Disertaciones Astronómicas Boletín Número 69 De Efemérides Astronómicas 17 De Marzo De 2021

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 69 De Efemérides Astronómicas 17 De Marzo De 2021 Disertaciones astronómicas Boletín Número 69 de efemérides astronómicas 17 de marzo de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. La Luz Zodiacal y su origen. Imagen 1: Imagen de la Luz Zodiacal hacia el este, junto antes del amanecer. Crédito: spacew.com/gallery/DominicCantin&gt. La luz zodiacal (también llamada falso amanecer cuando se ve antes del amanecer) es un resplandor blanco tenue, difuso y aproximadamente triangular que es visible en el cielo nocturno y parece extenderse desde la dirección del Sol y a lo largo del zodíaco, en el sentido de la eclíptica. La luz solar dispersada por el polvo interplanetario provoca este fenómeno. Sin embargo, el brillo es tan tenue que la luz de la luna y / o la contaminación lumínica lo eclipsan, haciéndolo invisible. El polvo interplanetario en el Sistema Solar forma colectivamente una nube gruesa con forma de panqueque llamada nube zodiacal, que se extiende a ambos lados del plano de la eclíptica. Los tamaños de partículas oscilan entre 10 y 300 micrómetros, lo que implica masas desde un nanogramo hasta decenas de microgramos. Las observaciones de la nave espacial Pioneer 10 en la década de 1970 vincularon la luz zodiacal con la nube de polvo interplanetaria en el Sistema Solar. En las latitudes medias, la luz zodiacal se observa mejor en el cielo occidental en la primavera después de que el crepúsculo vespertino ha desaparecido por completo, o en el cielo oriental en otoño, justo antes de que aparezca el crepúsculo matutino. La luz zodiacal aparece como una columna, más brillante en el horizonte, inclinada en el ángulo de la eclíptica. La luz dispersada por partículas de polvo extremadamente pequeñas se dispersa fuertemente hacia adelante, aunque la luz zodiacal en realidad se extiende por todo el cielo, por lo que es más brillante cuando se observa en un ángulo pequeño con el Sol. Es por eso que es más claramente visible cerca del amanecer o el atardecer cuando el sol está bloqueado, pero las partículas de polvo más cercanas a la línea de visión del sol no lo están. La banda de polvo que causa la luz zodiacal es uniforme en toda la eclíptica. Parece más ancho cerca del horizonte, cuando apenas el Sol se encuentra debajo del horizonte. Imagen 2: La luz zodiacal es producida por la luz solar que se refleja en las partículas de polvo del Sistema Solar conocidas como polvo cósmico. Imagen: ESO /Paranal. En consecuencia, su espectro es el mismo que el espectro solar. El material que produce la luz zodiacal se encuentra en un volumen de espacio en forma de lente centrado en el Sol y que se extiende mucho más allá de la órbita de la Tierra. Este material se conoce como nube de polvo interplanetaria. Dado que la mayor parte del material se encuentra cerca del plano del Sistema Solar, la luz zodiacal se ve a lo largo de la eclíptica. La cantidad de material necesario para producir la luz zodiacal observada es bastante pequeña. Si tuviera la forma de partículas de 1 mm, cada una con el mismo albedo que la Luna de la Tierra, cada partícula estaría a 8 km de sus vecinas. Las partículas pueden reducirse de tamaño por colisiones o por meteorización espacial. Cuando se muelen a tamaños inferiores a 10 micrómetros, los granos se eliminan del Sistema Solar interior por la presión de la radiación solar. Luego, el polvo se repone con la caída de los cometas. El polvo zodiacal alrededor de las estrellas cercanas se llama polvo exozodiacal; es una fuente de ruido potencialmente importante para obtener imágenes directas de planetas extrasolares. Se ha señalado que este polvo exozodiacal, o discos de desechos calientes, puede ser un indicador de planetas, ya que los planetas tienden a dispersar los cometas