Notices of the American Mathematical Society
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstract We Survey the Published Work of Harry Kesten in Probability Theory, with Emphasis on His Contributions to Random Walks
Abstract We survey the published work of Harry Kesten in probability theory, with emphasis on his contributions to random walks, branching processes, perco- lation, and related topics. Keywords Probability, random walk, branching process, random matrix, diffusion limited aggregation, percolation. Mathematics Subject Classification (2010) 60-03, 60G50, 60J80, 60B20, 60K35, 82B20. Noname manuscript No. 2(will be inserted by the editor) Geoffrey R. Grimmett Harry Kesten's work in probability theory Geoffrey R. Grimmett In memory of Harry Kesten, inspiring colleague, valued friend April 8, 2020 1 Overview Harry Kesten was a prominent mathematician and personality in a golden period of probability theory from 1956 to 2018. At the time of Harry's move from the Netherlands to the USA in 1956, as a graduate student aged 24, much of the foundational infrastructure of probability was in place. The central characters of probability had long been identified (including random walk, Brownian motion, the branching process, and the Poisson process), and connections had been made and developed between `pure theory' and cognate areas ranging from physics to finance. In the half-century or so since 1956, a coordinated and refined theory has been developed, and probability has been recognised as a crossroads discipline in mathematical science. Few mathematicians have contributed as much during this period as Harry Kesten. Following a turbulent childhood (see [59]), Harry studied mathematics with David van Dantzig and Jan Hemelrijk in Amsterdam, where in 1955 he attended a lecture by Mark Kac entitled \Some probabilistic aspects of potential theory". This encounter appears to have had a decisive effect, in that Harry moved in 1956 to Cornell University to work with Kac. -
Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve. -
1 Introduction 2 the Schottky Problem
The Schottky problem and second order theta functions Bert van Geemen December Introduction The Schottky problem arose in the work of Riemann To a Riemann surface of genus g one can asso ciate a p erio d matrix which is an element of a space H of dimension g g Since the g Riemann surfaces themselves dep end on only g parameters if g the question arises as to how one can characterize the set of p erio d matrices of Riemann surfaces This is the Schottky problem There have b een many approaches and a few of them have b een succesfull All of them exploit a complex variety a ppav and a subvariety the theta divisor which one can asso ciate to a p oint in H When the p oint is the p erio d matrix of a Riemann surface this variety is g known as the Jacobian of the Riemann surface A careful study of the geometry and the functions on these varieties reveals that Jacobians and their theta divisors have various curious prop erties Now one attempts to show that such a prop erty characterizes Jacobians We refer to M Lectures III and IV for a nice exp osition of four such metho ds to vdG B D for overviews of later results and V for a newer approach In these notes we discuss a particular approach to the Schottky problem which has its origin the work of Schottky and Jung and unpublished work of Riemann It uses the fact that to a genus g curve one can asso ciate certain ab elian varieties of dimension g the Prym varieties In our presentation we emphasize an intrinsic line bundle on a ppav principally p olarized ab elian variety and the action -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Robert L Wolpert Curriculum Vitæ 2021 September 1. Personal
Robert L Wolpert Curriculum Vitæ 2021 September 1. Personal Information: Name: Robert Lee Wolpert Addr: Duke Univ Dept Statistical Science 211c Old Chem, Box 90251 Born: San Gabriel, California USA Durham, NC 27708-0251 USA 1950July22 Tel: +1-919-812-3235 Citizen: USA Net: [email protected] Web: www.stat.duke.edu/~rlw/ 2. Education: Ph.D. Princeton University, 1976 A.B. Cornell University, 1972 Department of Mathematics Department of Mathematics NSF Fellow, Princeton Fellow Cornell College Scholar Advs: Edward Nelson & Gilbert Hunt Advs: Frank Spitzer & Jack Kiefer Diss: Wiener Path Intersections and Local Times 3. Academic Appointments: Present: 2021- Emeritus Professor, Duke Univ. Department of Statistical Science 2021-24 Emeritus Professor, Duke Univ. Nicholas School of the Environment Previous: 2000-21 Professor, Duke Univ. Department of Statistical Science 2000-21 Professor, Duke Univ. Nicholas School of the Environment 2006-14 Adjunct Professor, Queensland University of Technology, Fac. of Math. Sci. 1999-06HonoraryProfessor, ImperialCollege,LondonDept. of Epi. & Pub. Health 1992-00 Associate Professor with Tenure, Duke Univ. Institute of Statistics and Decision Sciences 1987-92 Associate Professor, Duke Univ. Institute of Statistics and Decision Sciences 1986-88Research Associate Professor, Duke Center for Health Policy Research and Education 1984-90 Assistant Medical Research Professor, Duke Department of Pharmacology and 1982-84ResearchAssociate, LaboratoryofEnviron. Pharmacology and Toxicology 1982-83 Visiting Professor, UNC Department -
