Mouse Phlda1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Phlda1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Phlda1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Phlda1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Phlda1 gene (NCBI Reference Sequence: NM_009344 ; Ensembl: ENSMUSG00000020205 ) is located on Mouse chromosome 10. 2 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 1 (Transcript: ENSMUST00000164773). Exon 1 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Phlda1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-69B10 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a targeted null mutation are viable, fertile and morphologically normal. Relative to wild-type littermates, homozygous null mice display no obvious defects in immune function, Fas expression or T-cell apoptosis. Exon 1 covers 100.0% of the coding region. Start codon is in exon 1, and stop codon is in exon 1. The size of effective cKO region: ~1254 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele A T 5' G gRNA region 3' 1 2 Targeting vector A T G Targeted allele A T G Constitutive KO allele (After Cre recombination) Legends Homology arm Exon of mouse Phlda1 cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7215bp) | A(25.6% 1847) | C(23.24% 1677) | T(25.6% 1847) | G(25.56% 1844) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. Significant high GC-content regions are found. It may be difficult to construct this targeting vector. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr10 + 111503406 111506405 3000 browser details YourSeq 40 2910 2973 3000 93.5% chr14 - 33446873 33446942 70 browser details YourSeq 32 442 479 3000 94.5% chr8 - 40289634 40289696 63 browser details YourSeq 32 2917 2961 3000 71.5% chr11 + 52351019 52351053 35 browser details YourSeq 29 2528 2560 3000 87.5% chr14 + 46285441 46285472 32 browser details YourSeq 27 1686 1712 3000 100.0% chr6 - 22577325 22577351 27 browser details YourSeq 27 2237 2283 3000 89.7% chr12 - 59310705 59310750 46 browser details YourSeq 27 2911 2941 3000 96.8% chr18 + 13972311 13972343 33 browser details YourSeq 25 1685 1713 3000 96.3% chr4 + 130067306 130067334 29 browser details YourSeq 24 1686 1712 3000 84.0% chr9 - 55924056 55924080 25 browser details YourSeq 24 1686 1712 3000 84.0% chr3 + 151812622 151812646 25 browser details YourSeq 24 1675 1701 3000 96.3% chr12 + 99844525 99844553 29 browser details YourSeq 23 1686 1711 3000 83.4% chr2 - 71744215 71744238 24 browser details YourSeq 23 1685 1709 3000 87.5% chr1 - 163429341 163429364 24 browser details YourSeq 22 1682 1703 3000 100.0% chr5 + 125029558 125029579 22 Note: The 3000 bp section upstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr10 + 111507621 111510620 3000 browser details YourSeq 94 1480 1883 3000 99.0% chr10 - 111509100 111509503 404 browser details YourSeq 94 1694 1923 3000 83.9% chr10 - 60121960 60122174 215 browser details YourSeq 90 1697 1927 3000 85.1% chr19 + 24911607 24911826 220 browser details YourSeq 89 1691 1927 3000 84.5% chr10 - 69934166 69934384 219 browser details YourSeq 86 1692 1933 3000 83.2% chr12 - 92017911 92018147 237 browser details YourSeq 86 1692 1927 3000 85.0% chr1 - 75020544 75020766 223 browser details YourSeq 84 1693 1956 3000 91.2% chr8 + 95184686 95185091 406 browser details YourSeq 82 1693 1923 3000 82.4% chr5 - 53936925 53937143 219 browser details YourSeq 81 1695 1927 3000 79.6% chr11 - 82550077 82550236 160 browser details YourSeq 81 1672 1927 3000 81.2% chr5 + 132780381 132780616 236 browser details YourSeq 81 1697 1935 3000 83.1% chr17 + 6116965 6117197 233 browser details YourSeq 79 1692 1927 3000 78.3% chr7 + 132366636 132366831 196 browser details YourSeq 79 1694 1927 3000 79.6% chr10 + 69012656 69012865 210 browser details YourSeq 77 1692 1926 3000 80.7% chr2 - 153537299 153537503 205 browser details YourSeq 77 1697 1932 3000 79.6% chr17 + 78207018 78207220 203 browser details YourSeq 76 1695 1927 3000 83.6% chr11 - 31923608 31923819 212 browser details YourSeq 75 1720 1924 3000 81.2% chr11 + 86966830 86967011 182 browser details YourSeq 74 1691 1924 3000 91.1% chr6 + 137657121 137657356 236 browser details YourSeq 73 1691 1942 3000 82.4% chrX + 163099108 163099342 235 Note: The 3000 bp section downstream of Exon 1 