hacia el interior del Sistema Solar. En 2015, los nuevos resultados del espectrómetro de polvo de iones secundarios COSIMA a bordo del orbitador ESA / Rosetta confirmaron que los cuerpos parentales del polvo interplanetario son probablemente cometas de la familia de Júpiter, como el cometa 67P / Churyumov-Gerasimenko. Los datos de la misión Juno indican que el polvo cercano a la Tierra tiene un origen local en el interior del Sistema Solar, lo que mejor se ajusta al planeta Marte como fuente. Según Nesvorný y Jenniskens, cuando los granos de polvo son tan pequeños como unos 150 micrómetros de tamaño, golpearán la Tierra a una velocidad media de 14,5 km / s, muchos tan lentamente como 12 km / s. Si es así, señalaron, este polvo de cometa puede sobrevivir a la entrada en forma parcialmente fundida, lo que explica los atributos inusuales de los micrometeoritos recolectados en la Antártida, que no se parecen a los meteoritos más grandes que se sabe que se originan en los asteroides. En los últimos años, las observaciones de una variedad de naves espaciales han mostrado una estructura significativa en la luz zodiacal que incluye bandas de polvo asociadas con escombros de familias de asteroides particulares y varios rastros de cometas. Imagen 3: El Gegenschein aparece en esta imagen como un punto brillante en la banda diagonal (que va de arriba a la izquierda a abajo a la derecha) por encima del Very Large Telescope. (La galaxia de Andrómeda y las Pléyades son prominentes en la mitad inferior de la imagen). Imagen: Wikipedia. Pero ahora, un equipo de científicos de Juno sostiene que Marte puede ser el culpable. Publicaron por primera vez su hallazgo el 11 de noviembre de 2020 en el Journal of Geophysical Research: Planets, con un artículo final revisado por pares publicado el 9 de marzo de 2021. Un instrumento a bordo de la nave espacial Juno detectó por casualidad partículas de polvo que chocaban contra la nave espacial durante su viaje desde la Tierra a Júpiter. Los impactos proporcionaron pistas importantes sobre el origen y la evolución orbital del polvo, resolviendo algunas misteriosas variaciones de la luz zodiacal. Aunque su descubrimiento tiene grandes implicaciones, los científicos que pasaron años estudiando los desechos cósmicos no se propusieron hacerlo. Jørgensen diseñó los rastreadores de cuatro estrellas que forman parte de la investigación del magnetómetro de Juno. Estas cámaras a bordo toman fotos del cielo cada cuarto de segundo para determinar la orientación de Juno en el espacio al reconocer patrones de estrellas en sus imágenes, una tarea de ingeniería esencial para la precisión del magnetómetro. Pero Jørgensen esperaba que sus cámaras también pudieran ver un asteroide no descubierto. Así que programó una cámara para reportar cosas que aparecían en múltiples imágenes consecutivas pero que no estaban en el catálogo de objetos celestes conocidos. No esperaba ver mucho: casi todos los objetos en el cielo están incluidos en el catálogo de estrellas. Entonces, cuando la cámara comenzó a transmitir miles de imágenes de objetos no identificables (aparecían rayas y luego desaparecían misteriosamente), Jørgensen y sus colegas estaban desconcertados. Cada pieza de escombros que se rastrea registra el impacto de una partícula de polvo interplanetario, lo que permite compilar una distribución de polvo a lo largo del camino de Juno. Juno se lanzó en 2011. Después de una maniobra en el espacio profundo en el cinturón de asteroides en 2012, regresó al sistema solar interior para una asistencia de gravedad terrestre en 2013, que catapultó la nave espacial hacia Júpiter. Connerney y Jørgensen notaron que la mayoría de los impactos de polvo se registraron entre la Tierra y el cinturón de asteroides, con brechas en la distribución relacionadas con la influencia de la gravedad de Júpiter. Según los científicos, esta fue una revelación