1 Introduction 2 the Schottky Problem

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction 2 the Schottky Problem The Schottky problem and second order theta functions Bert van Geemen December Introduction The Schottky problem arose in the work of Riemann To a Riemann surface of genus g one can asso ciate a p erio d matrix which is an element of a space H of dimension g g Since the g Riemann surfaces themselves dep end on only g parameters if g the question arises as to how one can characterize the set of p erio d matrices of Riemann surfaces This is the Schottky problem There have b een many approaches and a few of them have b een succesfull All of them exploit a complex variety a ppav and a subvariety the theta divisor which one can asso ciate to a p oint in H When the p oint is the p erio d matrix of a Riemann surface this variety is g known as the Jacobian of the Riemann surface A careful study of the geometry and the functions on these varieties reveals that Jacobians and their theta divisors have various curious prop erties Now one attempts to show that such a prop erty characterizes Jacobians We refer to M Lectures III and IV for a nice exp osition of four such metho ds to vdG B D for overviews of later results and V for a newer approach In these notes we discuss a particular approach to the Schottky problem which has its origin the work of Schottky and Jung and unpublished work of Riemann It uses the fact that to a genus g curve one can asso ciate certain ab elian varieties of dimension g the Prym varieties In our presentation we emphasize an intrinsic line bundle on a ppav principally p olarized ab elian variety and the action of a Heisenberg group on this bundle A systematic study of the geometry asso ciated to these leads in a natural way to Prym varieties Moreover one nds several other remarkable prop erties of Jacobians which suggest geometrical solutions of the Schottky problem Acknowledgements I thank the organizers of the conference Variedas ab elianas y func tiones theta for the opp ertunity to present these lectures and for providing the pleasent working conditions in Morelia The Schottky problem Introduction We recall the basic results on p erio d matrices of Riemann surfaces References are ACGH C GH and CGV Then we briey discuss mo dular forms a reference is Ig December Period matrices Let C b e a Riemann surface of genus g we consider only compact Riemann surfaces in 2g these lectures On the homology group H C Z Z there is an alternating nondegenerate 1 intersection form A symplectic basis of H C Z is a basis f g satisfying 1 1 g 1 g i j i j i j ij with Kroneckers delta so if i j ij ii ij 0 The complex vector space of holomorphic one forms on C is denoted as usual by H C C 0 it has dimension g Given a path in C and an H C one can compute the integral C R R 0 0 as a map H C C thus it is an element of H C the dual We will view C C 0 vector space of H C If is a closed path the integral only dep ends on the homology C class of which we denote by the same symbol H C Z Thus we get a map 1 Z 0 H C Z H C 1 C This map is injective in fact much more is true Theorem Let f g b e a symplectic basis of H C Z Then there is a unique i j 1 0 basis f g of H C such that 1 g C Z j ij i R 0 0 H C form the dual basis of the basis f g of H C Thus the elements C j C i 1 A symplectic basis of H C Z thus determines a basis of H C For this we only 1 C use the We now use the to dene a complex g g matrix i j Denition The p erio d matrix of C with resp ect to the symplectic basis of i j H C Z is the matrix 1 Z M C with ij g ij j i 0 and H C as in Theorem j C 0 Remark The p erio d matrix determines the image of H C Z in H C In fact 1 C R 0 of H C we have using the basis C i Z Z Z Z i1 i2 ig g 1 2 i 0 since b oth sides give the same result when applied to the basis elements H C j C December Torellis theorem Torellis theorem asserts that one can recover the Riemann surface from its p erio d matrix There are many pro ofs of this theorem all of them use the Jacobian its theta divisor which are asso ciated to a p erio d matrix see also The Siegel upp erhalf space The Schottky problem The Schottky problem basically asks for equations which determine the p erio d matrices of Riemann surfaces among all g g matrices There are two well known prop erties of p erio d matrices so p erio d matrices are symmetric and ij j i I m the imaginary part of which is a symmetric real g g matrix denes a p ositive g t g denite quadratic form on R xI m x for all x R We write I m This leads to the following denition and theorem Denition The Siegel upp erhalf space H is g t H f M C I m g g g Theorem Let b e the p erio