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Phlda1 pleckstrin homology like domain, family A, member 1 [ Mus musculus (house mouse) ] Gene ID: 21664, updated on 10-Oct-2019 Gene summary Official Symbol Phlda1 provided by MGI Official Full Name pleckstrin homology like domain, family A, member 1 provided by MGI Primary source MGI:MGI:1096880 See related Ensembl:ENSMUSG00000020205 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Tdag; TDAG51; DT1P1B11 Expression Broad expression in adrenal adult (RPKM 67.6), stomach adult (RPKM 50.4) and 23 other tissues See more Orthologs human all Genomic context Location: 10; 10 D1 See Phlda1 in Genome Data Viewer Exon count: 2 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 10 NC_000076.6 (111506286..111508649) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 10 NC_000076.5 (110943342..110945705) Chromosome 10 - NC_000076.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Phlda1 ENSMUSG00000020205 Description pleckstrin homology like domain, family A, member 1 [Source:MGI Symbol;Acc:MGI:1096880] Gene Synonyms DT1P1B11, TDAG51, Tdag Location Chromosome 10: 111,506,286-111,508,645 forward strand. GRCm38:CM001003.2 About this gene This gene has 2 transcripts (splice variants), 156 orthologues, 3 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Phlda1-201 ENSMUST00000164773.1 1949 405aa ENSMUSP00000132815.1 Protein coding CCDS24167 Q62392 TSL:1 GENCODE basic APPRIS P1 Phlda1-202 ENSMUST00000186359.1 362 No protein - lncRNA - - TSL:3 22.36 kb Forward strand 111.500Mb 111.505Mb 111.510Mb 111.515Mb Genes (Comprehensive set... Nap1l1-201 >protein coding Gm5176-201 >lncRNA Phlda1-201 >protein coding Nap1l1-203 >protein coding Gm5176-202 >transcribed processed pseudogene Phlda1-202 >lncRNA Contigs AC166253.18 > Genes < Gm28592-201lncRNA (Comprehensive set... Regulatory Build 111.500Mb 111.505Mb 111.510Mb 111.515Mb Reverse strand 22.36 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Non-Protein Coding RNA gene pseudogene Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000164773 2.36 kb Forward strand Phlda1-201 >protein coding ENSMUSP00000132... MobiDB lite Low complexity (Seg) Superfamily SSF50729 SMART Pleckstrin homology domain PANTHER PTHR15478 PTHR15478:SF4 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend inframe insertion inframe deletion missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 320 360 405 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • Role of RUNX1 in Aberrant Retinal Angiogenesis Jonathan D
    Page 1 of 25 Diabetes Identification of RUNX1 as a mediator of aberrant retinal angiogenesis Short Title: Role of RUNX1 in aberrant retinal angiogenesis Jonathan D. Lam,†1 Daniel J. Oh,†1 Lindsay L. Wong,1 Dhanesh Amarnani,1 Cindy Park- Windhol,1 Angie V. Sanchez,1 Jonathan Cardona-Velez,1,2 Declan McGuone,3 Anat O. Stemmer- Rachamimov,3 Dean Eliott,4 Diane R. Bielenberg,5 Tave van Zyl,4 Lishuang Shen,1 Xiaowu Gai,6 Patricia A. D’Amore*,1,7 Leo A. Kim*,1,4 Joseph F. Arboleda-Velasquez*1 Author affiliations: 1Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford St., Boston, MA 02114 2Universidad Pontificia Bolivariana, Medellin, Colombia, #68- a, Cq. 1 #68305, Medellín, Antioquia, Colombia 3C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, 55 Fruit St., Boston, MA 02114 4Retina Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 243 Charles St., Boston, MA 02114 5Vascular Biology Program, Boston Children’s Hospital, Department of Surgery, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115 6Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, 4650 Sunset Blvd, Los Angeles, CA 90027, USA 7Department of Pathology, Harvard Medical School, 25 Shattuck St., Boston, MA 02115 Corresponding authors: Joseph F. Arboleda-Velasquez: [email protected] Ph: (617) 912-2517 Leo Kim: [email protected] Ph: (617) 912-2562 Patricia D’Amore: [email protected] Ph: (617) 912-2559 Fax: (617) 912-0128 20 Staniford St. Boston MA, 02114 † These authors contributed equally to this manuscript Word Count: 1905 Tables and Figures: 4 Diabetes Publish Ahead of Print, published online April 11, 2017 Diabetes Page 2 of 25 Abstract Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world’s working adult population, and affects those with type 1 and type 2 diabetes mellitus.
