Do You Know Platanthera Praeclara?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Seed Ecology Iii
SEED ECOLOGY III The Third International Society for Seed Science Meeting on Seeds and the Environment “Seeds and Change” Conference Proceedings June 20 to June 24, 2010 Salt Lake City, Utah, USA Editors: R. Pendleton, S. Meyer, B. Schultz Proceedings of the Seed Ecology III Conference Preface Extended abstracts included in this proceedings will be made available online. Enquiries and requests for hardcopies of this volume should be sent to: Dr. Rosemary Pendleton USFS Rocky Mountain Research Station Albuquerque Forestry Sciences Laboratory 333 Broadway SE Suite 115 Albuquerque, New Mexico, USA 87102-3497 The extended abstracts in this proceedings were edited for clarity. Seed Ecology III logo designed by Bitsy Schultz. i June 2010, Salt Lake City, Utah Proceedings of the Seed Ecology III Conference Table of Contents Germination Ecology of Dry Sandy Grassland Species along a pH-Gradient Simulated by Different Aluminium Concentrations.....................................................................................................................1 M Abedi, M Bartelheimer, Ralph Krall and Peter Poschlod Induction and Release of Secondary Dormancy under Field Conditions in Bromus tectorum.......................2 PS Allen, SE Meyer, and K Foote Seedling Production for Purposes of Biodiversity Restoration in the Brazilian Cerrado Region Can Be Greatly Enhanced by Seed Pretreatments Derived from Seed Technology......................................................4 S Anese, GCM Soares, ACB Matos, DAB Pinto, EAA da Silva, and HWM Hilhorst -
Deforestation Changing Agricultural Management Climate Change
Orchid Conservation Orchid conservation facts • There are 26,000 known orchid species and an estimated 5,000 still to be discovered. Around 200-300 are discovered each year and most unknown species are likely to be found in the Andes. • Around 33% of orchid species are thought to be threatened but less than 1% (206 species) have been formally assessed. In contrast, all 10,000 known bird species have been assessed. • This map shows the ‘biodiversity hotspots’; areas with at least 1,500 unique plant species and over 70% loss of natural habitats. Major centres of orchid diversity broadly correspond with these highly threatened hotspots. • Orchids are under threat from both general factors that affect all species, such as habitat loss and climate change, and specific threats that target certain species, such as over-collection for trade. General threats to orchids Deforestation Climate Change Around 75% of orchid species grow Climate change may result in as epiphytes, many of them in tropical migration of species to cooler areas, forests. The loss of these habitats is most likely towards the poles or to occurring on a large scale due to a higher elevations. Mountain species combination of conversion of land to and those in areas surrounded by agricultural or development use, degraded or lost habitats will not be forest fires or logging for timber. able to migrate and will be at risk of extinction. Even where movement is • Many species in Nigeria and possible, orchids and their specific Cameroon, such as Bulbophyllum pollinators may move at different bifarium, are threatened due to rates or may become out of sync clearance of land for agriculture2 with each other, decreasing the chance of pollination. -
Native Orchids of Oklahoma Dr. Lawrence K. Magrath Curator-USAO
Oklahoma Native Plant Record 39 Volume 1, Number 1, December 2001 Native Orchids of Oklahoma Dr. Lawrence K. Magrath Curator-USAO (OCLA) Herbarium Chickasha, OK 73018-5358 As of the publication of this paper Oklahoma is known to have orchids of 33 species in 18 genera, which compares to 20 species and 11 genera reported by Waterfall (1969). Four of the 33 species are possibly extinct in the state based on current survey work. The greatest concentration of orchid species is in the southeastern corner of the state (Atoka, Bryan, Choctaw, LeFlore, McCurtain and Pushmataha Counties). INTRODUCTION Since the time of Confucius (551-479 BCE) who mentioned lan in his writings, "acquaintance with The family Orchidaceae is the largest of the good men was like entering a room full of lan or families of flowering plants