radical. Hasta ahora, los científicos no habían podido medir la distribución de estas partículas de polvo en el espacio. Los detectores de polvo dedicados han tenido áreas de recolección limitadas y, por lo tanto, una sensibilidad limitada a una población escasa de polvo. En su mayoría, cuentan las partículas de polvo más abundantes y mucho más pequeñas del espacio interestelar. En comparación, los paneles solares expansivos de Juno tienen 1,000 veces más área de recolección que la mayoría de los detectores de polvo. Los científicos de Juno determinaron que la nube de polvo termina en la Tierra porque la gravedad de la Tierra absorbe todo el polvo que se acerca. … es el polvo que vemos como luz zodiacal. En cuanto al borde exterior, a unas 2 unidades astronómicas (AU) del Sol, termina un poco más allá de Marte. En ese punto, informan los científicos, la influencia de la gravedad de Júpiter actúa como una barrera, evitando que las partículas de polvo crucen desde el sistema solar interior hacia el espacio profundo. Este mismo fenómeno, conocido como resonancia orbital, también funciona al revés, donde bloquea el polvo que se origina en el espacio profundo para que no pase al interior del sistema solar. Imagen 4: Descripción general de los impactos en función del tiempo durante el tránsito de la nave espacial Juno desde el lanzamiento hasta la inserción en la órbita de Júpiter. Imagen: https://doi.org/10.1029/2020JE006509. Esta descripción general altamente comprimida muestra con símbolos negros el número de impactos detectados por día, con la dirección de la nave espacial y los hitos importantes durante la fase de crucero (punteados). Se ilustra la variación de la distancia radial de la nave espacial al Sol (verde, escala derecha), la velocidad relativa con respecto a los objetos keplerianos en órbita circular (bronce, escala más a la derecha) y el volumen de espacio barrido por la nave espacial (azul, escala más a la derecha). Los períodos prolongados que carecen de observaciones se identifican con un relleno azul sólido; El relleno sombreado en azul indica un período de funcionamiento del instrumento en un modo de funcionamiento diferente durante el cual se suprimió la detección de IDP.
Recommended publications
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Modeling Radial Velocity Signals for Exoplanet Search Applications
    MODELING RADIAL VELOCITY SIGNALS FOR EXOPLANET SEARCH APPLICATIONS Prabhu Babu∗, Petre Stoica Division of Systems and Control, Department of Information Technology Uppsala University, P.O. Box 337, SE-75 105, Uppsala, Sweden {prabhu.babu, ps}@it.uu.se Jian Li Department of Electrical and Computer Engineering, University of Florida, Gainesville, 32611, FL, U.S.A. [email protected]fl.edu Keywords: Radial velocity method, Exoplanet search, Kepler model, IAA, Periodogram, RELAX, GLRT. Abstract: In this paper, we introduce an estimation technique for analyzing radial velocity data commonly encountered in extrasolar planet detection. We discuss the Keplerian model for radial velocity data measurements and estimate the 3D spectrum (power vs. eccentricity, orbital period and periastron passage time) of the radial velocity data by using a relaxation maximum likelihood algorithm (RELAX). We then establish the significance of the spectral peaks by using a generalized likelihood ratio test (GLRT). Numerical experiments are carried out on a real life data set to evaluate the performance of our method. 1 INTRODUCTION on iterative deconvolution in the frequency domain to obtain a clean spectrum from an initial dirty one. A Extrasolar planet (or shortly exoplanet) detection is periodogram related method is the least squares peri- a fascinating and challenging area of research in the odogram (also called the Lomb-Scargle periodogram) field of astrophysics. Till mid 2009, 353 exoplanets (Lomb, 1976; Scargle, 1982) which estimates the si- have been discovered. Some of the techniques avail- nusoidal components by fitting them to the observed able in the astrophysics literature to detect exoplanets data. Most recently, (Yardibi et al., 2010; Stoica et al., are astrometry, the radial velocity method, pulsar tim- 2009) introduced a new method called the Iterative ing, the transit method and gravitational microlens- Adaptive Approach (IAA), which relies on solving an ing.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 Star Distance Star Name Star Mass
