The First Complete Plastid Genome from Joinvilleaceae (J

Total Page:16

File Type:pdf, Size:1020Kb

The First Complete Plastid Genome from Joinvilleaceae (J RESEARCH ARTICLE The First Complete Plastid Genome from Joinvilleaceae (J. ascendens; Poales) Shows Unique and Unpredicted Rearrangements William P. Wysocki1,2*, Sean V. Burke2, Wesley D. Swingley2, Melvin R. Duvall2 1 Center for Data Intensive Sciences, University of Chicago, 5454 South Shore Dr., Chicago, IL 60615, United States of America, 2 Northern Illinois University; 1425 W. Lincoln Hwy, DeKalb, IL 60115, United States of America * [email protected] a11111 Abstract Joinvilleaceae is a family of tropical grass-like monocots that comprises only the genus Joinvillea. Previous studies have placed Joinvilleaceae in close phylogenetic proximity to the well-studied grass family. A full plastome sequence was determined and characterized for J. ascendens. The plastome was sequenced with next generation methods, fully assem- OPEN ACCESS bled de novo and annotated. The assembly revealed two novel inversions specific to the Citation: Wysocki WP, Burke SV, Swingley WD, Duvall MR (2016) The First Complete Plastid Joinvilleaceae lineage and at least one novel plastid inversion in the Joinvilleaceae-Poa- Genome from Joinvilleaceae (J. ascendens; ceae lineage. Two previously documented inversions in the Joinvilleaceae-Poaceae line- Poales) Shows Unique and Unpredicted age and one previously documented inversion in the Poaceae lineage were also verified. Rearrangements. PLoS ONE 11(9): e0163218. Inversion events were identified visually and verified computationally by simulation muta- doi:10.1371/journal.pone.0163218 tions. Additionally, the loss and subsequent degradation of the accD gene in order Poales Editor: Chih-Horng Kuo, Academia Sinica, TAIWAN was explored extensively in Poaceae and J. ascendens. The two novel inversions along Received: June 10, 2016 with changes in gene composition between families better delimited lineages in the Poales. Accepted: September 6, 2016 The presence of large inversions and subsequent reversals in this small family suggested a Published: September 22, 2016 high potential for large-scale rearrangements to occur in plastid genomes. Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Introduction The work is made available under the Creative Commons CC0 public domain dedication. Among monocot Poales, the grass family is most conspicuous ecologically and important agro- nomically. Close relatives to the grasses are found in two families, Joinvilleaceae and Ecdeioco- Data Availability Statement: All plastome files are available from the NCBI Genbank database leaceae [1], which are not as well studied, but suggest biogeographical, morphological, and (KX035098). phylogenomic aspects that bear on the evolutionary origins of the large grass radiation [1, 2, 3]. The two genera of Ecdeiocoleaceaeare narrowly endemic to a restricted region of sand plains Funding: This work was supported by DEB- 1120761 and DEB-1342782 to MRD from NSF in extreme western Australia. Joinvilleaceae, which is more accessible, was selected for this (http://www.nsf.gov). The funders had no role in study because of its previously reported and detailed plastome molecular evolutionary history study design, data collection and analysis, decision [4]. to publish, or preparation of the manuscript. Joinvilleaceae includes the single genus Joinvillea, which originally contained six species [5], Competing Interests: The authors have declared but The Plant List [6] now recognizes four species: J. ascendens, J. borneensis, J. bryanii, and J. that no competing interests exist. plicata. These species are found in often inaccessible localities of Malaysia, western Indonesia, PLOS ONE | DOI:10.1371/journal.pone.0163218 September 22, 2016 1 / 10 Joinvillea Plastome Rearrangements and the Philippines. Joinvillea is also sparsely distributed in the Hawaiian archipelago and other remote Pacific islands where they may be introduced [6, 7]. Joinvillea species are robust, grass-like herbs with strongly plicate leaves and flowers that are borne in large, multibranched terminal panicles. The small, perfect flowers themselves are distinguished from those of grasses in having a conspicuous perianth of six tepals and non-plumose stigmas, both of which suggest insect pollination, possibly by ants [1]. After fertilization the ovaries develop into fleshy drupes [8], again