A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case

Total Page:16

File Type:pdf, Size:1020Kb

A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case sustainability Review A Systemic View on Circular Economy in the Water Industry: Learnings from a Belgian and Dutch Case Tanaka Mandy Mbavarira * and Christine Grimm Institute for Innovation and Technology Management, Lucerne University of Applied Sciences & Arts, 6048 Horw, Switzerland; [email protected] * Correspondence: [email protected] Abstract: Water is fundamental to our existence and has increasingly been put under pressure by soaring population growth, urbanization, agricultural farming and climate change; all, of which impact the quantity and quality of our water resources. Water utilities (WUs) are challenged to provide clean, safe drinking water when faced with aging, costly infrastructure, a price of water that is not reflective of its true value and the need for infrastructure to remain resilient in a time when threats of floods and droughts are pervasive. In the linear take-use-discharge approach, wastewater is treated only to be returned to waterways and extracted again for treatment before drinking. This can no longer sustain our water resources as it is costly, energy-intensive and environmentally unsound. Circular economy (CE) has been gaining attention in the water industry to tackle this. It follows the 6Rs strategy of reduce, reuse, recycle, reclaim, recover and restore to keep water in circulation for longer and reduce the burden on natural systems. The aim of this study is to determine what the economic and operational system effects of CE are on WUs, informing them of CE’s potential to change their business operations and business model while highlighting its associated challenges. Based on a review of literature, input from expert interviews (Q4 2019) and case studies, an economic view of the urban water system is qualitatively modeled, on top, of which a circular water economy Citation: Mbavarira, T.M.; Grimm, C. system is designed using a causal loop-diagramming system mapping tool. Digitalization, water A Systemic View on Circular reuse and resource recovery were determined to underpin circularity in water, providing operational Economy in the Water Industry: benefits through efficiencies and diversification of revenue streams. However, issues of investment Learnings from a Belgian and Dutch and a missing enabling legal framework are slowing the rate of uptake. On this basis, CE represents Case. Sustainability 2021, 13, 3313. both a challenge and an opportunity for the water industry. https://doi.org/10.3390/su13063313 Keywords: circular economy; water; wastewater; causal loop diagram Academic Editor: Mariusz Sojka Received: 21 December 2020 Accepted: 28 February 2021 1. Introduction Published: 17 March 2021 As a basic human right and public good fundamental to life, the importance of water Publisher’s Note: MDPI stays neutral cannot be overstated. Water underpins all drivers of growth—be it agricultural production, with regard to jurisdictional claims in energy generation, industry or manufacturing. Its roots in social, environmental and published maps and institutional affil- economic dimensions anchor it at the core of sustainable development. When not well iations. managed, competing interests for water has the potential to cause wars and leave sectors economically vulnerable, especially those that provide basic services. Water scarcity has been detrimental to crop yields and quality; and has threatened thermal power station output due to insufficient water for cooling [1]. The global thirst for water has been exacerbated by the compounding effects of population growth; increased agricultural Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. activity; urbanization, which has seen 75% of Europe’s population living in cities and urban This article is an open access article areas; and erratic weather caused by climate change. The greenhouse gas effect of climate distributed under the terms and change has disrupted the hydrological cycle through elevated moisture, evaporation and conditions of the Creative Commons temperature, leading to melting snow, rising sea levels and an uneven distribution of Attribution (CC BY) license (https:// rainfall patterns [2,3]. The hydrological cycle is evidence that water is circular; however, creativecommons.org/licenses/by/ anthropogenic activities over the last hundred years have disrupted the circulation of the 