Palm (Phoenix Dactylifera L.)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae)
SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 68 Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae) Emmet J. Judziewicz and Thomas R. Soderstrom SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1989 ABSTRACT Judziewicz, Emmet J., and Thomas R. Soderstrom. Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contributions to Botany, number 68,52 pages, 24 figures, 1 table, 1989.-Although resembling the core group of the bambusoid grasses in many features of leaf anatomy, the Neotropical rainforest grass genera Anomochloa and Streptochaeta share characters that are unusual in the subfamily: lack of ligules, exceptionally long microhairs with an unusual morphology, a distinctive leaf blade midrib structure, and 5-nerved coleoptiles. Both genera also possess inflorescences that are difficult to interpret in conventional agrostological terms. Anomochloa is monotypic, and A. marantoidea, described in 1851 by Adolphe Brongniart from cultivated material of uncertain provenance, was rediscovered in 1976 in the wet forests of coastal Bahia, Brazil. The inflorescence terminates in a spikelet and bears along its rachis several scorpioid cyme-like partial inflorescences. Each axis of a partial inflorescence is subtended by a keeled bract and bears as its first appendages two tiny, unvascularized bracteoles attached at slightly different levels. The spikelets are composed of an axis that bears two bracts and terminates in a flower. The lower, chlorophyllous, deciduous spikelet bract is separated from the coriaceous, persistent, corniculate upper bract by a cylindrical, indurate internode. The flower consists of a low membrane surmounted by a dense ring of brown cilia (perigonate annulus) surrounding the andrecium of four stamens, and an ovary bearing a single hispid stigma. -
The Journal of the American Bamboo Society Volume 18
The Journal of the American Bamboo Society Volume 18 BAMBOO SCIENCE & CULTURE The Journal of the American Bamboo Society is published by the American Bamboo Society Copyright 2004 ISSN 0197– 3789 Bamboo Science and Culture: The Journal of the American Bamboo Society is the continuation of The Journal of the American Bamboo Society President of the Society Board of Directors Gerald Morris Michael Bartholomew Kinder Chambers Vice President James Clever Dave Flanagan Ian Connor Dave Flanagan Treasurer Ned Jaquith Sue Turtle David King Lennart Lundstrom Secretary Gerald Morris David King Mary Ann Silverman Steve Stamper Membership Chris Stapleton Michael Bartholomew Mike Turner JoAnne Wyman Membership Information Membership in the American Bamboo Society and one ABS chapter is for the calendar year and includes a subscription to the bimonthly Magazine and annual Journal. See http://www.bamboo.org for current rates or contact Michael Bartholomew, 750 Krumkill Rd. Albany NY 12203-5976. On the Cover: Otatea glauca L. G. Clark & Cortés growing at the Quail Botanical Garden in Encinitas,CA (See: “A New Species of Otatea from Chiapas, Mexico” by L.G. Clark and G. Cortés R in this issue) Photo: L. G. Clark, 1995. Bamboo Science and Culture: The Journal of the American Bamboo Society 18(1): 1-6 © Copyright 2004 by the American Bamboo Society A New Species of Otatea from Chiapas, Mexico Lynn G. Clark Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020 U. S. A and Gilberto Cortés R. Instituto Tecnológico de Chetumal, Apartado 267, Chetumal, Quintana Roo, México Otatea glauca, a narrow endemic from Chiapas, Mexico, is described as new. -
Shedding Light on the Evolution of Grasses and Grasslands Through Automated, Quantitative Imaging Analyses of Plant Silica Microfossils Caroline A.E
Shedding light on the evolution of grasses and grasslands through automated, quantitative imaging analyses of plant silica microfossils Caroline A.E. Strömberg Department of Biology & Burke Museum University of Washington Seattle, WA Grasslands are ecologically vital •Grassy biomes make up >40% of Earth’s land surface Color = grass-dominated habitats Lehmann et al. (in prep.) When and how did grassland ecosystems come to be? • When did the grass family first originate and diversify? • When did grasses become ecologically dominant, forming grasslands? Direct evidence for past grasslands •Grass mesofossils and pollen are rare until the late Miocene—and often hard to interpret taxonomically Pollen Fruit