contrasting with the caryopsis typical of Poaceae. Most angiosperm plastid chromosomes (plastomes) are structured with two single copy regions, referred to as the large and small single copy (LSC and SSC) regions, flanked by two inverted perfectly repeated regions (IR) [9]. Compared to grasses, the plastomes of Joinvillea spp. were suggested to have undergone major kilobase-sizedrearrangements indicative of large scale inversion events, suggested by PCR analyses primed from alternative sites in the LSC region [4, 10, 11]. Small inversions are often associated with stem-loop structures suggesting recombination in the stem-forming region as the causal mechanism [12]. However, larger inversions, like those in graminid Poales (Poaceae, Joinvilleaceae, Ecdeiocoleaceae,and Flagel- lariaceae), have been proposed to be the result of recombination. Hiratsuka et al. [13] proposed a mechanism of intermolecular recombination between homologous trnA loci with the simul- taneous formation of chimeric pseudogenes to explain major inversions in rice. Whatever the causes, the distribution of plastome inversions can now be re-explored using full plastome sequences obtained by next-generation sequencing (NGS) technology. While over 140 full grass plastomes have been assembled using traditional Sanger sequenc- ing ([14–17]; and many others) and NGS [18–21], a complete plastome from other families within the graminid clade has yet to be sequenced. Here, the complete plastid chromosome of Joinvillea ascendens is sequenced and described. Evident in the arrangement of subgenomic sections are several large-scale molecular evolutionary events that are not present in grasses and the common cattail (Typha latifolia). Materials and Methods DNA extraction and plastome assembly Silica-dried leaf material was provided by Dr. Lynn Clark, Iowa State University, Ames, IA under voucher (Clark & Attigala 1714). The tissue was homogenized in liquid nitrogen and DNA extrac- tion was performed using the DNeasy plant minikit (Qiagen, Valencia, CA, USA) according to manufacturer instructions. Extractions were quantified using the Qubit fluorometric assay (Life Technologies, Grand Island, NY, USA) and diluted to 2.5 ng/ μL in 20 μL. Illumina libraries were prepared using the Nextera kit (Illumina, San Diego, California, USA) and sequenced single-end on a HiSeq 2000 platform at the Iowa State University DNA core facility (Ames, IA, USA). Quality-trimmed reads were assembled into contiguous sequences (contigs) using Velvet v. 1.2.08 [22] iteratively by using a range of kmer sizes (19–85 by steps of six) and running Velvet using assembled contigs as input [23]. Since no reference plastome exists for any species of Join- villeaceae, contigs could not be scaffolded by an automated method. Extensive in silico genome walking was needed, which follows a process of traversing a decision tree. This entailed manually following all possible branching decisions at the terminus of each contig to extend contigs into linear segments that ultimately formed a circular genetic map. A correct assembly would not lead to premature assembly of repeat regions, including the major inverted repeats, early termination, or incorrect insertion of repetitive sequences. Contigs were then extended by mapping reads and other assembled contigs in Geneious Pro version 7.1.8 (Biomatters Ltd., Auckland, New Zealand) until perfect overlap of at least 20 base pairs (bp) with other contigs or reads was obtained. This was repeated until the quadripartite plastome structure was completed. PLOS ONE | DOI:10.1371/journal.pone.0163218 September 22, 2016 2 / 10 Joinvillea Plastome Rearrangements The assembly was verified by mapping the quality-trimmed reads to the draft assembly in Geneious Pro. The consensus of that mapping was then compared to the sequence of the draft assembly to 1) detect inconsistencies in base composition 2) areas of discontinuity in the read mapping and 3) regions of low read depth. Read depth was found to exceed our minimum acceptable threshhold of 10 across the entire plastome assembly. The plastome was annotated by aligning plastid genes from two reference plastomes: Anomochloa marantoidea (NC014062), which is the sister lineage to all other grasses, and Typha latifolia (NC013823). A. marantoidea was used as the representative grass plastome because of its previous designa- tion as a deeply diverging grass [24]. T. latifolia was used as a reference plastome