with somewhere between fragrant orchids" (Withner, 1959), orchids have been 25,000 and 35,000 species, with new species important in many facets of Chinese life including continually being described. There are also literature, painting, horticulture, and not least, numerous natural and artificial hybrids. The only medicine". They are mentioned in the materia place where orchids are not known to occur is medica, “Sheng nung pen ts'ao ching”, tracing back Antarctica. to the legendary emperor Sheng Nung (ca. 28th Orchids fascinate us because of the century BCE). The term "lan hua" in early Chinese seemingly infinite combinations of colors and forms records refers to species of the genus Cymbidium that are found in orchid flowers from the Arctic to (Withner, 1959), most likely Cymbidium the tropical rain forests. -
Platanthera Chapmanii: Culture, Population Augmentation, and Mycorrhizal Associations
Platanthera chapmanii: culture, population augmentation, and mycorrhizal associations By Kirsten Poff, B.S. A Thesis In Plant and Soil Science Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Dr. Jyotsna Sharma Chair of Committee Dr. Scott Longing Dr. John Zak Dr. Mark Sheridan Dean of the Graduate School August, 2016 © 2016, Kirsten Poff Texas Tech University, Kirsten Poff, August 2016 ACKNOWLEDGEMENTS First I would like to thank my mentor and advisor, Dr. Jyotsna Sharma for all of her help and support. She has challenged and encouraged me throughout my program and the duration of this project. Thanks to her, I am light-years ahead of where I was two years ago. Texas Parks and Wildlife is also gratefully acknowledged for funding portions of this study. I also wish to express my gratitude to Dr. John Zak for his enthusiasm and for encouraging my love of microbes. I also gratefully thank Dr. Scott Longing for his advice, and constructive comments. I sincerely thank all three committee members for all the time and energy they have spent on me throughout the duration of my project. I gratefully acknowledge Dr. Jason Woodward for his encouragement and recommendations as well. I also acknowledge Dr. Cynthia McKenney and Mr. Russel Plowman for their support; I now have a passion for teaching, and a much better understanding of what it is like to teach college level courses. I want to also thank Mr. Robby Carlson for his time and technological assistance. -
Eastern Prairie Fringed-Orchid (Platanthera Leucophaea) in Ontario Ontario Recovery Strategy Series
s e v i h c r A C I H N , m a h d l O . J . M : o t o h P Eastern Prairie Fringed-orchid (Platanthera leucophaea) in Ontario Ontario Recovery Strategy Series Recovery strategy prepared under the Endangered Species Act, 2007 February 2010 Ministry of Natural Resources About the Ontario Recovery Strategy Series This series presents the collection of recovery strategies that are prepared or adopted as advice to the Province of Ontario on the recommended approach to recover species at risk. The Province ensures the preparation of recovery strategies to meet its commitments to recover species at risk under the Endangered Species Act, 2007 (ESA, 2007) and the Accord for the Protection of Species at Risk in Canada. What is recovery? What’s next? Recovery of species at risk is the process by which the Nine months after the completion of a recovery strategy decline of an endangered, threatened, or extirpated a government response statement will be published species is arrested or reversed, and threats are which summarizes the actions that the Government of removed or reduced to improve the likelihood of a Ontario intends to take in response to the strategy. The species’ persistence in the wild. implementation of recovery strategies depends on the continued cooperation and actions of government agencies, individuals, communities, land users, and What is a recovery strategy? conservationists. Under the ESA, 2007, a recovery strategy provides the best available scientific knowledge onwhat is required For more information to achieve recovery of a species. A recovery strategy outlines the habitat needs and the threats to the To learn more about species at risk recovery in Ontario, survival and recovery of the species. -
Iowa Habitat Loss and Disappearing Wildlife Iowa Habitat Loss and Disappearing Wildlife