    exoplanet.eu_catalog star_distance star_name star_mass Planet name mass 1.3 Proxima Centauri 0.120 Proxima Cen b 0.004 1.3 alpha Cen B 0.934 alf Cen B b 0.004 2.3 WISE 0855-0714 WISE 0855-0714 6.000 2.6 Lalande 21185 0.460 Lalande 21185 b 0.012 3.2 eps Eridani 0.830 eps Eridani b 3.090 3.4 Ross 128 0.168 Ross 128 b 0.004 3.6 GJ 15 A 0.375 GJ 15 A b 0.017 3.6 YZ Cet 0.130 YZ Cet d 0.004 3.6 YZ Cet 0.130 YZ Cet c 0.003 3.6 YZ Cet 0.130 YZ Cet b 0.002 3.6 eps Ind A 0.762 eps Ind A b 2.710 3.7 tau Cet 0.783 tau Cet e 0.012 3.7 tau Cet 0.783 tau Cet f 0.012 3.7 tau Cet 0.783 tau Cet h 0.006 3.7 tau Cet 0.783 tau Cet g 0.006 3.8 GJ 273 0.290 GJ 273 b 0.009 3.8 GJ 273 0.290 GJ 273 c 0.004 3.9 Kapteyn's 0.281 Kapteyn's c 0.022 3.9 Kapteyn's 0.281 Kapteyn's b 0.015 4.3 Wolf 1061 0.250 Wolf 1061 d 0.024 4.3 Wolf 1061 0.250 Wolf 1061 c 0.011 4.3 Wolf 1061 0.250 Wolf 1061 b 0.006 4.5 GJ 687 0.413 GJ 687 b 0.058 4.5 GJ 674 0.350 GJ 674 b 0.040 4.7 GJ 876 0.334 GJ 876 b 1.938 4.7 GJ 876 0.334 GJ 876 c 0.856 4.7 GJ 876 0.334 GJ 876 e 0.045 4.7 GJ 876 0.334 GJ 876 d 0.022 4.9 GJ 832 0.450 GJ 832 b 0.689 4.9 GJ 832 0.450 GJ 832 c 0.016 5.9 GJ 570 ABC 0.802 GJ 570 D 42.500 6.0 SIMP0136+0933 SIMP0136+0933 12.700 6.1 HD 20794 0.813 HD 20794 e 0.015 6.1 HD 20794 0.813 HD 20794 d 0.011 6.1 HD 20794 0.813 HD 20794 b 0.009 6.2 GJ 581 0.310 GJ 581 b 0.050 6.2 GJ 581 0.310 GJ 581 c 0.017 6.2 GJ 581 0.310 GJ 581 e 0.006 6.5 GJ 625 0.300 GJ 625 b 0.010 6.6 HD 219134 HD 219134 h 0.280 6.6 HD 219134 HD 219134 e 0.200 6.6 HD 219134 HD 219134 d 0.067 6.6 HD 219134 HD
    [Show full text]
  • • August the 26Th 2004 Detection of the Radial-Velocity Signal Induced by OGLE-TR-111 B Using UVES/FLAMES on the VLT (See Pont Et Al
    2004 • August the 26th 2004 Detection of the radial-velocity signal induced by OGLE-TR-111 b using UVES/FLAMES on the VLT (see Pont et al. 2004, A&A in press, astro-ph/0408499). • August the 25th 2004 TrES-1b: A new transiting exoplanet detected by the Trans-Atlantic Exoplanet Survey (TreS) team . (see Boulder Press release or Alonso et al.) • August the 25th 2004 HD 160691 c : A 14 Earth-mass planet detected with HARPS (see ESO Press Release or Santos et al.) • July the 8th 2004 HD 37605 b: The first extra-solar planet detected with HRS on the Hobby- Eberly Telescope (Cochran et al.) • May the 3rd 2004 HD 219452 Bb withdrawn by Desidera et al. • April the 28th 2004 Orbital solution for OGLE-TR-113 confirmed by Konacki et al • April the 15th 2004 OGLE 2003-BLG-235/MOA 2003-BLG-53: a planetary microlensing event (Bond et al.) • April the 14th 2004 FLAMES-UVES spectroscopic orbits for two OGLE III transiting candidates: OGLE-TR-113 and OGLE-TR-132 (Bouchy et al.) • February 2004 Detection of Carbon and Oxygen in the evaporating atmosphere of HD 209458 b by A. Vidal-Madjar et al. (from HST observations). • January the 5th 2004 Two planets orbiting giant stars announced by Mitchell et al. during the AAS meeting: HD 59686 b and 91 Aqr b (HD 219499 b). Two other more massive companions, Tau Gem b (HD 54719 b) and nu Oph b (HD 163917 b), have also been announced by the same authors. 2003 • December 2003 First planet detected with HARPS: HD 330075 b (see Mayor et al., in the ESO Messenger No 114) • July the 3rd 2003 A long-period planet on a circular orbit around HD 70642 announced by the AAT team (Carter et al.
