Trend in Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bringing Reusable Packaging Systems to Life Lessons Learned from Testing Reusable Cups Table of Contents
Bringing Reusable Packaging Systems to Life Lessons Learned from Testing Reusable Cups Table of Contents Introduction SECTION 1 SECTION 4 Setting the Scene Experimentation in Action — Lessons Learned — Reuse Model Insights Piloting Innovative Reusable Top Insights for Reuse How It Works Cup Systems Models SECTION 2 SECTION 5 The Journey of a Reusable What’s Next? — Building the Cup — A Multi-Stage Journey Future for Reuse Models Customer Awareness Sign-up Point-of-Sale SECTION 6 Drink Preparation Point-of-Handoff Appendix Point-of-Return Terms to Know Washing & Sanitizing Citations Pick-up & Delivery Acknowledgements B L E Inventory A T O F SECTION 3 Bringing Reusable Packaging C Systems to Life – Critical O Inputs & Considerations for N Scale S T T Engage Diverse Stakeholders E N Make Sustainable Material Choices Select the Perfect Spot Choose the Right Payment Model Optimize Health & Safety Protocols Measure Impact and Success Bringing Reusable Packaging Systems to Life 2 Dear Reader, If you visualize the current journey of most products and packaging in our economy, including the single-use cup, it looks like a straight line that starts with extracting finite raw materials and ends at the landfill. fter decades of relying on this food, are accelerating the growth of reuse The key to success for reuse models is seemingly convenient linear models. Over the last few years, we’ve seen continually testing, honing and refining them. Asystem, its long hidden costs in innovative companies explore and harness And assessing the environmental impact of terms of economic and environmental groundbreaking reusable packaging and reusable packaging is paramount during this consequences have become clear, bringing refill models, such as Algramo piloting phase of experimentation — we must ensure we us to a tipping point that necessitates a their “smart dispensing” reuse model with don’t introduce new unintended consequences better way forward — one that considers companies like Nestlé and Unilever, among when replacing one system with another. -
STATE of CONNECTICUT Prev
CONTRACT SUPPLEMENT CONTRACT AWARD NO.: SP‐37 Rev. 10/15/13 STATE OF CONNECTICUT Prev. Rev. 7/19/13 12PSX0259 DEPARTMENT OF ADMINISTRATIVE SERVICES Contract Award Date: Ada Rivera PROCUREMENT DIVISION th Contract Specialist 165 Capitol Avenue, 5 Floor South 29 November 2012 Bid Due Date: 860‐713‐5048 HARTFORD, CT 06106‐1659 Telephone Number 8 November 2012 SUPPLEMENT DATE: 26 November 2013 CONTRACT AWARD SUPPLEMENT #2 IMPORTANT: THIS IS NOT A PURCHASE ORDER. DO NOT PRODUCE OR SHIP WITHOUT AN AGENCY PURCHASE ORDER. DESCRIPTION: Food Service Supplies FOR: All Using State Agencies, Political Sub‐Divisions and TERM OF CONTRACT / DELIVERY DATE REQUIRED: Qualified Non‐For‐Profit Organizations December 1, 2012 through November 30, 2015 AGENCY REQUISITION NUMBER: 0000001014 CHANGE TO IN STATE (NON‐SB) CHANGE TO DAS‐CERTIFIED SMALL CHANGE TO OUT OF STATE CHANGE TO TOTAL CONTRACT CONTRACT VALUE BUSINESS CONTRACT VALUE CONTRACT VALUE AWARD VALUE NOTICE TO CONTRACTORS: This notice is not an order to ship. Purchase Orders against contracts will be furnished by the using agency or agencies on whose behalf the contract is made. INVOICE SHALL BE RENDERED DIRECT TO THE ORDERING AGENCY. NOTE: Dollar amounts listed next to each contractor are possible award amounts, however, they do not reflect any expected purchase amounts (actual or implied). They are for CHRO use only. NOTICE TO AGENCIES: A complete explanatory report shall be furnished promptly to the Procurement Manager concerning items delivered and/or services rendered on orders placed against awards listed herein which are found not to comply with the specifications or which are otherwise unsatisfactory from the agency’s viewpoint, as well as failure of the contractor to deliver within a reasonable period of time specified. -
