen DoH resolver to be used. Enterprise DNS controls can prevent numerous threat techniques used by cyber threat actors for initial access, command and control, and exfiltration. Using DoH with external resolvers can be good for home or mobile users and networks that do not use DNS security controls. For enterprise networks, however, NSA recommends using only designated enterprise DNS resolvers in order to properly leverage essential enterprise cybersecurity defenses, facilitate access to local network resources, and protect internal network information. The enterprise DNS resolver may be either an enterprise-operated DNS server or an externally hosted service. Either way, the enterprise resolver should support encrypted DNS requests, such as DoH, for local privacy and integrity protections, but all other encrypted DNS resolvers should be disabled and blocked. -
Chapter 2. Application Layer Table of Contents 1. Context
Chapter 2. Application Layer Table of Contents 1. Context ........................................................................................................................................... 1 2. Introduction .................................................................................................................................... 2 3. Objectives ....................................................................................................................................... 2 4. Network application software ....................................................................................................... 2 5. Process communication ................................................................................................................. 3 6. Transport Layer services provided by the Internet ....................................................................... 3 7. Application Layer Protocols ........................................................................................................... 4 8. The web and HTTP .......................................................................................................................... 4 8.1. Web Terminology ................................................................................................................... 5 8.2. Overview of HTTP protocol .................................................................................................... 6 8.3. HTTP message format ........................................................................................................... -
Secure Shell Encrypt and Authenticate Remote Connections to Secure Applications and Data Across Open Networks
Product overview OpenText Secure Shell Encrypt and authenticate remote connections to secure applications and data across open networks Comprehensive Data security is an ongoing concern for organizations. Sensitive, security across proprietary information must always be protected—at rest and networks in motion. The challenge for organizations that provide access to applications and data on host systems is keeping the data Support for Secure Shell (SSH) secure while enabling access from remote computers and devices, whether in a local or wide-area network. ™ Strong SSL/TLS OpenText Secure Shell is a comprehensive security solution that safeguards network ® encryption traffic, including internet communication, between host systems (mainframes, UNIX ™ servers and X Window System applications) and remote PCs and web browsers. When ™ ™ ™ ™ Powerful Kerberos included with OpenText Exceed or OpenText HostExplorer , it provides Secure Shell 2 (SSH-2), Secure Sockets Layer (SSL), LIPKEY and Kerberos security mechanisms to ensure authentication security for communication types, such as X11, NFS, terminal emulation (Telnet), FTP support and any TCP/IP protocol. Secure Shell encrypts data to meet the toughest standards and requirements, such as FIPS 140-2. ™ Secure Shell is an add-on product in the OpenText Connectivity suite, which encrypts application traffic across networks. It helps organizations achieve security compliance by providing Secure Shell (SSH) capabilities. Moreover, seamless integration with other products in the Connectivity suite means zero disruption to the users who remotely access data and applications from web browsers and desktop computers. Secure Shell provides support for the following standards-based security protocols: Secure Shell (SSH)—A transport protocol that allows users to log on to other computers over a network, execute commands on remote machines and securely move files from one machine to another. -
Analysis of Malware and Domain Name System Traffic