Iowa Habitat Loss and Disappearance IowaAssociationofNaturalists Iowa Environmental Issues Series Iowa Habitat Loss and Disappearing Wildlife Iowa Habitat Loss and Disappearing Wildlife Habitat and wildlife Iowa habitat owa was once a land dominated by prairie and scattered prairie I wetlands. Thick woodlands and forested wetlands bordered its rivers and streams and covered the rugged landscape of northeast Iowa. The numerous interior streams meandered their way to the great border rivers - the Mississippi and the Missouri. Since Euro-American settlement, however, the historic Iowa landscape has been drastically changed, replaced by farms, towns, and highways. The once dominant Iowa prairie has been reduced to Iowa’s most rare and endangered habitat. Habitat refers to the features of an area that allow a wildlife species to live there. Although some types of wildlife may have many specific habitat needs, all wildlife have four basic habitat requirements: • adequate supplies of the right types of food; • available structure and materials that provide shelter to serve as safe places to live and raise young; • accessible and adequate supplies of water; and • enough space to find these necessary resources and to exercise natural behavior. When a wildlife species can no longer find enough food, water, shelter, or space, its habitat has been lost. Wildlife habitat is lost when land is cleared, polluted, or otherwise altered. IowaAssociationofNaturalists 1 Iowa Habitat Loss and Disappearing Wildlife Habitat is often described in terms of biological communities or habitat types. In addition to prairies, other habitat types include woodlands, wetlands, and waterways such as rivers and streams. Like prairies, these habitat types also have been lost or altered. -
Ja Roheka Käokeele (Platanthera Chlorantha) Levik Ning Kaitse Eestis Lõputöö Liina Sirel
Tartu Ülikool Kahelehise käokeele (Platanthera bifolia) ja roheka käokeele (Platanthera chlorantha) levik ning kaitse Eestis Lõputöö Liina Sirel Juhendaja: teadur Silvia Pihu Kaitsmisele lubatud: Juhendaja: /allkiri, kuupäev/ Osakonna juhataja: /allkiri, kuupäev/ Tartu 2013 SISUKORD 1. SISSEJUHATUS ....................................................................................................... 3 2. MATERJAL JA METOODIKA ................................................................................ 4 3. KAHELEHINE JA ROHEKAS KÄOKEEL ............................................................. 5 3.1. Käokeelte üldiseloomustus ................................................................................. 5 3.2. Käokeelte morfoloogilised tunnused ja Eesti liikide eristamine ........................ 6 3.3. Kahelehise ja roheka käokeele levik Eestis ........................................................ 7 3.4. Kahelehise ja roheka käokeele bioloogia ja paljunemine................................. 11 3.5. Käokeelte ohustatus ja kaitse (Eestis) .............................................................. 13 4. ARUTELU ............................................................................................................... 15 KOKKUVÕTE ................................................................................................................ 16 SUMMARY .................................................................................................................... 17 TÄNUAVALDUSED .................................................................................................... -
Diversity and Evolution of Monocots
Lilioids - petaloid monocots 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit ! • Lilioids (lilies, orchids, yams) – grade, non-monophyletic – petaloid . orchids and palms . ! • Commelinoids – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Lilioids - petaloid monocots Asparagales: *Orchidaceae - orchids • finish the Asparagales by 1. Terrestrial/epiphytes: plants looking at the largest family - typically not aquatic the orchids 2. Geophytes: herbaceous above ground with below ground modified perennial stems: bulbs, corms, rhizomes, tubers 3. Tepals: showy perianth in 2 series of 3 each; usually all petaloid, or outer series not green and sepal-like & with no bracts 1 *Orchidaceae - orchids *Orchidaceae - orchids The family is diverse with about 880 genera and over 22,000 All orchids have a protocorm - a feature restricted to the species, mainly of the tropics family. Orchids are • structure formed after germination and before the mycotrophic (= fungi development of the seedling plant dependent) lilioids; • has no radicle but instead mycotrophic tissue some are obligate mycotrophs Cypripedium acaule Corallorhiza striata Stemless lady-slipper Striped coral root Dactylorhiza majalis protocorm *Orchidaceae - orchids *Orchidaceae - orchids Cosmopolitan, but the majority of species are found in the Survive in these epiphytic and other harsh environments via tropics and subtropics, ranging from sea -