(Plastic Cup) Using Micrococcus Luteus and Masoniella Sp Sivasankari
Scholars Academic Journal of Biosciences (SAJB) ISSN 2321-6883 (Online) Sch. Acad. J. Biosci., 2014; 2(2): 85-89 ISSN 2347-9515 (Print) ©Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources) www.saspublisher.com Research Article In Vitro Degradation of Plastics (Plastic Cup) Using Micrococcus Luteus and Masoniella Sp Sivasankari. S* , Vinotha. T Department Of Microbiology, Shri Mathi Indira Gandhi College, Tirchirappalli, Tamil Nadu -620002, India *Corresponding author S. Sivasankari Email: Abstract: Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). Present paper investigates the possibility of plastic degradation by microbes isolated from forest soil. The invitro degradation was studied by litter bag experiment by taking 1 g of each plastic and buried under forest soil at a depth of 15 cm from the surface during the month of September to February, 2010. An in-vitro experiment was started after collecting the plastic samples from the litter bag experiment and the microbes were isolated from the surface of the plastic. Then the isolated microbes inoculated in the nutrient agar. Result showed that no variety of plastic comfortable degraded under burial condition during 45 days. -
The Chemical Story Behind Non- Petroleum-Based Plastics
THE CHEMICAL STORY BEHIND NON- PETROLEUM-BASED PLASTICS Every year, millions of tons of plastic are discarded into landfills, where they will take hundreds of years to break down. New biodegradable plastics offer a potential solution to this problem. image source Let’s back up and talk about “traditional” plastics first. In addition to being landfilled, some plastic is disposed of improperly, leading to plastic pollution on land and in lakes and oceans where they persist. Once in the environment, animals can accidentally eat the plastic but are incapable of digesting it, so the plastic just sits in their stomachs. Over time, the plastic can block off their digestive system, and the animal will starve. Luckily, there are plastics that are designed to break down rapidly upon disposal. These types of plastics are known as biodegradable plastics, meaning that organisms can decompose the plastic in the environment. When biodegradable plastics are decomposed, they are converted to chemicals found in nature, often carbon dioxide and water. The organisms that carry out the decomposition are generally microorganisms like bacteria. Instead of hundreds of years, most biodegradable plastics take only a few months to decompose after they’ve been thrown away. Many of the biodegradable plastics produced today can be made from renewable resources. I’m going to talk about a few different biodegradable plastics in use today. A biodegradable plastic that is heavily used today is called polylactic acid, or PLA, for short. Polylactic acid is most often made from corn. It has a variety of uses, the most notable being for plastic cups, but it can also be used for compost bags, disposable tableware, and in upholstery. -
Food Service Disposable
DISTRIBUTION LIST Job Name USSIV00086389 2018 Facility Solutions Cat ◊ Pricing File Name USSIV00086389_P3_CARTON UNPRICED_F0550_C0551 P3 Proof Date January 5, 2018 3:05 PM PAGE CONTROL CARTON Page Info BLEED +0p9 TRIM 7.9375 × 10.375 550 0551 UNPRICED SUBCATEGORY_2 PAPER CUPS & LIDS CUPS & LIDS CUTLERY DINNERWARE NAPKINS & DISPENSERS PARTY SUPPLIES FOOD STORAGE & CONTAINERS FOOD WRAP PAPER & BAGS CLEANING & SANITIZING CUPS 18-FA-CU-RNU 18-FA-CU-RNU FOODSERVICE DISPOSABLES 550 CAN’T FIND WHAT YOU NEED? CALL & LET US HELP. ••• DISTRIBUTION LIST Job Name USSIV00086389 2018 Facility Solutions Cat ◊ Pricing File Name USSIV00086389_P3_CARTON UNPRICED_F0551_C0552 P3 Proof Date January 5, 2018 3:08 PM PAGE CONTROL CARTON Page Info BLEED +0p9 TRIM 7.9375 × 10.375 551 0552 UNPRICED SUBCATEGORY_2 BUYING GUIDE GLOVES FOR FOODSERVICE See pages 314-317, 608 for our selection of foodservice gloves. Use our Feature Key to find gloves that help you maintain safety and hygiene standards. 1 Thin 5 High Dexterity 2 Medium Thickness 6 Powdered for Easy On/Off 3 Thick 7 Embossed/Textured Grip 4 High Protection/Tear Strength 8 Fits Either Hand Latex Synthetic No. Features How to Order No. Features How to Order BWK 355SBX 2 5 6 8 See p. 316 BWK 315SBX 3 7 8 See p. 317 BWK 355MBX 2 5 6 8 See p. 316 BWK 315MBX 3 7 8 See p. 317 BWK 355LBX 2 5 6 8 See p. 316 BWK 315LBX 3 7 8 See p. 317 BWK 345MBX 2 5 8 See p. 316 BWK 315XLBX 3 7 8 See p. 317 BWK 345LBX 2 5 8 See p. -