d matrix of a Riemann surface Then H g The subset H of M C is actually complex manifold with the complex structure g g induced from that on M C In fact H is an op en subset of the vector space of symmetric g g 0 0 g g matrices if I m then also I m for any symmetric with suciently 1 small co ecients The dimension of H is g g g 2 We investigate H in more detail to see what kind of equations for p erio d matrices one g should exp ect The symplectic group To dene the p erio d matrix of a Riemann surface we had to choose a symplectic basis Any two symplectic bases are related by an element of I t S pg Z fA M Z AE A E g with E g 2g 0 0 0 I One can show that acts on H as follows g g a b 1 H H A A a bc d A g g g c d where a d are g g blo cks of A The p erio d matrices of a Riemann surface X are a orbit g in H Thus rather than study the p erio d matrices of Riemann surfaces in H one could study g g their images under the quotient map H A nH g g g g The action of on H is prop erly discontinuous but not xed p oints free and A is complex g g g C using the j invariant for elliptic curves variety with singularieties if g If g A g Riemann surfaces of genus December Mo duli spaces Let M b e the mo duli space of Riemann surfaces of genus g It is a g variety whose p oints corresp ond to isomorphism classes of Riemann surfaces Then we have a well dened holomorphic map j M A X g g g where is a p erio d matrix of X Torellis theorem implies that j is injective The Schottky problem can now b e reformulated as the problem of nding equations for the image of j 0 Denition Let J H b e the set of p erio d matrices of Riemann surfaces Its image g g in A is g 0 j M I mag eJ A nH g g g g g 0 The subvarieties J and j M are not closed see We dene the Jacobi lo cus J to b e g g g 0 the closure of J in H g g 0 J J H g g g Decomp osable matrices A H will b e called decomp osable if lies in the g g orbit of matrices in diagonal blo ck form the diagonal blo cks b eing matrices in upp er half planes 0 of lower dimension The set J J in H consists of decomp osable matrices the diagonal g g g blo cks b eing p erio d matrices of Riemann surfaces of lower genus This follows from a result of Hoyt Mo dular forms From Teichmuller theory one knows that the subset J is actually g 0 an irreducible subvariety of H of dimension g for g if g one has H J J g 1 1 1 Since J is a complex subvariety of H it is natural to ask for holomorphic functions f on g g i H such that f for all i implies J The fact that J is invariant under suggests g i g g g that we could try to nd such f which are invariant It is known that a variant of this idea i g will work A Siegel mo dular form of weight k is a holomorphic function on H which transforms in the g following way under g a b k f H C f A det c d f A g g c d in case g one has to add a certain growth condition on f for i The mo dular forms of weight k form a complex vector space which has nite dimension For suitable large k a basis f f of this vector space gives an everywhere dened map 0 N N H P f f k g 0 N k Since f A det c d f for each i we have A and thus the map i i k k k factors over A nH In this way we get a map g g g N A nH P k g g g December A fundamental result is that for suitable k the map embeds A so A A The k g g k g image of and thus A itself is a quasi pro jective variety that is a Zariski op en subset of a k g pro jective variety For this pro jective variety one can take the Satake compactication of A g which has the following nice settheoretic description as a disjoint union A A A A g g g 1 0 A and for suitable k here A is dened to b e a p oint Actually the maps extend to maps g 0 k one has A A A k k g g g N The closure of j M is a pro jective subvariety of P Thus it is dened by a nite set k g of homogeneous p olynomials Determining these p olynomials as well as the mo dular forms of weight k gives a solution to the Schottky problem The b est type of equations for the Jacobi lo cus J are thus homogeneous p olynomials in mo dular forms g Note that if F CX X is a homogeneous p olynomial of degree d and f f is 0 N 0 N a basis of M k then F f f is a mo dular form of weight k d Thus the g 0 N equations for J we lo ok for will b e mo dular forms g Algebraic geometry We just explained that the nicest equations for the p erio d matrices are mo dular forms These mo dular forms are obtained from homogeneous p olynomials N which dene the closure in P of the image of the comp osition j N M A nH P g g g g The map is given by mo dular forms on H To nd the image of p oint C M one g g has
Recommended publications
  • Abelian Solutions of the Soliton Equations and Riemann–Schottky Problems