4.0/). earth’s water stock [3]. Sustainability 2021, 13, 3313. https://doi.org/10.3390/su13063313 https://www.mdpi.com/journal/sustainability Sustainability 2021, 13, 3313 2 of 62 1.1. Background The World Economic Forum (WEF) has consistently highlighted water as a global crisis, ranking it the fourth greatest risk by impact and the ninth greatest risk by likelihood in 2019 [4]. Prior to this, in 2015, the United Nations (UN) drew much attention to water in its sustainable development goals (SDG) with SDG 6: clean water and sanitation. The SDG 6 is concerned with improving water quality and water-use efficiency, as well as integrating water resources management. Agriculture accounts for roughly three-quarters of global freshwater withdrawals, and agriculture-related nutrients are polluting watersheds. Additional pressure on our renewable freshwater resources (groundwater, rivers, lakes and reservoirs.) stem from energy production and mass tourism, which consume 15% and 9% of resources, respectively, while water leakages can contribute up to 60% of distributed water loss [5]; representing gross operational inefficiencies and potential for savings. Water demand across Europe is unevenly distributed [6]. The European Environment Agency (EEA) estimates that around one-third of the European Union (EU) territory is exposed to water-stressed (1000–1700 m3/year per capita of available water resources) conditions, either permanently or temporarily and not only limited to places like Portugal, Spain and Greece but also in more Northern countries, such as Germany, the United King- dom and Belgium. The decreasing trends in water abstraction observable in Western and Northern Europe can be attributed to improvements in water efficiency and management of water supplies yielding a 19% decrease between 1990 and 2017 [6]. In order to continue the decrease in water withdrawal levels required to level out pressures on water reserves, circular economy (CE) offers a path in reshaping how water systems operate. The conventional linear take-make-dispose approach for materials is mirrored in the water sector as take-use-discharge. This linear approach, which is prevalent in the majority of water basins today, is short-sighted and inherently unsustainable given today’s climate. The concept of CE was first introduced by Pearce and Turner in 1990 [7] and developed further in 2010 in various sectors by the Ellen MacArthur Foundation. The principles of CE are founded on designing out waste and pollution, where today’s waste becomes tomorrow’s resources that yield economic, social and environmental benefits [8]. It follows the 6Rs strategy: reduce, reuse, recycle, reclaim, recover and restore, which keeps water in circulation for longer to reduce the burden on natural systems and encourage regeneration. The goal of CE is to decouple economic growth from negative externalities on environmental systems and resource use [9]. The aim of the study is to investigate the economic, environmental and operational effects of a CE on WUs by systematically mapping out cause and effect relations in a qualitative model. The model provides an economic view of an urban water system. The urban water system (UWS) is subsequently augmented with circular economic practices to create a successive model—a circular water economy system (CWES). By drawing on literature, case studies and conducting qualitative research to gain insight into expert views on the water industry and the role that CE can play in it, the paper sets out to demonstrate the effects of CE on water quantity, water quality, and operational practices of WUs. This study supports WUs by informing them of CE’s potential to change their business operations and business model while highlighting its associated challenges. 1.2. Context and System Boundary The system boundary is set in the context of a European urban water system. Cities are homes to many of the challenges faced by WUs, such as surface water pollution and flooding caused by built-up concrete areas as well as poor drainage, providing great opportunities for cities to meet their sustainable goals. Figure1 presents a simplified view of the components of a municipal water system, which are more complex in reality with more connections and interfaces with other systems. However, it sufficiently highlights the interfaces and industries incorporated in the model- ing and therewith the system boundary. Combined sewer overflowing (CSO), specified in Sustainability 2021, 13, x FOR PEER