LYDIA ZEPEDA E-Mail: [email protected]
LYDIA ZEPEDA http://www.localandorganicfood.org e-mail: [email protected] I. EXPERIENCE Fulbright Senior Scholar in Economics, Universidad Autónoma de Madrid January-May 2018 Professor Emerita, University of Wisconsin-Madison Nov 2017-present Faculty affiliate, Gaylord Nelson Institute for Environmental Studies 1999-2020 Professor, University of Wisconsin-Madison, Department of Consumer Science July 2001-Nov 2017 Retired December 1, 2017 (Sabbaticals: academic years 2010-11, 2003-04) Faculty affiliate, Center for European Studies 2014-2017 Faculty affiliate, Department of Urban and Regional Planning 2013-2015 Faculty affiliate, Development Studies 1999-2017 Faculty affiliate, Gender and Women’s Studies 2011-2017 Faculty affiliate, Latin American, Caribbean, and Iberian Studies Program 1995-2017 Research affiliate, Community and Regional Food Systems Project 2012-2017 Chair, Development Studies PhD, University of Wisconsin-Madison May 2002-August 2003 Director, Center for Integrated Agricultural Systems January 2001-April 2002 University of Wisconsin-Madison Economist, United Nations Food and Agriculture Organization, Rome October 1996-December 1998 Agricultural Sector in Economic Development Service Associate Professor, University of Wisconsin-Madison (On leave October 1996-December 1998) Department of Consumer Science July 1995–June 2001 Fulbright Scholar and Visiting Researcher, University of Costa Rica August-December 1992 Assistant Professor, University of Wisconsin-Madison (On leave November 1991-December 1992) Department of Consumer Science February - June 1995 Department of Agricultural Economics November 1988 - June 1995 Revenue Planning Administrator, General Telephone of the Northwest October 1984-July 1986 Research and Teaching Assistant, University of California at Davis Academic years 1986-88 Department of Agricultural Economics and 1982-84 II. EDUCATION Ph.D. -
Infographic Research & Design by Steelysdrinkware.Com Cup Waste Data Sources >> Paper Cup Waste: U.S
THE DISPOSABLE CUP CRISIS Hello America. Did you know that more than 100 BILLION throw-away cups are sent to U.S. landfills each year? 100 That’s enough cup trash to circle the earth an astounding 1,744 times! BILLION © Steelys Drinkware 2013 © Steelys Drinkware 2013 Every time you use and toss a paper, plastic or styrofoam cup, it depletes resources, increases C02 emissions, escalates health risks, and adds to our global landfill crisis. CUPS When 315 million Americans repeat this behavior daily, it adds up to a real problem. BILLION BILLION TENS OF BILLIONS 58paper cups 25foam cups of single-use plastic cups trashed thrown away in the U.S. annually consumed in the U.S. annually at U.S. restaurants, cafes & events Polyethylene Terephthalate (PETE) 1 Mostly plastic-coated virgin paper Polystyrene (PS) 6 aka “Styrofoam” Polystyrene (PS) 6 & Polypropylene (PP) 5 Foam cups are made of In the U.S. airline 20Million industry alone almost trees are cut down to a non-biodegradable, make paper cups each year petroleum-based plastic 9 Billion Contains toxic chemicals that can Every four paper cups are responsible leach and threaten human health plastic cups are used anNually for creating 1 pound of co2 emissions and reproductive systems Foam litter hard to contain 12Billion and is a signifcant component gallons of water are used to of land and water pollution make a year’s worth of THE LARGEST of plastic, per person, per year CATEGORIES OF paper cups Can be fatal when consumed are trashed in the U.S., comprising PLASTIC WASTE up to 30% OF LANDFILL -
