Holocene Sedimentation in a Blue Hole Surrounded by Carbonate Tidal flats in the Bahamas: Autogenic Versus Allogenic Processes T ⁎ Peter J
Marine Geology 419 (2020) 106051 Contents lists available at ScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Holocene sedimentation in a blue hole surrounded by carbonate tidal flats in The Bahamas: Autogenic versus allogenic processes T ⁎ Peter J. van Hengstuma,b, , Tyler S. Winklerb, Anne E. Tamalavageb, Richard M. Sullivanb, Shawna N. Littlec, Dana MacDonaldd,Jeffrey P. Donnellye, Nancy A. Alburyf a Department of Marine Science, Texas A&M University at Galveston, Galveston, TX 77554, USA b Department of Oceanography, Texas A&M University, College Station, TX 77843, USA c Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77554, USA d Department of Geosciences, University of Massachusetts-Amherst, Amherst, MA 01003, USA e Coastal Systems Group, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA f National Museum of The Bahamas, PO Box EE-15082, Nassau, the Bahamas ARTICLE INFO ABSTRACT Editor: Edward Anthony The sediment in North Atlantic blue holes preserves paleoclimate records. However, accurate paleoclimate re- Keywords: constructions require an improved understanding of allogenic versus autogenic processes controlling blue hole Sinkhole sedimentation. Here we provide a detailed case study of the Holocene stratigraphy within Freshwater River Blue Carbonates Hole, which is currently surrounded by carbonate tidal flats in the northern Bahamas (Abaco Island). During the Carbonate tidal flats Holocene, concomitant coastal aquifer elevation and relative sea-level rise controlled internal blue hole de- North Atlantic positional environments. The general Holocene facies succession observed is: (i) basal detrital and freshwater Bahamas peat, (ii) palustrine to lacustrine marl, (iii) algal sapropel, and finally (iv) bedded carbonate mud.
[Show full text]