    [Show full text]
  • A Bayesian Kepler Periodogram Detects a Second Planet in HD 208487
    Mon. Not. R. Astron. Soc. 000, 1–14 (2006) Printed 20 July 2007 (MN LATEX style file v2.2) A Bayesian Kepler Periodogram Detects a Second Planet in HD 208487 P. C. Gregory1??† 1Physics and Astronomy Department, University of British Columbia, 6224 Agricultural Rd., Vancouver, British Columbia, V6T 1Z1, Canada MNRAS 374, 1321, 2007 (Table 1 typos fixed) ABSTRACT An automatic Bayesian Kepler periodogram has been developed for identifying and characterizing multiple planetary orbits in precision radial velocity data. The peri- odogram is powered by a parallel tempering MCMC algorithm which is capable of efficiently exploring a multi-planet model parameter space. The periodogram employs an alternative method for converting the time of an observation to true anomaly that enables it to handle much larger data sets without a significant increase in compu- tation time. Improvements in the periodogram and further tests using data from HD 82 208487 have resulted in the detection of a second planet with a period of 909−92d, an 0.26 0.13 0.11 eccentricity of 0.37−0.20, a semi-major axis of 1.87−0.14 au and an M sin i =0.45−0.13 MJ. The revised parameters of the first planet are period = 129.8 ± 0.4d, eccentricity =0.20±0.09, semi-major axis = 0.51±0.02 au and M sin i =0.41±0.05 MJ. Particu- lar attention is paid to several methods for calculating the model marginal likelihood which is used to compare the probabilities of models with different numbers of planets. Key words: stars: planetary systems; stars: individual: HD 208487; methods: statis- tical; methods: numerical; techniques: radial velocities.
    [Show full text]
  • Modeling Radial Velocity Signals for Exoplanet Search Applications
    MODELING RADIAL VELOCITY SIGNALS FOR EXOPLANET SEARCH APPLICATIONS Prabhu Babu∗, Petre Stoica Division of Systems and Control, Department of Information Technology Uppsala University, P.O. Box 337, SE-75 105, Uppsala, Sweden Jian Li Department of Electrical and Computer Engineering, University of Florida, Gainesville, 32611, FL, U.S.A. Keywords: Radial velocity method, Exoplanet search, Kepler model, IAA, Periodogram, RELAX, GLRT. Abstract: In this paper, we introduce an estimation technique for analyzing radial velocity data commonly encountered in extrasolar planet detection. We discuss the Keplerian model for radial velocity data measurements and estimate the 3D spectrum (power vs. eccentricity, orbital period and periastron passage time) of the radial velocity data by using a relaxation maximum likelihood algorithm (RELAX). We then establish the significance of the spectral peaks by using a generalized likelihood ratio test (GLRT). Numerical experiments are carried out on a real life data set to evaluate the performance of our method. 1 INTRODUCTION on iterative deconvolution in the frequency domain to obtain a clean spectrum from an initial dirty one. A Extrasolar planet (or shortly exoplanet) detection is periodogram related method is the least squares peri- a fascinating and challenging area of research in the odogram (also called the Lomb-Scargle periodogram) field of astrophysics. Till mid 2009, 353 exoplanets (Lomb, 1976; Scargle, 1982) which estimates the si- have been discovered. Some of the techniques avail- nusoidal components by fitting them to the observed able in the astrophysics literature to detect exoplanets data. Most recently, (Yardibi et al., 2010; Stoica et al., are astrometry, the radial velocity method, pulsar tim- 2009) introduced a new method called the Iterative ing, the transit method and gravitational microlens- Adaptive Approach (IAA), which relies on solving an ing.