Cumulative Bio-Bibliography University of California, Santa Cruz June 2020
Cumulative Bio-Bibliography University of California, Santa Cruz June 2020 Puragra Guhathakurta Astronomer/Professor University of California Observatories/University of California, Santa Cruz ACADEMIC HISTORY 1980–1983 B.Sc. in Physics (Honours), Chemistry, and Mathematics, St. Xavier’s College, University of Calcutta 1984–1985 M.Sc. in Physics, University of Calcutta Science College; transferred to Princeton University after first year of two-year program 1985–1987 M.A. in Astrophysical Sciences, Princeton University 1987–1989 Ph.D. in Astrophysical Sciences, Princeton University POSITIONS HELD 1989–1992 Member, Institute for Advanced Study, School of Natural Sciences 1992–1994 Hubble Fellow, Astrophysical Sciences, Princeton University 1994 Assistant Astronomer, Space Telescope Science Institute (UPD) 1994–1998 Assistant Astronomer/Assistant Professor, UCO/Lick Observatory, University of California, Santa Cruz 1998–2002 Associate Astronomer/Associate Professor, UCO/Lick Observatory, University of California, Santa Cruz 2002–2003 Herzberg Fellow, Herzberg Institute of Astrophysics, National Research Council of Canada, Victoria, BC, Canada 2002– Astronomer/Professor, UCO/Lick Observatory, University of California, Santa Cruz 2009– Faculty Director, Science Internship Program, University of California, Santa Cruz 2012–2018 Adjunct Faculty, Science Department, Castilleja School, Palo Alto, CA 2015 Visiting Faculty, Google Headquarters, Mountain View, CA 2015– Co-founder, Global SPHERE (STEM Programs for High-schoolers Engaging in Research -
In Engineering Educa- Morrison
T H E trend I N EN G I N E E R I N G Fall 2004 Two Debts of Gratitude Lead to ME’s First Endowed Chair Two debts of gratitude, one dating to a three-month trek from northern China to Mao World War II and one to the 1960s, Zedong’s headquarters in Yenan, where a U.S. plane have culminated in a $2 million gift picked them up. Morrison had no way to pay back for Mechanical Engineering. The gift the guerillas for saving his life, so he decided that, honors James Morrison, somehow, he had to “pay back the a retired ME professor, human race.” through the generosity After the war he signed on as of Henry Schatz, CEO an instructor in UW Mechanical of General Plastics Engineering while earning his masters Manufacturing Co. degree. He discovered a talent and in Tacoma. The gift love for teaching and won accolades includes $1 million to from students. Morrison confined his endow a chair named research to the summers and devoted Henry Schatz (BS ME, ‘64) for Morrison and $1 full attention to his students during toured the ME laboratories million to fund an endowment for the academic year. It was a way to during a campus visit in undergraduate scholarships. repay that debt and an “opportunity August. The saga begins in China during to help a lot of people.” World War II when Morrison and 10 When Schatz enrolled in the others bailed out of a crippled B-29. 1960s, Morrison was a full professor Communist guerillas smuggled the Lt. -
PLASTIC REVOLUTION to REALITY a Roadmap to Halve Australia’S Single-Use Plastic Litter Credits and Acknowledgements
2020 PLASTIC REVOLUTION TO REALITY A roadmap to halve Australia’s single-use plastic litter Credits and acknowledgements The report was written in association with Boston Consulting Group, and the team comprised Sarah Black, Kayne Harwood, Susanna Lees, Keet Kuhanandan, James Clements, Katherine Dickson, Paulien Mijer, Lucie Le Miere, Joyce Guo, Des Kheng, Vinisha Rathod and Kirsten Lees. Boston Consulting Group (BCG) partners with leaders in business and society to tackle their most important challenges and capture their greatest opportunities. BCG was the pioneer in business strategy when it was founded in 1963. Today, we help clients with total