for gene order (see below). The full plastome for J. ascendens was deposited in Genbank (KX035098). This was compared to the draft plastome of J. plicata [16], which comprises 20 contigs. The draft plastome had only 74.5% coverage of the complete plastome, and homologous portions were 95.2% identical as expected in congeneric species. BLASTN [25] was used to identify regions of significant sequence similarity between the J. ascendens, A. marantoidea, and T. latifolia plastomes. These regions were annotated and plastome rearrangements were first manually identified. The Mauve alignment algorithm [26] was then used with default settings to verify these rearrangements
Recommended publications
  • Improving Our Understanding of Environmental Controls on the Distribution of C3 and C4 Grasses STEPHANIE PAU*, ERIKA J
    Global Change Biology (2013) 19, 184–196, doi: 10.1111/gcb.12037 Improving our understanding of environmental controls on the distribution of C3 and C4 grasses STEPHANIE PAU*, ERIKA J. EDWARDS† andCHRISTOPHER J. STILL‡§ *National Center for Ecological Analysis and Synthesis (NCEAS), 735 State Street, Suite 300, Santa Barbara, CA 93101, USA, †Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA, ‡Department of Geography, University of California, Santa Barbara, CA 93106-4060, USA, §Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331-5752, USA Abstract A number of studies have demonstrated the ecological sorting of C3 and C4 grasses along temperature and moisture gradients. However, previous studies of C3 and C4 grass biogeography have often inadvertently compared species in different and relatively unrelated lineages, which are associated with different environmental settings and distinct adaptive traits. Such confounded comparisons of C3 and C4 grasses may bias our understanding of ecological sorting imposed strictly by photosynthetic pathway. Here, we used MaxEnt species distribution modeling in combination with satellite data to understand the functional diversity of C3 and C4 grasses by comparing both large clades and closely related sister taxa. Similar to previous work, we found that C4 grasses showed a preference for regions with higher temperatures and lower precipitation compared with grasses using the C3 pathway. However, air temperature differences were smaller (2 °C vs. 4 °C) and precipitation and % tree cover differences were larger (1783 mm vs. 755 mm, 21.3% vs. 7.7%, respectively) when comparing C3 and C4 grasses within the same clade vs.
    [Show full text]
  • Introduction in the Americas, Agreat Diversity of Bamboo Endemic Species Is Found in Brazil, North and Central Andes, Mexico and Central America
    Theme: Environment: Ecology and Environmental Concerns Mexican national living bamboo collection ex situ conservation Ma. Teresa Mejia-Saulés and Rogelio Macías Ordóñez Instituto de Ecología A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa, Ver. 91070 México. email: [email protected]@inecol.mx In the Americas, the highest bamboo diversity and endemism is found in Brazil, the northern and central Andes, Mexico and Central America. In 2003, there were 40 native species of bamboos described for Mexico in eleven bamboo genera. Recent work has brought this number to 56 species. More than the half (34) of the Mexican bamboo species are endemic. The Mexican bamboos grow in tropical dry and perennial forests, mixed pine-oak and pine-fire forests, pine forests, and cloud forests from sea level to 3,000 m elevation. Genera of described Mexican woody bamboos species (and spp number) are: Arthrostylidium(1), Aulonemia(1),Chusquea(22),Guadua(7),Merostachys (1),Olmeca(5),Otatea(11),Rhipidocladum(4). Herbaceous genera are Cryptochloa(1),Lithachne(1),Olyra(2). Many of them have a diversity of rustic uses such as material for roofs or walls, furniture, fences, baskets, walking sticks, handcrafts, beehives, agricultural tools as well as ornamental plants. Live collections at the Botanical Gardens that preserve plant genetic resources are curated for various purposes including scientific education and research. The Francisco Javier Clavijero Botanical Garden at the Instituto de Ecología, in Xalapa, Mexico, houses the Mexican national living bamboo collection. It was stablished in 2003 with the collaborative support of INECOL, Bamboo of the Americas, and the InstitutoTecnológico de Chetumal for the ex situ conservation of Mexican bamboo diversity, research and education.