    [Show full text]
  • About Putative Neptune-Like Extrasolar Planetary Candidates
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 September 28, 2018 About putative Neptune-like extrasolar planetary candidates Krzysztof Go´zdziewski and Cezary Migaszewski Toru´nCentre for Astronomy, PL-87-100 Toru´n, Poland Received; accepted ABSTRACT Context. We re-analyze the precision radial velocity (RV) data of HD 208487, HD 190360, HD 188015 and HD 114729. These stars are supposed to host Jovian companions in long-period orbits. Aims. We test a hypothesis that the residuals of the 1-planet model of the RV or an irregular scatter of the measurements about the synthetic RV curve may be explained by the existence of additional planets in short-period orbits. Methods. We perform a global search for the best fits in the orbital parameters space with genetic algorithms and simplex method. This makes it possible to verify and extend the results obtained with an application of commonly used FFT-based periodogram analysis for identifying the leading periods. Results. Our analysis confirms the presence of a periodic component in the RV of HD 190360 which may correspond to a hot-Neptune planet. We found four new cases when the 2-planet model yields significantly better fits to the RV data than the best 1-planet solutions. If the periodic variability of the residuals of single-planet fits has indeed a planetary origin then hot-Neptune planets may exist in these extrasolar systems. We estimate their orbital periods in the range of 7–20 d and minimal masses about of 20 masses od the Earth. Key words. extrasolar planets—Doppler technique— HD 208487—HD 190360—HD 188015—HD 114729—HD 147513 1.
    [Show full text]
  • Extrasolar Planets in Stellar Multiple Systems
    Astronomy & Astrophysics manuscript no. exoplanets˙binaries˙final˙rn © ESO 2012 April 24, 2012 Extrasolar planets in stellar multiple systems T. Roell1, R. Neuh¨auser1, A. Seifahrt1,2,3, and M. Mugrauer1 1 Astrophysical Institute and University Observatory Jena, Schillerg¨aßchen 2, 07745 Jena, Germany e-mail: [email protected] 2 Physics Department, University of California, Davis, CA 95616, USA 3 Department of Astronomy and Astrophysics, University of Chicago, IL 60637, USA Received ...; accepted ... ABSTRACT Aims. Analyzing exoplanets detected by radial velocity (RV) or transit observations, we determine the multiplicity of exoplanet host stars in order to study the influence of a stellar companion on the properties of planet candidates. Methods. Matching the host stars of exoplanet candidates detected by radial velocity or transit observations with online multiplicity catalogs in addition to a literature search, 57 exoplanet host stars are identified having a stellar companion. Results. The resulting multiplicity rate of at least 12 % for exoplanet host stars is about four times smaller than the multiplicity of solar like stars in general. The mass and the number of planets in stellar multiple systems depend on the separation between their host star and its nearest stellar companion, e.g. the planetary mass decreases with an increasing stellar separation. We present an updated overview of exoplanet candidates in stellar multiple systems, including 15 new systems (compared to the latest summary from 2009). Key words. extrasolar planets – stellar multiple systems – planet formation 1. Introduction in Mugrauer & Neuh¨auser (2009), these studies found 44 stel- lar companions around stars previously not known to be mul- More than 700 extrasolar planet (exoplanet) candidates were dis- tiple, which results in a multiplicity rate of about 17 %, while covered so far (Schneider et al.
    [Show full text]