    [Show full text]
  • Cellular Localization of Phlda1 Contributes to Apoptosis
    CELLULAR LOCALIZATION OF PHLDA1 CONTRIBUTES TO APOPTOSIS THE FUNCTIONAL DOMAINS OF PHLDA1: MODULATION OF INTRACELLULAR LOCALIZATION IMPACTS APOPTOTIC CELL DEATH By CELESTE A.F. COLLINS, B.Sc. (Hons) A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Master of Science McMaster University © Copyright by Celeste A.F. Collins, December 2013 M.Sc. Thesis CA Collins - McMaster University Medical Sciences MASTER OF SCIENCE (2013) McMaster University (Medical Sciences) Hamilton, Ontario TITLE: The Functional Domains of PHLDA1: Modulation of Intracellular Localization Impacts Apoptotic Cell Death AUTHOR: Celeste A.F. Collins, H.B.Sc (The University of Western Ontario) SUPERVISOR: Dr. Richard C. Austin NUMBER OF PAGES: xvi, 141 ii M.Sc. Thesis CA Collins - McMaster University Medical Sciences ABSTRACT Pleckstrin homology like domain family A, member 1 (PHLDA1) is a member of the PHLDA family of homologous proteins recognized for their role in apoptotic cell death. PHLDA1 was first reported as a proapoptotic factor involved in Fas-mediated T-cell apoptosis. The role of this protein with regards to apoptosis remains poorly understood, with literature demonstrating both proapoptotic and antiapoptotic functions in a cell and/or pathway specific manner. Intracellular localization may account for the apoptotic potential of this protein, with nuclear accumulation of PHLDA1 increasing its apoptotic potential. We hypothesize that the functional regions of PHLDA1 including its localization signals (pNLS/pNES), pleckstrin homology like domain (PHLD), and PQ region direct cellular localization of PHLDA1, thereby regulating its apoptotic potential. In this thesis, well-established molecular and cellular approaches were utilized to better define the functional regions within PHLDA1 and to gain further understanding of the role of its localization on apoptosis.
    [Show full text]
  • Velmurugan K D 2017.Pdf (4.186Mb)
    Novel Microsatellite Detection, Microsatellite Based Biomarker Discovery in Lung Cancer and The Exome-Wide Effects of a Dysfunctional DNA Repair Mechanism Karthik Raja Velmurugan Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Genetics, Bioinformatics and Computational Biology Harold R. Garner, Co-chair David R. Bevan, Co-chair Christopher B. Lawrence Pawel Michalak February 15, 2017 Blacksburg, Virginia Keywords: Microsatellite, Next-Generation Sequencing, Lung Cancer, Fanconi Anemia, Biomarker Discovery, Bioinformatics algorithm Novel Microsatellite Detection, Microsatellite Based Biomarker Discovery in Lung Cancer and The Exome-Wide Effects of a Dysfunctional DNA Repair Mechanism Karthik Raja Velmurugan ABSTRACT Since the dawn of the genomics era, the genetics of numerous human disorders has been understood which has led to improvements in targeted therapeutics. However, the focus of most research has been primarily on protein coding genes, which account for only 2% of the entire genome, leaving much of the remaining genome relatively unstudied. In particular, repetitive sequences, called microsatellites (MST), which are tandem repeats of 1 to 6 bases, are known to be mutational hotspots and have been linked to diseases, such as Huntington disease and Fragile X syndrome. This work represents a significant effort towards closing this knowledge gap. Specifically, we developed a next generation sequencing based enrichment method along with the supporting computational pipeline for detecting novel MST sequences in the human genome. Using this global MST enrichment protocol, we have identified 790 novel sequences. Analysis of these novel sequences has identified previously unknown functional elements, demonstrating its potential for aiding in the completion of the euchromatic DNA.