    [Show full text]
  • Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
    Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected].
    [Show full text]
  • Tripsacum Dactyloides Scientific Name  Tripsacum Dactyloides (L.) L
    Tropical Forages Tripsacum dactyloides Scientific name Tripsacum dactyloides (L.) L. Subordinate taxa: Perennial clump grass, Texas, USA Tripsacum dactyloides (L.) L. var. dactyloides Tiller base with short, knotty rhizome and developing prop roots (ILRI 15488) Tripsacum dactyloides (L.) L. var. hispidum (Hitchc.) de Wet & J.R. Harlan Tripsacum dactyloides (L.) L. var. meridonale de Wet & Timothy Tripsacum dactyloides (L.) L. var. mexicanum de Wet & J.R. Harlan Synonyms Single raceme with white stigmas emerging from ♀ spikelets at base of var. dactyloides: basionym Coix dactyloides L.; raceme; purplish stems Tripsacum dactyloides (L.) L. var. occidentale H.C. Single racemes and subdigitate panicle; Cutler & E.S. Anderson anthers emerging from ♂ apical flowers, stigmas on ♀ basal flowers already var. hispidum (Hitchc.) de Wet & J.R. Harlan: senescent Basionym: Tripsacum dactyloides subsp. hispidum Hitchc. Family/tribe Family: Poaceae (alt. Gramineae) subfamily: Panicoideae tribe: Andropogoneae subtribe: Tripsacinae. Morphological description Seed unit with caryopsis Seed units An extremely variable perennial clump grass, with short, fibrous, knotty rhizomes and deep hollow roots. Culms 1‒2.5 (‒4 m) tall, and 3‒5 cm thick at base, branching, prop-rooting from lower nodes; stems purplish, glabrous. Leaf sheath glabrous, often purplish; leaf-blade lanceolate-acuminate, to 30‒75 (‒1.5) cm long and 9‒35 (‒45) mm wide, mostly glabrous, sometimes hairy at the base of the upper blade surface; prominent midrib; Seed production area, Knox margin scabrous; ligule a fringed membrane, 1‒1.5 mm County, Texas, USA (PI 434493) long. Inflorescence 10‒20 (‒30) cm long, terminal and axillary, commonly a single raceme, or subdigitate panicle comprising 2‒3 (‒6) racemes of usually A.