REVIEW 3 of 62 flooding caused by built-up concrete areas as well as poor drainage, providing great op- portunities for cities to meet their sustainable goals. Figure 1 presents a simplified view of the components of a municipal water system, Sustainability 2021, 13, 3313 which are more complex in reality with more connections and interfaces with other3 ofsys- 62 tems. However, it sufficiently highlights the interfaces and industries incorporated in the modeling and therewith the system boundary. Combined sewer overflowing (CSO), spec- ified in Figure 1, is the legacy infrastructure that is essentially a discharge pipe that re- Figureleases 1both, is the stormwater legacy infrastructure
Recommended publications
  • Water Workforce Renewing
    RENEWING THE WATER WORKFORCE Improving water infrastructure and creating a pipeline to opportunity JOSEPH KANE AND ADIE TOMER, JUNE 2018 BROOKINGS METROPOLITAN POLICY PROGRAM 2 TABLE OF CONTENTS Summary 4 Introduction 6 Background 8 Methodology 12 Findings 15 Implications 34 Recommendations 39 Conclusion 50 Appendix A: Water Workforce methodology 60 RENEWING THE WATER WORKFORCE 3 SUMMARY s the U.S. economy continues to grow, many communities are struggling to translate this growth into more equitable and inclusive employment opportunities. Simultaneously, many of the Anation’s water infrastructure assets are in urgent need of repair, maintenance, and restoration. Yet the workers capable of carrying out these efforts are in short supply due to an aging workforce eligible for retirement and the lack of a pipeline for new talent. However, addressing these two challenges operating, and governing U.S. water together offers an enormous infrastructure and infrastructure, spanning a variety of economic opportunity. Constructing, operating, industries and regions. Water utilities employ designing, and governing water infrastructure many workers, but multiple other industries systems demands a skilled workforce, and and establishments, including engineering firms hiring a diverse workforce can support greater and construction contractors, are essential to economic mobility. To unlock this opportunity, the water sector too. Collectively, the water local, state, and national leaders must work workforce fills 212 different occupations—from together to better understand current workforce positions in the skilled trades like electricians challenges and develop new techniques to hire, and technicians to financial, administrative, train, and retain water workers. and management positions—that are found everywhere, from big metropolitan markets to By analyzing occupational employment data, smaller rural areas.
    [Show full text]
  • BEYOND the STATUS QUO: 2015 EQB Water Policy Report
    BEYOND THE STATUS QUO: 2015 EQB Water Policy Report LAKE ST. CROIX TABLE OF CONTENTS Introduction . 4 Health Equity and Water. 5 GOAL #1: Manage Water Resources to Meet Increasing Demands . .6 GOAL #2: Manage Our Built Environment to Protect Water . 14 GOAL #3: Increase and Maintain Living Cover Across Watersheds .. 20 GOAL #4: Ensure We Are Resilient to Extreme Rainfall . .28 Legislative Charge The Environmental Quality Board is mandated to produce a five year water Contaminants of Emerging Concern . .34 policy report pursuant to Minnesota Statutes, sections 103A .204 and 103A .43 . Minnesota’s Water Technology Industry . 36 This report was prepared by the Environmental Quality Board with the Board More Information . .43 of Water and Soil Resources, Department of Agriculture, Department of Employment and Economic Development, Department of Health, Department Appendices available online: of Natural Resources, Department of Transportation, Metropolitan Council, • 2015 Groundwater Monitoring Status Report and Pollution Control Agency . • Five-Year Assessment of Water Quality Degradation Trends and Prevention Efforts Edited by Mary Hoff • Minnesota’s Water Industry Economic Profile Graphic Design by Paula Bohte • The Agricultural BMP Handbook for Minnesota The total cost of preparing this report was $76,000 • Water Availability Assessment Report 2 Beyond the Status Quo: 2015 EQB Water Policy Report Minnesota is home to more than 10,000 lakes, 100,000 miles of rivers and streams, and abundant groundwater resources. However, many of these waters are not clean enough. In 2015, we took a major step toward improving our water by enacting a law that protects water quality by requiring buffers on more than 100,000 acres of land adjacent to water.