    Russian Math. Surveys 63:6 1011–1022 c 2008 RAS(DoM) and LMS Uspekhi Mat. Nauk 63:6 19–30 DOI 10.1070/RM2008v063n06ABEH004576 Abelian solutions of the soliton equations and Riemann–Schottky problems I. M. Krichever Abstract. The present article is an exposition of the author’s talk at the conference dedicated to the 70th birthday of S. P. Novikov. The talk con- tained the proof of Welters’ conjecture which proposes a solution of the clas- sical Riemann–Schottky problem of characterizing the Jacobians of smooth algebraic curves in terms of the existence of a trisecant of the associated Kummer variety, and a solution of another classical problem of algebraic geometry, that of characterizing the Prym varieties of unramified covers. Contents 1. Introduction 1011 2. Welters’ trisecant conjecture 1014 3. The problem of characterization of Prym varieties 1017 4. Abelian solutions of the soliton equations 1018 Bibliography 1020 1. Introduction The famous Novikov conjecture which asserts that the Jacobians of smooth alge- braic curves are precisely those indecomposable principally polarized Abelian vari- eties whose theta-functions provide explicit solutions of the Kadomtsev–Petviashvili (KP) equation, fundamentally changed the relations between the classical algebraic geometry of Riemann surfaces and the theory of soliton equations. It turns out that the finite-gap, or algebro-geometric, theory of integration of non-linear equa- tions developed in the mid-1970s can provide a powerful tool for approaching the fundamental problems of the geometry of Abelian varieties. The basic tool of the general construction proposed by the author [1], [2]which g+k 1 establishes a correspondence between algebro-geometric data Γ,Pα,zα,S − (Γ) and solutions of some soliton equation, is the notion of Baker–Akhiezer{ function.} Here Γis a smooth algebraic curve of genus g with marked points Pα, in whose g+k 1 neighborhoods we fix local coordinates zα, and S − (Γ) is a symmetric prod- uct of the curve.
    [Show full text]
  • Newsletter37.Pdf
    CONTENTS EDITORIAL TEAM EUROPEAN MATHEMATICAL SOCIETY EDITOR-IN-CHIEF ROBIN WILSON Department of Pure Mathematics The Open University Milton Keynes MK7 6AA, UK e-mail: [email protected] ASSOCIATE EDITORS STEEN MARKVORSEN Department of Mathematics Technical University of Denmark Building 303 DK-2800 Kgs. Lyngby, Denmark NEWSLETTER No. 37 e-mail: [email protected] KRZYSZTOF CIESIELSKI September 2000 Mathematics Institute Jagiellonian University Reymonta 4 30-059 Kraków, Poland EMS News : Agenda, Editorial, 3ecm report, Summer Schools ...................... 2 e-mail: [email protected] KATHLEEN QUINN The Open University [address as above] Mathematical Modelling in the Biosciences (Philip Maini) .......................... 16 e-mail: [email protected] SPECIALIST EDITORS EMS Poster Competition ............................................................................... 19 INTERVIEWS Steen Markvorsen [address as above] SOCIETIES Interview with Martin Grötschel ................................................................... 20 Krzysztof Ciesielski [address as above] EDUCATION Vinicio Villani Interview with Bernt Wegner ........................................................................ 24 Dipartimento di Matematica Via Bounarotti, 2 56127 Pisa, Italy A stamp for World Mathematical Year ..........................................................27 e-mail: [email protected] MATHEMATICAL PROBLEMS Paul Jainta Societies: The London Mathematical Society ................................................ 28 Werkvolkstr.
    [Show full text]
  • Discrete and Complex Algorithms for Curves
    Discrete and Complex Algorithms for Curves Lynn Chua Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2020-42 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-42.html May 11, 2020 Copyright © 2020, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Discrete and Complex Algorithms for Curves by Lynn Chua A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair Professor Kenneth Ribet Spring 2020 The dissertation of Lynn Chua, titled Discrete and Complex Algorithms for Curves, is approved: Co-chair Date Co-chair Date Date University of California, Berkeley Discrete and Complex Algorithms for Curves Copyright 2020 by Lynn Chua 1 Abstract Discrete and Complex Algorithms for Curves by Lynn Chua Doctor of Philosophy in Computer Science University of California, Berkeley Professor Alessandro Chiesa, Co-chair Professor Bernd Sturmfels, Co-chair This dissertation consists of two parts. The first part pertains to the Schottky problem, which asks to characterize Jacobians of curves amongst abelian varieties.