Analysis of Malware and Domain Name System Traffic Hamad Mohammed Binsalleeh A Thesis in The Department of Computer Science and Software Engineering Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy at Concordia University Montréal, Québec, Canada July 2014 c Hamad Mohammed Binsalleeh, 2014 CONCORDIA UNIVERSITY Division of Graduate Studies This is to certify that the thesis prepared By: Hamad Mohammed Binsalleeh Entitled: Analysis of Malware and Domain Name System Traffic and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Chair Dr. Christian Moreau External Examiner Dr. Nadia Tawbi Examiner to Program Dr. Lingyu Wang Examiner Dr. Peter Grogono Examiner Dr. Olga Ormandjieva Thesis Co-Supervisor Dr. Mourad Debbabi Thesis Co-Supervisor Dr. Amr Youssef Approved by Chair of the CSE Department 2014 Dean of Engineering ABSTRACT Analysis of Malware and Domain Name System Traffic Hamad Mohammed Binsalleeh Concordia University, 2014 Malicious domains host Command and Control servers that are used to instruct in- fected machines to perpetuate malicious activities such as sending spam, stealing creden- tials, and launching denial of service attacks. Both static and dynamic analysis of malware as well as monitoring Domain Name System (DNS) traffic provide valuable insight into such malicious activities and help security experts detect and protect against many cyber attacks. Advanced crimeware toolkits were responsible for many recent cyber attacks. In order to understand the inner workings of such toolkits, we present a detailed reverse en- gineering analysis of the Zeus crimeware toolkit to unveil its underlying architecture and enable its mitigation. -
Introduction to Peer-To-Peer Networks
Introduction to Peer-to-Peer Networks The Story of Peer-to-Peer The Nature of Peer-to-Peer: Generals & Paradigms Unstructured Peer-to-Peer Systems Sample Applications 1 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt A Peer-to-Peer system is a self-organizing system of equal, autonomous entities (peers) which aims for the shared usage of distributed resources in a networked environment avoiding central services. Andy Oram 2 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt The Old Days NetNews (nntp) Usenet since 1979, initially based on UUCP Exchange (replication) of news articles by subscription Group creation/deletion decentralised DNS Distributed delegation of name authorities: file sharing of host tables Name “Servers” act as peers Hierarchical information space permits exponential growth Systems are manually configured distributed peers 3 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt SETI@home: Distributed Computing Search for Extraterrestrial Intelligence (SETI) Analyse radio sig- nals from space Globally shared computing res. Idea 1995 First version 1998 2002 ≈ 4 Mio clnt E.g. Screensaver From Anderson et. al.: SETI@home, Comm. ACM, 45 (11), Nov. 2002 http://setiathome.berkeley.edu/ - ongoing 4 Prof. Dr. Thomas Schmidt http:/www.informatik.haw-hamburg.de/~schmidt SETI@home (2) http-based client-server model No client-client communication Data chunks: load & return N-redundancy for fault detection Attacks: bogus code From Anderson -
Peer-To-Peer Networks
Peer-to-Peer Networks 14-740: Fundamentals of Computer Networks Credit to Bill Nace, 14-740, Fall 2017 Material from Computer Networking: A Top Down Approach, 6th edition. J.F. Kurose and K.W. Ross traceroute • P2P Overview • Architecture components • Napster (Centralized) • Gnutella (Distributed) • Skype and KaZaA (Hybrid, Hierarchical) • KaZaA Reverse Engineering Study 14-740: Spring 2018 2 What is P2P? • Client / Server interaction • Client: any end-host • Server: specific end-host • P2P: Peer-to-peer • Any end-host • Aim to leverage resources available on “clients” (peers) • Hard drive space • Bandwidth (especially upload) • Computational power • Anonymity (i.e. Zombie botnets) • “Edge-ness” (i.e. being distributed at network edges) • Clients are particularly fickle • Users have not agreed to provide any particular level of service • Users are not altruistic -- algorithm must force participation without allowing cheating • Clients are not trusted • Client code may be modified • And yet, availability of resources must be assured P2P History • Proto-P2P systems exist • DNS, Netnews/Usenet • Xerox Grapevine (~1982): name, mail delivery service • Kicked into high gear in 1999 • Many users had “always-on” broadband net connections • 1st Generation: Napster (music exchange) • 2nd Generation: Freenet, Gnutella, Kazaa, BitTorrent • More scalable, designed for anonymity, fault-tolerant • 3rd Generation: Middleware -- Pastry, Chord • Provide for overlay routing to place/find resources 14-740: Spring 2018 6 P2P Architecture • Content Directory -
Secure Telnet