    [Show full text]
  • Municipal and Industrial Water Supply ! I
    APPENDIXES TO THE MAIN REPORT LOWER COLORADO RIDlON APPENDIX I- HISTORY OF STUDY APPENDIX II - THE HEGION APPENDIX III - LEGAL AND INSTITUTIONAL ENVIRONMENT APPENDIX IV - ECONOMIC BASE AND PROJECTIONS APPENDIX V- WATER RESOURCES APPENDIX VI - LAND RESOURCES AND USE APPENDIX VII - MINERAL RESOURCES APPENDIX VIII - WATERSHED MANAGEMENT APPENDIX IX - FLOOD CONTROL APPENDIX X- IRRIGATION AND DRAINAGE APPENDIX XI - MUNICIPAL AND INDUSTRIAL WATER APPENDIX XII - RECREATION APPENDIX XIII - FISH AND WILDLIFE APPENDIX XIV - ELECTRIC POWER APPENDIX XV - WATER QUALITY, POLLUTION CONTROL, AND HEALTH FACTORS APPENDIX XVI - SHORELINE PROTECTION AND DEVELOPMENT (NOT APPLICABLE) APPENDIX XVII - NAVIGATION (NOT APPLICABLE) APPENDIX XVIII - GENERAL PROGRAM AND ALTERNATIVES IIII/iliIII/lllillllIIII1I111IIIII1II11II!IIIII LCR[)1855 LOWER COLORADO REGION COMPREHENSIVE FRAMEWORK STUDY APPENDIX XI MUNICIPAL AND INDUSTRIAL WATER SUPPLY ! I This report of the Lower Colorado Region Framework Study State­ Federal Interagency Group was prepared at field-level and presents the water and related land resources of the Lower Colorado Region. This report is subject to review by the interested Federal agencies at the departmental level, by the Governors of the affected States, and by the Water Resources Council prior to its transmittal to the Congress for its consideration. JUNE 1971 --"---- INDEX MAP EXPLANATION ---- Lower Colorado Region boundary --- Subregion boundary CD Lower Moin Stem o Little Colorado ® Gila .. ... .... Lower Colorado Basin boundary ~ Existing dam o"d reservoir 18:&'41 Existing dam o"d Intermittent lake COMPREHENSIVE FRAMEWORK STUDY LOWER COLORADO REGION - HYDROLOGIC GENERAL LOCATION MAP MAP NO. 1019-314-45 " SCALE· OF MILES " This appendix prepared by the MUNICIPAL AND INDUSTRIAL WATER SUPPLY WORKGROUP of the LOWER COLORADO REGION STATE-FEDERAL INTERAGENCY GROUP for the PACIFIC SOUTHWEST INTERAGENCY COMMITTEE WATER RESOURCES COUNCIL Workgroup Members Robert H.
    [Show full text]
  • Creating a Water and Wastewater Educational Program with Incorporated Experiential Training
    AC 2012-5150: CREATING A WATER AND WASTEWATER EDUCATIONAL PROGRAM WITH INCORPORATED EXPERIENTIAL TRAINING Mr. Joseph Lee Gutenson, Western Kentucky University Joseph Gutenson is an Environmental Support Specialist with the Center for Water Resource Studies at Western Kentucky University. During his brief professional career he has participated in the construction of TMDL reports for the Panther Creek and Long Falls Creek Watersheds and site reconnaissance for the Bacon Creek TMDL. He has also participated in research related to the water industries workforce and serves as a presence for the Water Training Institute’s recruitment efforts. His present work includes aiding in the creation of a software packaged, created with funding from the Department of Homeland Security (DHS), that will assist drinking water utilities in decontaminating there system after a natural or intentional contamination event. He graduated in December of 2010, magna cum laude, from Western Kentucky University with a degree in Geography, with an emphasis in Sustainable Development and a minor in Economics. Joseph is currently taking graduate coursework at Western Kentucky University. Ms. Jana Fattic, Western Kentucky University Dr. Andrew N.S. Ernest, Western Kentucky University c American Society for Engineering Education, 2012 Creating a Water and Wastewater Educational Program with Incorporated Experiential Training Abstract The EPA requires in the Final Guidelines for the Certification and Recertification of the Operators of Community and Nontransient Noncommunity Public Water Systems Notice (1999) that states and US territories establish some sort of experiential or on-the-job training requirement for incumbent water or wastewater operators before they can legally become licensed professionals.