Leaves Strömberg (2002, 2011) Phytoliths (plant silica) Grass epidermis: Grass phytolith in sediment: 10 µm epidermal cell stomata Phytoliths (plant silica) • Taxonomically (Gallaher et al. 2019) useful variation within Poaceae (grass family) PACMAD: Panicoideae Arundinoideae Chloridoideae PACMAD Micrairoideae Aristidoideae Danthonioideae BOP: Bambusoideae Oryzoideae Pooideae BOP Early-diverging grasses Phytoliths (plant silica) • Taxonomically (Gallaher et al. 2019) useful variation within Poaceae (grass family): OPEN habitat o Diversification (tropical) of ancient PACMAD grass lineages o Ecology of past grass OPEN communities habitat (temperate) BOP CLOSED habitat Radiation of open-habitat grasses (Gallaher et al. 2019) • Fossil phytolith morphotypes (Americas, 40 Ma Eurasia): à Open-habitat PACMAD grasses 19 Ma diversified by 40 Ma 40 Ma BOP 35 Ma (Strömberg 2004, 2005, Strömberg et al. 2007, 2013, Miller et al. 2012) Grassland evolution in North America • Earliest (early Miocene) grasslands were dominated by cool-temperate stipoid pooids • Tropical, dry- adapted (C4) chloridoids spread during the latest Miocene (Strömberg 2004, 2005, 2011, Strömberg et al. -
Late Cretaceous Origin of the Rice Tribe Provides Evidence for Early Diversification in Poaceae
ARTICLE Received 9 Jun 2010 | Accepted 17 Aug 2011 | Published 20 Sep 2011 DOI: 10.1038/ncomms1482 Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae V. Prasad1, C.A.E. Strömberg2, A.D. Leaché2, B. Samant3, R. Patnaik4, L. Tang5, D.M. Mohabey6, S. Ge5 & A. Sahni7 Rice and its relatives are a focal point in agricultural and evolutionary science, but a paucity of fossils has obscured their deep-time history. Previously described cuticles with silica bodies (phytoliths) from the Late Cretaceous period (67–65 Ma) of India indicate that, by the latest Cretaceous, the grass family (Poaceae) consisted of members of the modern sub- clades PACMAD (Panicoideae–Aristidoideae–Chloridoideae–Micrairoideae–Arundinoideae– Danthonioideae) and BEP (Bambusoideae–Ehrhartoideae–Pooideae), including a taxon with proposed affinities to Ehrhartoideae. Here we describe additional fossils and show that, based on phylogenetic analyses that combine molecular genetic data and epidermal and phytolith features across Poaceae, these can be assigned to the rice tribe, Oryzeae, of grass subfamily Ehrhartoideae. The new Oryzeae fossils suggest substantial diversification within Ehrhartoideae by the Late Cretaceous, pushing back the time of origin of Poaceae as a whole. These results, therefore, necessitate a re-evaluation of current models for grass evolution and palaeobiogeography. 1 Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow 226 007, India. 2 Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, Washington 98195, USA. 3 Postgraduate Department of Geology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440001, India. 4 Centre for Petroleum and Applied Geology, Panjab University, Chandigarh 160014, India. -
(Poaceae) and Characterization
EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN SETARIA VIRIDIS L. P. BEAUV. By MICHAEL P. MALAHY Bachelor of Science in Biology University of Central Oklahoma Edmond, Oklahoma 2006 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2012 EVOLUTION AND DEVELOPMENT OF VEGETATIVE ARCHITECTURE: BROAD SCALE PATTERNS OF BRANCHING ACROSS THE GRASS FAMILY (POACEAE) AND CHARACTERIZATION OF ARCHITECTURAL DEVELOPMENT IN WEEDY GREEN MILLET ( SETARIA VIRIDIS L. P. BEAUV.) Thesis Approved: Dr. Andrew Doust Thesis Adviser Dr. Mark Fishbein Dr. Linda Watson Dr. Sheryl A. Tucker Dean of the Graduate College I TABLE OF CONTENTS Chapter Page I. Evolutionary survey of vegetative branching across the grass family (poaceae) ... 1 Introduction ................................................................................................................... 1 Plant Architecture ........................................................................................................ 2 Vascular Plant Morphology ......................................................................................... 3 Grass Morphology ....................................................................................................... 4 Methods ....................................................................................................................... -
The First Complete Plastid Genome from Joinvilleaceae (J