    [Show full text]
  • Notices of the American Mathematical Society
    CALENDAR OF AMS MEETINGS THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF CONTRIBUTED PAPERS should be submitted on special forms which are available in most de­ partments of mathematics; forms can also be obtained by writing to the headquarters of the Society. Abstracts of papers to be presented at the meeting in person must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline for the meeting. Note that the deadline for abstracts to be considered for presentation at special sessions is three weeks earlier than that given below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACTS NUMBER DATE PLACE DEADLINE for ISSUE 768 August 21-25, 1979 Duluth, Minnesota JUNE 12 August (83rd Summer Meeting) 769 October 20-21, 1979 Washington, D.C. AUGUST 22} October 770 November 2-3, 1979 Kent, Ohio AUGUST 27 771 November 9-10, 1979 Birmingham, Alabama SEPTEMBER 19 } November 772 November 16-17,
    [Show full text]
  • A Selection of New Arrivals September 2017
    A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation).
    [Show full text]
  • Schottky Algorithms: Classical Meets Tropical Arxiv:1707.08520V2
    Schottky Algorithms: Classical meets Tropical Lynn Chua, Mario Kummer and Bernd Sturmfels Abstract We present a new perspective on the Schottky problem that links numerical computing with tropical geometry. The task is to decide whether a symmetric matrix defines a Jacobian, and, if so, to compute the curve and its canonical embedding. We offer solutions and their implementations in genus four, both classically and tropically. The locus of cographic matroids arises from tropicalizing the Schottky{Igusa modular form. 1 Introduction The Schottky problem [11] concerns the characterization of Jacobians of genus g curves among all abelian varieties of dimension g. The latter are parametrized by the Siegel upper-half space Hg, i.e. the set of complex symmetric g × g matrices τ with positive definite imaginary part. The Schottky locus Jg is the subset of matrices τ in Hg that represent Jacobians. Both sets are complex analytic spaces whose dimensions reveal that the inclusion is proper for g ≥ 4: g + 1 dim(J ) = 3g − 3 and dim(H ) = : (1) g g 2 For g = 4, the dimensions in (1) are 9 and 10, so J4 is an analytic hypersurface in H4. The equation defining this hypersurface is a polynomial of degree 16 in the theta constants. First constructed by Schottky [23], and further developed by Igusa [15], this modular form embodies the theoretical solution (cf. [11, x3]) to the classical Schottky problem for g = 4. arXiv:1707.08520v2 [math.AG] 30 Sep 2018 The Schottky problem also exists in tropical geometry [19]. The tropical Siegel space trop Hg is the cone of positive definite g × g-matrices, endowed with the fan structure given by trop the second Voronoi decomposition.
    [Show full text]
  • The Schottky Problem
    The Schottky Problem Samuel Grushevsky Princeton University January 29, 2009 | MSRI What is the Schottky problem? Schottky problem is the following question (over C): Which principally polarized abelian varieties are Jacobians of curves? Mg moduli space of curves C of genus g Ag moduli space of g-dimensional abelian varieties (A; Θ) (complex principally polarized) Jac : Mg ,!Ag Torelli map Jg := Jac(Mg ) locus of Jacobians (Recall that A is a projective variety with a group structure; Θ is an ample divisor on A with h0(A; Θ) = 1; Jac(C) = Picg−1(C) ' Pic0(C)) Schottky problem. Describe/characterize Jg ⊂ Ag . Why might we care about the Schottky problem? Relates two important moduli spaces. Lots of beautiful geometry arises in this study. A \good" answer could help relate the geometry of Mg and Ag . Could have applications to problems about curves easily stated in terms of the Jacobian: Coleman's conjecture For g sufficiently large there are finitely many curves of genus g such that their Jacobians have complex multiplication. Stronger conjecture (+ Andre-Oort =) Coleman). There do not exist any complex geodesics for the natural metric on Ag that are contained in Jg (and intersect Jg ). [Work on this by M¨oller-Viehweg-Zuo;Hain, Toledo...] (Super)string scattering amplitudes [D'Hoker-Phong], . Dimension counts g dim Mg dim Ag 1 1 = 1 indecomposable 2 3 = 3 Mg = Ag 3 6 = 6 4 9 +1 = 10 Schottky0s original equation 5 12 +3 = 15 Partial results (g−3)(g−2) g(g+1) g 3g − 3 + 2 = 2 \weak" solutions (up to extra components) Classical (Riemann-Schottky) approach N Embed Ag into P and write equations for the image of Jg .