    [Show full text]
  • Higher Education in the Water Sector: a Global Overview
    UNU-INWEH REPORT SERIES 07 Higher Education in the Water Sector: A Global Overview Colin Mayfield www.inweh.unu.edu About UNU-INWEH UNU-INWEH’s mission is to help resolve pressing water challenges that are of concern to the United Nations, its Member States, and their people, through critical analysis and synthesis of existing bodies of scientific discovery; targeted research that identifies emerging policy issues; application of on-the-ground scalable science-based solutions to water issues; and global outreach. UNU-INWEH carries out its work in cooperation with the network of other research institutions, international organisations and individual scholars throughout the world. UNU-INWEH is an integral part of the United Nations University (UNU) – an academic arm of the UN, which includes 13 institutes and programmes located in 12 countries around the world, and dealing with various issues of development. UNU-INWEH was established, as a public service agency and a subsidiary body of the UNU, in 1996. Its operations are secured through long-term host-country and core-funding agreements with the Government of Canada. The Institute is located in Hamilton, Canada, and its facilities are supported by McMaster University. About UNU-INWEH Report Series UNU-INWEH Reports normally address global water issues, gaps and challenges, and range from original research on specific subject to synthesis or critical review and analysis of a problem of global nature and significance. Reports are published by UNU-INWEH staff, in collaboration with partners, as / when applicable. Each report is internally and externally peer-reviewed. UNU-INWEH Reports are an open access publication series, available from the Institute’s web site and in hard copies.
    [Show full text]
  • STATE of the WATER INDUSTRY REPORT 2016 State of the Water Industry Report
    2016 Ideal crop marks AWWA STATE OF THE WATER INDUSTRY REPORT 2016 State of the Water Industry Report Established in 1881, the American Water Works Association is the largest nonprofit, scientific, and educational association dedicated to providing solutions to manage the world’s most important resource – water. With over 50,000 members and 5,000 volunteers, AWWA provides solutions to improve public health, protect the environment, strengthen the economy, and enhance our quality of life. Contents EXECUTIVE SUMMARY .......................................................................................................................................... 2 PART 1 –PURPOSE AND METHODOLOGY ........................................................................................................ 4 Purpose .................................................................................................................................................................... 4 Methodology ........................................................................................................................................................... 5 PART 2 - STATE OF THE WATER INDUSTRY ................................................................................................... 11 Background ........................................................................................................................................................... 11 State of the Water Industry ................................................................................................................................
    [Show full text]
  • Innovations for Water and Development
    UNESCO-IHE Institute for Water Education is the largest international graduate water education facility in the world and it is based in Delft, the Netherlands. The Institute confers fully accredited MSc degrees, and PhD degrees in collaboration with partners. Over 14,500 water professionals from more than 160 mainly developing countries and countries in transition have been educated at the Institute. The mission of UNESCO-IHE is to contribute to the education and training of professionals, to expand the knowledge base through research and to build the capacity of sector organizations, knowledge centres and other institutions active in the Innovations fields of water, the environment and infrastructure in developing countries and countries in transition. for Water and ISBN 978-1-56581-231-4 Development 52250 9 781565 812314 UNESCO-IHE envisions a world in which people manage their water and environmental resources in a sustainable manner, and in which all sectors of society, particularly the poor, can enjoy the benefits of basic services. Realizing that present and future water- related problems require out of the box thinking, business as unusual approaches, changes of paradigms, and inventive and unconventional solutions leading to the translation of inventions into innovative products, services, processes and new activities that are introduced to the real world, UNESCO-IHE is increasingly committed to innovations concerning all three pillars of its operations, namely, research, education and capacity development. Our innovations are often of a technological nature, but their adoption also has social, economic, environmental, governance, institutional and political dimensions. Research- based innovations originate from the six research themes of UNESCO-IHE that are well aligned with relevant international and national science programmes.