The following paper was originally published in the Proceedings of the Fifth USENIX UNIX Security Symposium Salt Lake City, Utah, June 1995. STEL: Secure TELnet David Vincenzetti, Stefano Taino, and Fabio Bolognesi Computer Emergency Resource Team Italy Department of Computer Science University of Milan, Italy For more information about USENIX Association contact: 1. Phone: 510 528-8649 2. FAX: 510 548-5738 3. Email: [email protected] 4. WWW URL: http://www.usenix.org STEL Secure TELnet David Vincenzetti Stefano Taino Fabio Bolognesi fvince k taino k b ologdsiunimiit CERTIT Computer Emergency Response Team ITaly Department of Computer Science University of Milan ITALY June Abstract Eavesdropping is b ecoming rampant on the Internet We as CERTIT have recorded a great numb er of sning attacks in the Italian community In fact sning is the most p opular hackers attack technique all over the Internet This pap er presents a secure telnet implementation whichhas b een designed by the Italian CERT to makeeavesdropping ineective to remote terminal sessions It is not to b e considered as a denitive solution but rather as a bandaid solution to deal with one of the most serious security threats of the moment Intro duction STEL stands for Secure TELnet We started developing STEL at the University of Milan when we realized that eavesdropping was a very serious problem and we did not like the freeware solutions that were available at that time It was ab out three years ago Still as far as we know e tapping problem and there are no really satisfying -
Telnet Client 5.11 Ssh Support
TELNET CLIENT 5.11 SSH SUPPORT This document provides This document describes how to install and configure SSH support in Wavelink Telnet Client 5.11. information on the SSH support available in Telnet Client 5.11 OVERVIEW OF SSH SUPPORT Secure Shell (SSH) is a protocol developed for transmitting private information over the Internet. SSH OVERVIEW encrypts data that is transferred over the Telnet session. • Overview of SSH The Telnet Client supports SSH version 1 and 2 and will automatically select the most secure protocol Support that the SSH server supports. • Installing Windows SSH Support This document describes the following: • Configuring the host • Installing Windows SSH support utility profile for SSH • Configuring the host profile for SSH support support • Deploying Windows • Deploying Windows SSH support to the device through Avalanche or ActiveSync SSH Support • Revision History INSTALLING WINDOWS SSH SUPPORT Installing SSH support is a two-step process. First, install SSH support on the PC from which you will deploy Telnet. Once you install SSH support on the PC, use Avalanche or ActiveSync to deploy the utility to the device. To install SSH support on your PC: 1. Obtain the installation executable for SSH support. NOTE: To obtain the Wavelink SSH support utility install, go to http://www.wavelink.com/downloads/ files/sshagreement.aspx. 2. Install SSH support on the PC from which you will deploy the Telnet Client. CONFIGURING THE HOST PROFILE FOR SSH SUPPORT SSH support is configured from the Host Profiles window of the configuration utility. NOTE: SSH is only an active option if SSH support has been installed on the PC running the Telnet Client configuration utility. -
Remote Cellular TCP/IP Access to Rockwell Ethernet and Serial Devices
Remote Cellular TCP/IP to Rockwell Devices Remote Cellular TCP/IP Access to Rockwell Ethernet and Serial Devices Keywords: Cellular, SLC5/05, ControlLogix, MicroLogix Abstract: This document describes how to set up the Digi Connect™ WAN products (Digi Connect WAN, Digi Connect WAN RG, and Digi Connect WAN VPN) for remote cellular TCP/IP access to Rockwell equipment, such as the PLC5E, SLC5/05, ControlLogix, and MicroLogix. The Digi Connect WAN Family functions much like a home DSL/Cable modem, except the connection is by digital cellular signals such as GSM or CDMA. This enables wireless “Ethernet” solutions on a metro, regional, or global scale. 1 Introduction 1.1 Example Application To illustrate the use of Digi Connect WAN products with your Rockwell equipment, consider the following example: Key Features: The Digi Connect WAN product used with your Rockwell equipment provides several key features: • Provides outgoing Network-Address-Translation (NAT) and incoming TCP/UDP port forwarding. Some models act as VPN end-point. • Maintains an always-up IP connection, either on either the public Internet or by customized private networks established through your cellular carrier. • Being IP-based, all common Ethernet protocols can be used concurrently, including HTTP (Web browsing), ODVA Ethernet/IP, CSPv4, and Modbus/TCP. PN: 90000772_A http://www.digi.com/support/ia Page 1 of 37 Remote Cellular TCP/IP to Rockwell Devices • Existing applications, such as RSLinx, RSLogix and OPC, can be configured to access the field equipment through existing corporate LAN connections. • Intelligent field devices can use IP-based protocols to send email, file updates, or report-by-exception notifications.