RESEARCH ARTICLE The First Complete Plastid Genome from Joinvilleaceae (J. ascendens; Poales) Shows Unique and Unpredicted Rearrangements William P. Wysocki1,2*, Sean V. Burke2, Wesley D. Swingley2, Melvin R. Duvall2 1 Center for Data Intensive Sciences, University of Chicago, 5454 South Shore Dr., Chicago, IL 60615, United States of America, 2 Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America * [email protected] a11111 Abstract Joinvilleaceae is a family of tropical grass-like monocots that comprises only the genus Joinvillea. Previous studies have placed Joinvilleaceae in close phylogenetic proximity to the well-studied grass family. A full plastome sequence was determined and characterized for J. ascendens. The plastome was sequenced with next generation methods, fully assem- OPEN ACCESS bled de novo and annotated. The assembly revealed two novel inversions specific to the Citation: Wysocki WP, Burke SV, Swingley WD, Duvall MR (2016) The First Complete Plastid Joinvilleaceae lineage and at least one novel plastid inversion in the Joinvilleaceae-Poa- Genome from Joinvilleaceae (J. ascendens; ceae lineage. Two previously documented inversions in the Joinvilleaceae-Poaceae line- Poales) Shows Unique and Unpredicted age and one previously documented inversion in the Poaceae lineage were also verified. Rearrangements. PLoS ONE 11(9): e0163218. Inversion events were identified visually and verified computationally by simulation muta- doi:10.1371/journal.pone.0163218 tions. Additionally, the loss and subsequent degradation of the accD gene in order Poales Editor: Chih-Horng Kuo, Academia Sinica, TAIWAN was explored extensively in Poaceae and J. ascendens. The two novel inversions along Received: June 10, 2016 with changes in gene composition between families better delimited lineages in the Poales. -
Dated Historical Biogeography of the Temperate Lohinae (Poaceae, Pooideae) Grasses in the Northern and Southern Hemispheres
-<'!'%, -^,â Availableonlineatwww.sciencedirect.com --~Î:Ùt>~h\ -'-'^ MOLECULAR s^"!! ••;' ScienceDirect PHJLOGENETICS .. ¿•_-;M^ EVOLUTION ELSEVIER Molecular Phylogenetics and Evolution 46 (2008) 932-957 ^^^^^^^ www.elsevier.com/locate/ympev Dated historical biogeography of the temperate LoHinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres Luis A. Inda^, José Gabriel Segarra-Moragues^, Jochen Müller*^, Paul M. Peterson'^, Pilar Catalán^'* ^ High Polytechnic School of Huesca, University of Zaragoza, Ctra. Cuarte km 1, E-22071 Huesca, Spain Institute of Desertification Research, CSIC, Valencia, Spain '^ Friedrich-Schiller University, Jena, Germany Smithsonian Institution, Washington, DC, USA Received 25 May 2007; revised 4 October 2007; accepted 26 November 2007 Available online 5 December 2007 Abstract Divergence times and biogeographical analyses liave been conducted within the Loliinae, one of the largest subtribes of temperate grasses. New sequence data from representatives of the almost unexplored New World, New Zealand, and Eastern Asian centres were added to those of the panMediterranean region and used to reconstruct the phylogeny of the group and to calculate the times of lineage- splitting using Bayesian approaches. The traditional separation between broad-leaved and fine-leaved Festuca species was still main- tained, though several new broad-leaved lineages fell within the fine-leaved clade or were placed in an unsupported intermediate position. A strong biogeographical signal was detected for several Asian-American, American, Neozeylandic, and Macaronesian clades with dif- ferent aifinities to both the broad and the fine-leaved Festuca. Bayesian estimates of divergence and dispersal-vicariance analyses indicate that the broad-leaved and fine-leaved Loliinae likely originated in the Miocene (13 My) in the panMediterranean-SW Asian region and then expanded towards C and E Asia from where they colonized the New World. -
Phylogeny of Poaceae Inferred from Matk Sequences Khidir W. Hilu; Lawrence A. Alice; Hongping Liang Annals of the Missouri Botan
Phylogeny of Poaceae Inferred from matK Sequences Khidir W. Hilu; Lawrence A. Alice; Hongping Liang Annals of the Missouri Botanical Garden, Vol. 86, No. 4. (Autumn, 1999), pp. 835-851. Stable URL: http://links.jstor.org/sici?sici=0026-6493%28199923%2986%3A4%3C835%3APOPIFM%3E2.0.CO%3B2-D Annals of the Missouri Botanical Garden is currently published by Missouri Botanical Garden Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/mobot.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. -