Pollination of Western Prairie Fringed Orchid, Platanthera Praeclara Sheviak & Bowles: Implications for Restoration and Management
Pollination of Western Prairie Fringed Orchid, Platanthera praeclara Sheviak & Bowles: implications for restoration and management Laura Phillips Introduction The beautiful western prairie fringed orchid, Platanthera praeclara, was once widespread in the tallgrass prairies across the upper Midwest (Sheviak and Bowles 1986). As Europeans settled North America, they discovered the fertile soils that lay beneath tallgrass prairies and began converting these vast grasslands into agricultural cropland. Some prairie lands were spared the plow only to be altered instead by suppression of the historic fire regimes that had maintained the prairie community for thousands of years. Today, only one percent of original tallgrass prairie remains, mostly in small, relatively isolated fragments, often surrounded by agricultural lands and urban development, and many are further threatened by invasion of non-native species and native woody species that now thrive in the fire-free environment (Kline 1997). Many of the unique plant species of the tallgrass prairie community, including P. praeclara, have also suffered great population declines in response to the loss of suitable habitat. The western and eastern prairie fringed orchids, P. praeclara and P. leucophaea, have declined by more than 70%, according to original county records (Bowles 1983), and therefore in 1989 they were listed as a federally threatened species under the Endangered Species Act (U.S. Fish and Wildlife Service 1996). Habitat loss is considered the greatest threat to the prairie fringed orchids, therefore current management plans focus primarily on maintaining quality prairie habitat using standard restoration techniques, such as burning and mowing (U.S. Fish and Wildlife Service 1996). Although the survival of P. -
WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C. -
Publications1
PUBLICATIONS1 Book Chapters: Zettler LW, J Sharma, and FN Rasmussen. 2003. Mycorrhizal Diversity (Chapter 11; pp. 205-226). In Orchid Conservation. KW Dixon, SP Kell, RL Barrett and PJ Cribb (eds). 418 pages. Natural History Publications, Kota Kinabalu, Sabah, Malaysia. ISBN: 9838120782 Books and Book Chapters Edited: Sharma J. (Editor). 2010. North American Native Orchid Conservation: Preservation, Propagation, and Restoration. Conference Proceedings of the Native Orchid Conference - Green Bay, Wisconsin. Native Orchid Conference, Inc., Greensboro, North Carolina. 131 pages, plus CD. (Public Review by Dr. Paul M. Catling published in The Canadian Field-Naturalist Vol. 125. pp 86 - 88; http://journals.sfu.ca/cfn/index.php/cfn/article/viewFile/1142/1146). Peer-reviewed Publications (besides Journal publications or refereed proceedings) Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2016. Calopogon multiflorus. The IUCN Red List of Threatened Species 2016: e.T64175911A86066804. https://dx.doi.org/10.2305/IUCN.UK.2016- 1.RLTS.T64175911A86066804.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Basiphyllaea corallicola. The IUCN Red List of Threatened Species 2015: e.T64175902A64175905. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175902A64175905.en. Goedeke, T., Sharma, J., Treher, A., Frances, A. & *Poff, K. 2015. Corallorhiza bentleyi. The IUCN Red List of Threatened Species 2015: e.T64175940A64175949. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64175940A64175949.en. Treher, A., Sharma, J., Frances, A. & *Poff, K. 2015. Eulophia ecristata. The IUCN Red List of Threatened Species 2015: e.T64176842A64176871. https://dx.doi.org/10.2305/IUCN.UK.2015- 4.RLTS.T64176842A64176871.en.