    [Show full text]
  • On the Schottky Problem for Genus Five Jacobians with a Vanishing Theta Null
    On the Schottky problem for genus five Jacobians with a vanishing theta null Daniele Agostini and Lynn Chua Abstract We give a solution to the weak Schottky problem for genus five Jacobians with a vanishing theta null, answering a question of Grushevsky and Salvati Manni. More precisely, we show that if a principally polarized abelian variety of dimension five has a vanishing theta null with a quadric tangent cone of rank at most three, then it is in the Jacobian locus, up to extra irreducible components. We employ a degeneration argument, together with a study of the ramification loci for the Gauss map of a theta divisor. 1 Introduction The Schottky problem asks to recognize the Jacobian locus Jg inside the moduli space Ag of principally polarized abelian varieties of dimension at least 4, and it has been a central problem in algebraic geometry for more than a century. In the most classical interpretation, the problem asks for equations in the period matrix τ that vanish exactly on the Jacobian locus. In this form, the Schottky problem is completely solved only in genus 4, with an explicit equation given by Schottky [Sch88] and Igusa [Igu81]. The weak Schottky problem asks for explicit equations that characterize Jacobians up to extra irreducible components. A solution to this problem was given in genus 5 by Accola [Acc83] and, in a recent breakthrough, by Farkas, Grushevsky and Salvati Manni in all genera [FGS17]. arXiv:1905.09366v1 [math.AG] 22 May 2019 There have been many other approaches to the Schottky problem over the years; see [Gru12] for a recent survey.
    [Show full text]
  • The Converse of Abel's Theorem by Veniamine Kissounko a Thesis
    The Converse of Abel’s Theorem by Veniamine Kissounko A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Mathematics University of Toronto Copyright c 2009 by Veniamine Kissounko Abstract The Converse of Abel’s Theorem Veniamine Kissounko Doctor of Philosophy Graduate Department of Mathematics University of Toronto 2009 In my thesis I investigate an algebraization problem. The simplest, but already non- trivial, problem in this direction is to find necessary and sufficient conditions for three graphs of smooth functions on a given interval to belong to an algebraic curve of degree three. The analogous problems were raised by Lie and Darboux in connection with the classification of surfaces of double translation; by Poincare and Mumford in connection with the Schottky problem; by Griffiths and Henkin in connection with a converse of Abel’s theorem; by Bol and Akivis in the connection with the algebraization problem in the theory of webs. Interestingly, the complex-analytic technique developed by Griftiths and Henkin for the holomorphic case failed to work in the real smooth setting. In the thesis I develop a technique of, what I call, complex moments. Together with a simple differentiation rule it provides a unified approach to all the algebraization problems considered so far (both complex-analytic and real smooth). As a result I prove two variants (’polynomial’ and ’rational’) of a converse of Abel’s theorem which significantly generalize results of Griffiths and Henkin. Already the ’polynomial’ case is nontrivial leading to a new relation between the algebraization problem in the theory of webs and the converse of Abel’s theorem.