    [Show full text]
  • Energy-Water Nexus: the Water Sector's Energy
    Energy-Water Nexus: The Water Sector’s Energy Use Claudia Copeland Specialist in Resources and Environmental Policy Nicole T. Carter Acting Section Research Manager January 24, 2017 Congressional Research Service 7-5700 www.crs.gov R43200 Energy-Water Nexus: The Water Sector’s Energy Use Summary Water and energy are resources that are reciprocally and mutually linked, because meeting energy needs requires water, often in large quantities, for mining, fuel production, hydropower, and power plant cooling, and energy is needed for pumping, treatment, and distribution of water and for collection, treatment, and discharge of wastewater. This interrelationship is often referred to as the energy-water nexus, or the water-energy nexus. There is growing recognition that “saving water saves energy.” Energy efficiency initiatives offer opportunities for delivering significant water savings, and likewise, water efficiency initiatives offer opportunities for delivering significant energy savings. In addition, saving water also reduces carbon emissions by saving energy otherwise generated to move and treat water. This report provides background on energy for facilities that treat and deliver water to end users and also dispose of and discharge wastewater. Energy use for water is a function of many variables, including water source (surface water pumping typically requires less energy than groundwater pumping), treatment (high ambient quality raw water requires less treatment than brackish or seawater), intended end-use, distribution (water pumped long distances requires more energy), amount of water loss in the system through leakage and evaporation, and level of wastewater treatment (stringency of water quality regulations to meet discharge standards). Likewise, the intensity of energy use of water, which is the relative amount of energy needed for a task such as pumping water, varies depending on characteristics such as topography (affecting groundwater recharge), climate, seasonal temperature, and rainfall.
    [Show full text]
  • America's Water Sector Workforce Initiative: a Call to Action
    America’s Water Sector Workforce Initiative: A Call to Action The water sector workforce is the front line of public health and environmental protection and is vital to sustaining our critical water infrastructure investments. Working with federal agencies and state, local, and tribal partners, we will take actions that encourage innovative workforce practices at water systems, highlight the value water protection specialists provide every day, and help make water a career of choice through education and sustained public outreach. — Andrew Wheeler, Administrator, U.S. EPA, October 2020 CONTENTS Foreword .......................................................................................................................................................1 Introduction ..................................................................................................................................................2 1: Provide Federal Leadership to Create National Momentum and Coordinate Efforts .....................................8 1.1 A History of Successful Collaborations Within the Federal Government ..........................................................8 1.2 Federal Agency Collaboration to Support the Water Workforce ......................................................................8 2: Partner to Build the Water Workforce of the Future .................................................................................. 16 2.1 EPA’s Workforce Collaboration with Associations and Utilities ....................................................................