    [Show full text]
  • Discerning the Role of Foxa1 in Mammary Gland
    DISCERNING THE ROLE OF FOXA1 IN MAMMARY GLAND DEVELOPMENT AND BREAST CANCER by GINA MARIE BERNARDO Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Adviser: Dr. Ruth A. Keri Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY January, 2012 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Gina M. Bernardo ______________________________________________________ Ph.D. candidate for the ________________________________degree *. Monica Montano, Ph.D. (signed)_______________________________________________ (chair of the committee) Richard Hanson, Ph.D. ________________________________________________ Mark Jackson, Ph.D. ________________________________________________ Noa Noy, Ph.D. ________________________________________________ Ruth Keri, Ph.D. ________________________________________________ ________________________________________________ July 29, 2011 (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. DEDICATION To my parents, I will forever be indebted. iii TABLE OF CONTENTS Signature Page ii Dedication iii Table of Contents iv List of Tables vii List of Figures ix Acknowledgements xi List of Abbreviations xiii Abstract 1 Chapter 1 Introduction 3 1.1 The FOXA family of transcription factors 3 1.2 The nuclear receptor superfamily 6 1.2.1 The androgen receptor 1.2.2 The estrogen receptor 1.3 FOXA1 in development 13 1.3.1 Pancreas and Kidney
    [Show full text]
  • Transcriptional Up-Regulation of PHLDA1 by 17ß-Estradiol in MCF-7 Breast Cancer Cells
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) Up-regulationBrazilian Journal of PHLDA1 of Medical mRNA and Biological by 17ß-estradiol Research (2008) 41: 579-582 579 ISSN 0100-879X Short Communication Transcriptional up-regulation of PHLDA1 by 17ß-estradiol in MCF-7 breast cancer cells A.C. Marchiori, D.A. Casolari and M.A. Nagai Disciplina de Oncologia, Departamento de Radiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil Correspondence to: M.A. Nagai, Disciplina de Oncologia, Departamento de Radiologia, FM-USP, Av. Dr. Arnaldo, 455, 4° andar, 01246-903 São Paulo, SP, Brasil Fax: +55-11-3069-7292. E-mail: [email protected] Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERß, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1).
    [Show full text]
  • Conserved Regulatory Logic at Accessible and Inaccessible Chromatin During the Acute Inflammatory Response in Mammals
    ARTICLE https://doi.org/10.1038/s41467-020-20765-1 OPEN Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals Azad Alizada 1,2,11, Nadiya Khyzha3,4,11, Liangxi Wang1,2, Lina Antounians1,2, Xiaoting Chen5, Melvin Khor3,4, Minggao Liang1,2, Kumaragurubaran Rathnakumar 1,4, Matthew T. Weirauch 5,6,7,8, ✉ ✉ Alejandra Medina-Rivera1,9, Jason E. Fish 3,4,10 & Michael D. Wilson 1,2 1234567890():,; The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) trea- ted with the pro−inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome- occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dra- matic increases in NF-κB binding and chromatin accessibility post-stimulation. These ‘pre- bound’ regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, ‘pre-bound’ NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements. 1 Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada. 2 Department of Molecular Genetics, University of Toronto, Toronto, Canada.