Poaceae) Jordan Kinsley Teisher Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Summer 8-15-2016 Systematics and Evolution of the Arundinoideae and Micrairoideae (Poaceae) Jordan Kinsley Teisher Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Recommended Citation Teisher, Jordan Kinsley, "Systematics and Evolution of the Arundinoideae and Micrairoideae (Poaceae)" (2016). Arts & Sciences Electronic Theses and Dissertations. 900. https://openscholarship.wustl.edu/art_sci_etds/900 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Evolution, Ecology and Population Biology Dissertation Examination Committee: Barbara Schaal, Chair Elizabeth Kellogg, Co-Chair Garland Allen Gerrit Davidse Allan Larson Peter Raven Systematics and Evolution of the Arundinoideae and Micriaroideae (Poaceae) by Jordan K. Teisher A dissertation presented to the Graduate School of Arts & Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2016 St. Louis, Missouri © 2016, Jordan K. Teisher Table -
Arch Iv 107309
IN BAR ARCH IV 107309 . International Network for Bamboo and Rattan IN BAR International Network for Bmnboo and Rattan he International Network for Bamboo and Rattan (INBAR) develops, provides and promoi:es appropriate T technologies a~d other solutions to benefit people and the environment. A world-wide network, it connects governmental and non-governmental organisations and the private sector. INBAR provides leadership, coordi nation, and support for research and development. INBAR's R&D programs cover natural and cultivated raw materials; genetic resources;. processing and utilisation; economic and other social aspects; and supporting ser vices. INBAR aims to enhance the quality of life of poor and disadvantaged people in developing countries and to make favourable impacts on forests and degraded environments. International Network for Bamboo and Rattan International Development Resear~h Centre Regional Office for South Asia 17, Jor Bagh New Delhi 110 003 India IDRC • Li.b. --- DIVERS ITY AND DISTRIBUTION OF NEW WOR-LD BAMBOOS, WITH SPECIAL EMPHASIS ON THE BAMBUSEAE Ximena Londono Instituto Vallecaucano de Investigaciones .Cientificas - INCIV A, Colombia INBAR Working Paper No. 8 International Network for Bamboo and Rattan New Delhi · • Guangzhou • Eindh_oven © International Development Research Centre 1996 All rights re'ierved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission in writing from the publisher. ISBN 81-86247-14-9 FOREWORD he richness of bamboo flora of the New World has been virtually unknown until very Trecently, in spite of large number of bamboo species. -
Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae Emmet J
Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 25 2007 Classification and Biogeography of New World Grasses: Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae Emmet J. Judziewicz University of Wisconsin, Stevens Point Lynn G. Clark Iowa State University, Ames Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Judziewicz, Emmet J. and Clark, Lynn G. (2007) "Classification and Biogeography of New World Grasses: Anomochlooideae, Pharoideae, Ehrhartoideae, and Bambusoideae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 25. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/25 Aliso 23, pp. 303–314 ᭧ 2007, Rancho Santa Ana Botanic Garden CLASSIFICATION AND BIOGEOGRAPHY OF NEW WORLD GRASSES: ANOMOCHLOOIDEAE, PHAROIDEAE, EHRHARTOIDEAE, AND BAMBUSOIDEAE EMMET J. JUDZIEWICZ1,3 AND LYNN G. CLARK2 1Department of Biology, University of Wisconsin–Stevens Point, Stevens Point, Wisconsin 54481, USA; 2Department of Ecology, Evolution and Organismal Biology, 253 Bessey Hall, Iowa State University, Ames, Iowa 50011-1020, USA ([email protected]) 3Corresponding author ([email protected]) ABSTRACT Molecular data support Anomochlooideae and Pharoideae as the two most basal extant clades within Poaceae. Anomochlooideae are endemic to the New World and have two tribes and two genera in- cluding the widespread Streptochaeteae (3–4 spp.) and the critically endangered Anomochloeae (1 sp.) of coastal Bahia, Brazil. Pharoideae are pantropical with one tribe, three genera, and 14 species; all eight species of Pharus occur only in the New World. Bambusoideae and Ehrhartoideae are sister groups and together form a clade sister to Pooideae, although support for this set of relationships is low.