Newsletter37.Pdf
CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 DK-2800 Kgs. Lyngby, Denmark NEWSLETTER No. 37 e-mail: [email protected] KRZYSZTOF CIESIELSKI September 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm report, Summer Schools ...................... 2 e-mail: [email protected] KATHLEEN QUINN The Open University [address as above] Mathematical Modelling in the Biosciences (Philip Maini) .......................... 16 e-mail: [email protected] SPECIALIST EDITORS EMS Poster Competition ............................................................................... 19 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Martin Grötschel ................................................................... 20 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Bernt Wegner ........................................................................ 24 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A stamp for World Mathematical Year ..........................................................27 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta Societies: The London Mathematical Society ................................................ 28 Werkvolkstr. -
Discrete and Complex Algorithms for Curves
Discrete and Complex Algorithms for Curves Lynn Chua Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2020-42 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-42.html May 11, 2020 Copyright © 2020, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Discrete and Complex Algorithms for Curves by Lynn Chua A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair Professor Kenneth Ribet Spring 2020 The dissertation of Lynn Chua, titled Discrete and Complex Algorithms for Curves, is approved: Co-chair Date Co-chair Date Date University of California, Berkeley Discrete and Complex Algorithms for Curves Copyright 2020 by Lynn Chua 1 Abstract Discrete and Complex Algorithms for Curves by Lynn Chua Doctor of Philosophy in Computer Science University of California, Berkeley Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair This dissertation consists of two parts. The first part pertains to the Schottky problem, which asks to characterize Jacobians of curves amongst abelian varieties. -
A Selection of New Arrivals September 2017
A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation). -
Harry Kesten
Harry Kesten November 19, 1931 – March 29, 2019 Harry Kesten, Ph.D. ’58, the Goldwin Smith Professor Emeritus of Mathematics, died March 29, 2019 in Ithaca at the age of 87. His wife, Doraline, passed three years earlier. He is survived by his son Michael Kesten ’90. Through his pioneering work on key models of Statistical Mechanics including Percolation Theory, and his novel solutions to highly significant problems, Harry Kesten shaped and transformed entire areas of Mathematics. He is recognized worldwide as one of the greatest contributors to Probability Theory during the second half of the twentieth century. Harry’s work was mostly theoretical in nature but he always maintained a keen interest for the applications of probability theory to the real world and studied problems arising from other sciences including physics, population growth and biology. Harry was born in Duisburg, Germany, in 1931. He moved to Holland with his parents in 1933 and, somehow, survived the Second World War. In 1956, he was studying at the University of Amsterdam and working half-time as a research assistant for Professor D. Van Dantzig. As he was finishing his undergraduate degree, he wrote to the world famous mathematician Mark Kac to enquire if he could possibly receive a graduate fellowship to study probability theory at Cornell, perhaps for a year. At the time, Harry was considered a Polish subject (even though he had never been in Poland) and carried a passport of the international refugee organization. A fellowship was arranged and Harry joined the mathematics graduate program at Cornell that summer. -
Frank L. Spitzer