    [Show full text]
  • Tissue-Specific Disallowance of Housekeeping Genes
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation Lieven Thorrez1,2,4, Ilaria Laudadio3, Katrijn Van Deun4, Roel Quintens1,4, Nico Hendrickx1,4, Mikaela Granvik1,4, Katleen Lemaire1,4, Anica Schraenen1,4, Leentje Van Lommel1,4, Stefan Lehnert1,4, Cristina Aguayo-Mazzucato5, Rui Cheng-Xue6, Patrick Gilon6, Iven Van Mechelen4, Susan Bonner-Weir5, Frédéric Lemaigre3, and Frans Schuit1,4,$ 1 Gene Expression Unit, Dept. Molecular Cell Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 2 ESAT-SCD, Department of Electrical Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 3 Université Catholique de Louvain, de Duve Institute, 1200 Brussels, Belgium 4 Center for Computational Systems Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium 5 Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard University, Boston, MA 02215, US 6 Unité d’Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, 1200 Brussels, Belgium $ To whom correspondence should be addressed: Frans Schuit O&N1 Herestraat 49 - bus 901 3000 Leuven, Belgium Email: [email protected] Phone: +32 16 347227 , Fax: +32 16 345995 Running title: Disallowed genes Keywords: disallowance, tissue-specific, tissue maturation, gene expression, intersection-union test Abbreviations: UTR UnTranslated Region H3K27me3 Histone H3 trimethylation at lysine 27 H3K4me3 Histone H3 trimethylation at lysine 4 H3K9ac Histone H3 acetylation at lysine 9 BMEL Bipotential Mouse Embryonic Liver Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract We report on a hitherto poorly characterized class of genes which are expressed in all tissues, except in one.
    [Show full text]
  • Genome-Scale Analysis of DNA Methylation in Lung Adenocarcinoma and Integration with Mrna Expression
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression Suhaida A. Selamat,1 Brian S. Chung,1 Luc Girard,2 Wei Zhang,2 Ying Zhang,3 Mihaela Campan,1 Kimberly D. Siegmund,3 Michael N. Koss,4 Jeffrey A. Hagen,5 Wan L. Lam,6 Stephen Lam,6 Adi F. Gazdar,2 and Ite A. Laird-Offringa1,7 1Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA; 2The Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; 3Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA; 4Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA; 5Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-9176, USA; 6BC Cancer Research Center, BC Cancer Agency, Vancouver, BC V521L3, Canada Lung cancer is the leading cause of cancer death worldwide, and adenocarcinoma is its most common histological subtype. Clinical and molecular evidence indicates that lung adenocarcinoma is a heterogeneous disease, which has important implications for treatment. Here we performed genome-scale DNA methylation profiling using the Illumina Infinium HumanMethylation27 platform on 59 matched lung adenocarcinoma/non-tumor lung pairs, with genome-scale verifi- cation on an independent set of tissues.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]
  • Biomarkers for Lupus
    (19) TZZ ¥ _T (11) EP 2 375 252 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 12.10.2011 Bulletin 2011/41 G01N 33/564 (2006.01) (21) Application number: 11158716.8 (22) Date of filing: 11.06.2009 (84) Designated Contracting States: • Fallon, Rachel, Alison AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Maidenhead, Berkshire SL6 7RJ (GB) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL • Joyce, Sarah, Paula PT RO SE SI SK TR Maidenhead, Berkshire SL6 7RJ (GB) • Koopman, Jens-Oliver (30) Priority: 11.06.2008 GB 0810709 Maidenhead, Berkshire SL6 7RJ (GB) • McAndrew, Michael, Bernard (62) Document number(s) of the earlier application(s) in Maidenhead, Berkshire SL6 7RJ (GB) accordance with Art. 76 EPC: • Workman,, Nicholas, Ian 09761971.2 / 2 300 826 Maidenhead, Berkshire SL6 7RJ (GB) (71) Applicant: SENSE PROTEOMIC LIMITED (74) Representative: Marshall, Cameron John Yarnton Carpmaels & Ransford Oxford One Southampton Row Oxfordshire OX5 1PF (GB) London WC1B 5HA (GB) (72) Inventors: Remarks: • Ebner, Martin Johannes This application was filed on 17-03-2011 as a Maidenhead, Berkshire SL6 7RJ (GB) divisional application to the application mentioned • Wheeler, Colin, Henry under INID code 62. Maiadenhead, Berkshire SL6 7RJ (GB) (54) Biomarkers for lupus (57) The present invention provides biomarkers val- the progression or regression of lupus, or monitoring the uable in diagnosing or detecting a susceptibility to lupus. progression to a flare of the disease or transition from a The present invention also provides panels of biomarkers flare into remission or monitoring the efficacy of a thera- valuable in diagnosing or detecting a susceptibility to lu- peutic agent to lupus.