    [Show full text]
  • Period Constraints on Hyperelliptic Branch Points
    Period Constraints on Hyperelliptic Branch Points James S. Wolper Department of Mathematics Idaho State University Pocatello, ID 83209–8085 USA 29 June 2021 Abstract. Information Theoretic analysis of the periods of a hyperelliptic curve provides more information about the well–known but abstract relationship between the branch points and the periods. Here one constructs a canonical homology basis for a hyperelliptic curve that shows that its periods must satisfy certain constraints and defines an open set in the Siegel upper half space that cannot contain any period matrices of hyperelliptic curves. Introduction For decades now researchers have used algebraic curves to address questions in coding and cryptography. This raises interesting questions about the curves themselves based on Information Theoretic considerations. In one direction, suppose that Alice wants to tell Bob about a compact curve (ie, Riemann Surface) with genus g ≥ 2. By Torelli’s Theorem, she need only send him the period matrix, transmitting O(g2) complex numbers. The curve she is describing only depends on O(g) parameters, the dimension of the moduli space being sparse arXiv:2106.15696v1 [math.AG] 29 Jun 2021 3g − 3, so there is a lot of redundancy in her message. The period matrix is in the sense of [D], and should therefore be compressible. The perspective that the period matrix is a compressible signal is the central idea of the Information–Theoretic Schottky Problem. The attempt to apply ideas from Information Theory and Compressed Sensing [D] to the Schottky problem has led to many interesting experiments, conjectures, and theorems [W12]. These questions only make sense when the genus is large.
    [Show full text]
  • The Asymptotic Schottky Problem
    The asymptotic Schottky problem Lizhen Ji,∗ Enrico Leuzinger Abstract Let Mg denote the moduli space of compact Riemann surfaces of genus g and let Ag be the space of principally polarized abelian varieties of (complex) dimension g. Let J : Mg −→ Ag be the map which associates to a Riemann surface its Jacobian. The map J is injective, and the image J(Mg) is contained in a proper subvariety of Ag when g ≥ 4. The classical and long-studied Schottky problem is to characterize the Jacobian locus Jg := J(Mg) in Ag. In this paper we adress a large scale version of this problem posed by Farb and called the coarse Schottky problem: How does Jg look “from far away”, or how “dense” is Jg in the sense of coarse geometry? The coarse geometry of the Siegel modular variety Ag is encoded in its asymptotic cone Cone∞(Ag), which is a Euclidean simplicial cone of (real) dimension g. Our main result asserts that the Jacobian locus Jg is “asymptotically large”, or “coarsely dense” in Ag. More precisely, the subset of Cone∞(Ag) determinded by Jg actually coincides with this cone. The proof also shows that the Jacobian locus of hyperelliptic curves is coarsely dense in Ag as well. We also study the boundary points of the Jacobian locus Jg in Ag and in the Baily-Borel and the Borel-Serre compactification. We show that for large genus g the set of boundary points of Jg in these compactifications arXiv:0811.4059v1 [math.GT] 25 Nov 2008 is “small”. 1 Introduction The Siegel upper half space Hg is a Hermitian symmetric space of noncompact type which generalizes the Poincar´eupper half plane: g×g Hg := {Z ∈ C | Z symmetric, Im Z positive definite}.
    [Show full text]
  • The Schottky Problem
    THE SCHOTTKY PROBLEM Gerard van der Geer By associating to a (smooth irreducible) curve C of genus g > 0 its Jacobian Jac(C) one obtains a morphism M ~ A from the moduli g g space of curves of genus g to the moduli space of principally polari- zed Abelian varieties of dimension g. A well-known theorem of Torelli says that this morphism is injective. The image of ~{g in Ag is not closed , it is only closed inside A g,° the set of points of A g that correspond to indecomposable principally polarized abelian varieties (i.e. that are not products). For g=1,2,3 the closure of the image of Mg equals Ag . Since dimA g =g(g+l)/2 , dim M g =3g-3 (for g > i) one sees that for g > 3 dimAg > dim M g , and so the question arises how we can characterize the image of M in A . This question goes g g back to Riemann, but is usually called Schottky's problem. In "Curves and their Jacobians" Mumford treats the Schottky pro- blem and the closely related question how to distinguish Jacobians from general principally polarized abelian varieties. In his review of the situation at that moment (1975) he describes four approaches and their merits. He concludes that none of these seems to him a definitive solution. In the meantime the situation has changed a lot. Some of the approaches have been worked out more completely, while new and successfull approaches have appeared. This paper deals with them. I hope to convince the reader that Mumford's statement that problems in this corner of nature are subtle and worthy of his time still very much holds true.
    [Show full text]