transformation—inspiring complex change, enabling organisations to grow, embedding sustainable business practices, building competitive advantage, and driving bottom-line impact. Our diverse, global teams bring deep industry and functional expertise and a range of perspectives to spark change. BCG delivers solutions through leading-edge management consulting along with technology and design, corporate and digital ventures—and business purpose. We work in a uniquely collaborative model across the firm and throughout all levels of the client organisation, generating results that allow our clients to thrive. WWF is one of the world’s largest and most experienced independent conservation organisations, with over five million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. -
UC Santa Cruz Other Recent Work
UC Santa Cruz Other Recent Work Title From Complex Organisms to a Complex Organization: An Oral History with UCSC Chancellor M.R.C. Greenwood, 1996-2004 Permalink https://escholarship.org/uc/item/9hv2j5t9 Authors Reti, Irene H. Greenwood, M.R.C. Publication Date 2014-04-03 eScholarship.org Powered by the California Digital Library University of California From Complex Organisms to a Complex Organization: An Oral History with UCSC Chancellor M.R.C. Greenwood, 1996-2004 Interviewed by Randall Jarrell and Irene Reti Edited by Irene Reti Santa Cruz University of California, Santa Cruz University Library 2014 This oral history is covered by a copyright agreement between M.R.C. Greenwood and the Regents of the University of California dated March 7, 2014. Under “fair use” standards, excerpts of up to six hundred words (per interview) may be quoted without the University Library’s permission as long as the materials are properly cited. Quotations of more than six hundred words require the written permission of the University Librarian and a proper citation and may also require a fee. Under certain circumstances, not-for-profit users may be granted a waiver of the fee. For permission contact: Irene Reti [email protected] or Regional History Project, McHenry Library, UC Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064. Phone: 831-459-2847 Table of Contents Interview History 1 Associate Director for Science in the White House 6 Arriving at the University of California, Santa Cruz 21 Meeting UCSC Faculty and Staff 31 Changing UCSC’s Image 34 Relations -
Coffee Cup Experiment
Coffee Cup Experiment What kind of coffee container will keep coffee hot most effectively? Abstract: This experiment investigated the insulation properties of three different coffee containers. This kind of problem would be of special interest to coffee shop owners, who would like to figure out which cup insulates the best with the lowest cost. In the experiment, hot water was placed in each of the cups in equal amounts and left on a counter to cool. Temperature data was taken over the course of half an hour while they were cooling, with data points of the three cups taken every ten seconds. Experimental data gathered from these experiments suggests that a Styrofoam cup insulates slightly better than a plastic mug, and that both insulate better than a paper cup. Problem: Which coffee container insulates a hot liquid most effectively? Hypothesis: The plastic mug will insulate heat the best because it is the bulkiest and is designed especially for holding hot liquids. Materials: 3 coffee containers with lids (plastic cup, Styrofoam cup, plastic mug) NXT brick 3 NXT temperature sensors Large beaker Hot plate Permanent Marker Procedure: First, the three containers were filled with an equal amount of water, and the marker was used to mark the water level in each. Then, the containers were emptied and water was heated in the beaker on the hot plate. In this experiment, the water was heated until boiling, but this does not need to be the case. Then the containers were filled to the previously marked line with the hot water and a temperature sensor connected to a single NXT was placed in each.