NATIONAL ACADEMY OF SCIENCES F R A N K L UDVI G Sp ITZER 1926—1992 A Biographical Memoir by H A R R Y KESTEN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1996 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Courtesy of Geoffrey Grimmett FRANK LUDVIG SPITZER July 24, 1926–February 1, 1992 BY HARRY KESTEN RANK SPITZER WAS A highly original probabilist and a hu- Fmorous, charismatic person, who had warm relations with students and colleagues. Much of his earlier work dealt with the topics of random walk and Brownian motion, which are quite familiar to probabilists. Spitzer invented or devel- oped quite new aspects of these, such as fluctuation theory and potential theory of random walk (more about these later); however, his most influential work is undoubtedly the creation of a good part of the theory of interacting particle systems. Through the many elegant models that Frank constructed and intriguing phenomena he demon- strated, a whole new set of questions was raised. These have attracted and stimulated a large number of young probabi- lists and have made interacting particle systems one of the most exciting and active subfields of probability today. Frank Spitzer was born in Vienna, Austria, on July 24, 1926, into a Jewish family. His father was a lawyer. When Frank was about twelve years old his parents sent him to a summer camp for Jewish children in Sweden. Quite possi- bly the intention of this camp was to bring out Jewish chil- dren from Nazi-held or Nazi-threatened territory. -
January 2001 Prizes and Awards
January 2001 Prizes and Awards 4:25 p.m., Thursday, January 11, 2001 PROGRAM OPENING REMARKS Thomas F. Banchoff, President Mathematical Association of America LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION American Mathematical Society DEBORAH AND FRANKLIN TEPPER HAIMO AWARDS FOR DISTINGUISHED COLLEGE OR UNIVERSITY TEACHING OF MATHEMATICS Mathematical Association of America RUTH LYTTLE SATTER PRIZE American Mathematical Society FRANK AND BRENNIE MORGAN PRIZE FOR OUTSTANDING RESEARCH IN MATHEMATICS BY AN UNDERGRADUATE STUDENT American Mathematical Society Mathematical Association of America Society for Industrial and Applied Mathematics CHAUVENET PRIZE Mathematical Association of America LEVI L. CONANT PRIZE American Mathematical Society ALICE T. S CHAFER PRIZE FOR EXCELLENCE IN MATHEMATICS BY AN UNDERGRADUATE WOMAN Association for Women in Mathematics LEROY P. S TEELE PRIZE FOR SEMINAL CONTRIBUTION TO RESEARCH American Mathematical Society LEONARD M. AND ELEANOR B. BLUMENTHAL AWARD FOR THE ADVANCEMENT OF RESEARCH IN PURE MATHEMATICS Leonard M. and Eleanor B. Blumenthal Trust for the Advancement of Mathematics COMMUNICATIONS AWARD Joint Policy Board for Mathematics ALBERT LEON WHITEMAN MEMORIAL PRIZE American Mathematical Society CERTIFICATES OF MERITORIOUS SERVICE Mathematical Association of America LOUISE HAY AWARD FOR CONTRIBUTIONS TO MATHEMATICS EDUCATION Association for Women in Mathematics OSWALD VEBLEN PRIZE IN GEOMETRY American Mathematical Society YUEH-GIN GUNG AND DR. CHARLES Y. H U AWARD FOR DISTINGUISHED SERVICE TO MATHEMATICS Mathematical Association of America LEROY P. S TEELE PRIZE FOR LIFETIME ACHIEVEMENT American Mathematical Society CLOSING REMARKS Felix E. Browder, President American Mathematical Society M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 AMERICAN MATHEMATICAL SOCIETY NDED 1 LEROY P. -
Schottky Algorithms: Classical Meets Tropical Arxiv:1707.08520V2
Schottky Algorithms: Classical meets Tropical Lynn Chua, Mario Kummer and Bernd Sturmfels Abstract We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky{Igusa modular form. 1 Introduction The Schottky problem [11] concerns the characterization of Jacobians of genus g curves among all abelian varieties of dimension g. The latter are parametrized by the Siegel upper-half space Hg, i.e. the set of complex symmetric g × g matrices τ with positive definite imaginary part. The Schottky locus Jg is the subset of matrices τ in Hg that represent Jacobians. Both sets are complex analytic spaces whose dimensions reveal that the inclusion is proper for g ≥ 4: g + 1 dim(J ) = 3g − 3 and dim(H ) = : (1) g g 2 For g = 4, the dimensions in (1) are 9 and 10, so J4 is an analytic hypersurface in H4. The equation defining this hypersurface is a polynomial of degree 16 in the theta constants. First constructed by Schottky [23], and further developed by Igusa [15], this modular form embodies the theoretical solution (cf. [11, x3]) to the classical Schottky problem for g = 4. arXiv:1707.08520v2 [math.AG] 30 Sep 2018 The Schottky problem also exists in tropical geometry [19]. The tropical Siegel space trop Hg is the cone of positive definite g × g-matrices, endowed with the fan structure given by trop the second Voronoi decomposition.