    [Show full text]
  • Promoting Entry to Career Pathways in the Drinking Water and Wastewater Sector
    Promoting Entry to Career Pathways in the Drinking Water and Wastewater Sector A Report by Madeline Snow Lowell Center for Sustainable Production Lowell Center for Sustainable Production University of Massachusetts Lowell University of Massachusetts Lowell and The Massachusetts Workforce Alliance Deborah Mutschler Massachusetts Workforce Alliance M A y 2012 Funded by: “Maintaining a well-trained, high caliber workforce is essential but no small challenge in the era of tight budgets, increasingly sophisticated facilities, under-appreciation of the industry and profession, and graying of staff.” —New England Interstate Water Pollution Control Commission, special edition, Keeping the Plants in Good Hands, Interstate Water Report, January 2005 “Everyone’s time and resources are limited, but if each of us “does our part” in our professional spheres of influence, we can recruit, develop and retain a competent, motivated, professional workforce to ensure a bright future for the drinking water and wastewater professions.” —Chip Mackey, New Hampshire Department of Environmental Services, former Chair of NEWWA’s Operator Certification Committee, and Incoming President of the Association of Boards of Certification SkillWorks Program Officer Patricia Maguire Authors Madeline Snow Lowell Center for Sustainable Production, University of Massachusetts Lowell [email protected] Deborah Mutschler Massachusetts Workforce Alliance [email protected] Table of Contents Executive Summary 1 I. Introduction 2 II. Overview of Issues 3 Aging Infrastructure
    [Show full text]
  • PRODUCTIVITY IMPROVEMENT in the WATER and SEWERAGE INDUSTRY in ENGLAND SINCE PRIVATISATION Final Report for Water UK 29 September 2017
    PRODUCTIVITY IMPROVEMENT IN THE WATER AND SEWERAGE INDUSTRY IN ENGLAND SINCE PRIVATISATION Final Report for Water UK 29 September 2017 Janet Wright Mike Huggins janet.wright@frontier -economics.com mike.huggins@frontier -economics.com Frontier Economics Ltd is a member of the Frontier Economics network, which consists of two separate companies based in Europe (Frontier Economics Ltd, with offices in Brussels, Cologne, Dublin, London & Madrid) and Australia (Frontier Economics Pty Ltd, with offices in Melbourne & Sydney). Both companies are independently owned, and legal commitments entered into by one company do not impose any obligations on the other company in the network. All views expressed in this document are the views of Frontier Economics Ltd. PRODUCTIVITY IMPROVEMENT IN THE WATER AND SEWERAGE INDUSTRY IN ENGLAND SINCE PRIVATISATION CONTENTS 1 Introduction 1 1.1 What is productivity 1 1.2 Summary of results 2 1.3 Structure of the report 4 2 TFP growth analysis of the water and sewerage industry in England since privatisation 6 2.1 Measurement of outputs and inputs 6 2.2 Technique 8 2.3 Measurement of quality of service 11 2.4 Results 22 3 TFP growth analysis of comparator sectors 27 3.1 Relevant comparator sectors 28 3.2 Comparison of water and sewerage TFP growth with selected sectors in the EU KLEMS 28 3.3 Inferences from evidence on comparator sectors 32 3.4 Conclusions from evidence on comparator sectors 34 4 Literature review summary 35 4.1 Summary of literature review 36 5 Alternative approaches and next steps 38 5.1 Overview
    [Show full text]
  • The Water Industry As World Heritage Thematic Study
    The Water Industry as World Heritage THEMATIC STUDY James Douet for TICCIH The International Committee for the Conservation of the Industrial Heritage The Water Industry as World Heritage THEMATIC STUDY James Douet TICCIH - The International Committee for the Conservation of the Industrial Heritage, is the international association for industrial archaeology and industrial heritage. Its aim is to study, protect, conserve and explain the remains of industrialisation. For further information and how to join see www.ticcih.org. An interactive digital edition of this report can be downloaded, with the other thematic studies, from the TICCIH website. Frontispiece: R. C. Harris filtration plant, Toronto, Canada (© Taylor Hazell Architects) TICCIH gratefully acknowledge the support received from the European Commission for the publication of this book. Text copyright © James Douet 2018 All rights reserved CONTENTS EXECUTIVE SUMMARY 7 1. Context 9 2. Introduction 12 2.1 Scope 12 2.2 Chronology 13 2.3 Comparative studies 14 2.4 The water industry on the World Heritage List 15 2.5 Collaboration 16 3. Terminology 18 4. Historical development of water infrastructure 23 4.1. Ancient and Classical supply systems 23 4.2. Early modern water provision 1500–1800 26 4.3. Industrialization 1800–80 36 4.4. Water and sewage combined 1880–1920 53 4.5. Modern water systems since 1920 56 5. Areas and values of significance 59 6. The water industry as World Heritage 61 7. UNESCO evaluation criteria relevant to the water industry 66 8. Case studies: sites and networks for comparison 70 8.1. Augsburg hydraulic engineering, hydropower and drinking water, Germany 72 8.2.
    [Show full text]