    [Show full text]
  • Identification of Blood Biomarkers for Psychosis Using Convergent
    Molecular Psychiatry (2011) 16, 37–58 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp ORIGINAL ARTICLE Identification of blood biomarkers for psychosis using convergent functional genomics SM Kurian1,6, H Le-Niculescu2,6, SD Patel2,6, D Bertram2,3, J Davis2,3, C Dike2,3, N Yehyawi2,3, P Lysaker3, J Dustin2, M Caligiuri4, J Lohr4, DK Lahiri2, JI Nurnberger Jr2, SV Faraone5, MA Geyer4, MT Tsuang4, NJ Schork1, DR Salomon1 and AB Niculescu2,3 1Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; 2Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA; 3Indianapolis VA Medical Center, Indianapolis, IN, USA and 4Department of Psychiatry, UC San Diego, La Jolla, CA, USA; 5Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA There are to date no objective clinical laboratory blood tests for psychotic disease states. We provide proof of principle for a convergent functional genomics (CFG) approach to help identify and prioritize blood biomarkers for two key psychotic symptoms, one sensory (hallucinations) and one cognitive (delusions). We used gene expression profiling in whole blood samples from patients with schizophrenia and related disorders, with phenotypic information collected at the time of blood draw, then cross-matched the data with other human and animal model lines of evidence. Topping our list of candidate blood biomarkers for hallucinations, we have four genes decreased in expression in high hallucinations states (Fn1, Rhobtb3, Aldh1l1, Mpp3), and three genes increased in high hallucinations states (Arhgef9, Phlda1, S100a6). All of these genes have prior evidence of differential expression in schizophrenia patients.
    [Show full text]
  • Pleckstrin Homology-Like Domain, Family A, Member 1 (PHLDA1) and Cancer (Review)
    BIOMEDICAL REPORTS 4: 275-281, 2016 Pleckstrin homology-like domain, family A, member 1 (PHLDA1) and cancer (Review) MARIA APARECIDA NAGAI Discipline of Oncology, Department of Radiology, Faculty of Medicine, University of São Paulo, Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo, SP 01246-000, Brazil Received January 11, 2016; Accepted January 19, 2016 DOI: 10.3892/br.2016.580 Abstract. Pleckstrin homology-like domain, family A, Contents member 1 (PHLDA1) encodes a member of an evolution- arily conserved pleckstrin homology-related domain protein 1. Introduction family. It was first identified as a potential transcription factor 2. PHLDA1 expression and cell death required for Fas expression and activation-induced apoptosis 3. Role of PHLDA1 in cancer in mouse T cell hybridomas. The exact molecular and biolog- 4. Conclusions ical functions of PHLDA1 remain to be elucidated. However, its expression is induced by a variety of external stimuli and there is evidence that it may function as a transcriptional 1. Introduction activator that acts as a mediator of apoptosis, proliferation, differentiation and cell migration dependent on the cellular Pleckstrin homology-like domain, family A, member 1 type and context. Recently, PHLDA1 has received attention (PHLDA1; also known as PHRIP, TDAG51, DT1P1B11 and due to its association with cancer. In the present review, the MGC131738) was first identified as a potential transcription current knowledge of PHLDA1 protein structure, expression factor required for Fas expression and activation-induced regulation and function is summarized. In addition, the current apoptosis in mouse T cell hybridomas (1).
    [Show full text]