    [Show full text]
  • Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae)
    SMITHSONIAN CONTRIBUTIONS TO BOTANY NUMBER 68 Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae) Emmet J. Judziewicz and Thomas R. Soderstrom SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1989 ABSTRACT Judziewicz, Emmet J., and Thomas R. Soderstrom. Morphological, Anatomical, and Taxonomic Studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contributions to Botany, number 68,52 pages, 24 figures, 1 table, 1989.-Although resembling the core group of the bambusoid grasses in many features of leaf anatomy, the Neotropical rainforest grass genera Anomochloa and Streptochaeta share characters that are unusual in the subfamily: lack of ligules, exceptionally long microhairs with an unusual morphology, a distinctive leaf blade midrib structure, and 5-nerved coleoptiles. Both genera also possess inflorescences that are difficult to interpret in conventional agrostological terms. Anomochloa is monotypic, and A. marantoidea, described in 1851 by Adolphe Brongniart from cultivated material of uncertain provenance, was rediscovered in 1976 in the wet forests of coastal Bahia, Brazil. The inflorescence terminates in a spikelet and bears along its rachis several scorpioid cyme-like partial inflorescences. Each axis of a partial inflorescence is subtended by a keeled bract and bears as its first appendages two tiny, unvascularized bracteoles attached at slightly different levels. The spikelets are composed of an axis that bears two bracts and terminates in a flower. The lower, chlorophyllous, deciduous spikelet bract is separated from the coriaceous, persistent, corniculate upper bract by a cylindrical, indurate internode. The flower consists of a low membrane surmounted by a dense ring of brown cilia (perigonate annulus) surrounding the andrecium of four stamens, and an ovary bearing a single hispid stigma.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Copyright by Stephannie Coeto Coix 2018
    Copyright by Stephannie Coeto Coix 2018 The Thesis committee for Stephannie Coeto Coix Certifies that this is the approved version of the following thesis: Alexandre Testanegra: An Ottoman Spy in the New World? APPROVED BY SUPERVISING COMMITTEE: ________________________________ Jorge Canizares, Supervisor ________________________________ Mariam Bodian Alexandre Testanegra: An Ottoman Spy in the New World? by Stephannie Coeto Coix Thesis Presented to the Faculty of the Graduate School of the University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May, 2018 Dedicado a los dos seres más importantes de mi vida: Abisai y Elena Acknowledgments I am really thankful to Dr. Jorge Cañizares for all the support, guidance, and faith in my project. I am very proud of being under your supervision. I am also thankful to Dr. Mariam Bodian for the analytical assistance. Your questions and comments about the interpretation of the file, helped me to find its unsuspected scope. Thank you also to Bradley Dixon, Kristie Flannery, Adrian Masters, and Gary Dunbar for your generous comments and corrections in the reviewing process. Más que a nadie, gracias a mi esposo Abisai Pérez. El amor y la admiración que te profeso no pueden expresarse con palabras. Sólo puedo decirte gracias por apoyarme y acompañarme a cada momento de la vida. Por ser mi porrista incondicional, editor y mi modelo a seguir. Gracias a mi mamaita, Elena Coix. Tu amor, sabiduría y ejemplo me han dado todas las cosas maravillosas que tengo hoy en la vida. Estar a la altura de la gran mujer y madre que eres, ha sido y será siempre mi mayor motivación en la vida.
    [Show full text]
  • Phylogenetic Analyses Reveal the Shady History of C4 Grasses Erika J
    Phylogenetic analyses reveal the shady history of C4 grasses Erika J. Edwardsa,1 and Stephen A. Smithb aDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; and bNational Evolutionary Synthesis Center, Durham, NC 27705 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved December 31, 2009 (received for review August 24, 2009) Grasslands cover more than 20% of the Earth's terrestrial surface, has provided a strong selection pressure for C4 evolution in and their rise to dominance is one of the most dramatic events of eudicots (4). Grasses have long been viewed as an interesting biome evolution in Earth history. Grasses possess two main photo- exception to this pattern (9). Significant positive correlations synthetic pathways: the C3 pathway that is typical of most plants between C4 grass abundance and growing season temperature and a specialized C4 pathway that minimizes photorespiration and have been documented at both continental and regional scales thus increases photosynthetic performance in high-temperature (10–13); C4 grasses dominate tropical grasslands and savannas and/or low-CO2 environments. C4 grasses dominate tropical and but are virtually absent from cool-temperate grasslands and subtropical grasslands and savannas, and C3 grasses dominate the steppes. Furthermore, both experimental measurements of world's cooler temperate grassland regions. This striking pattern photosynthetic light use efficiency (termed “quantum yield”), has been attributed to C4 physiology, with the implication that the and predictions of leaf models of C3 and C4 photosynthesis evolution of the pathway enabled C4 grasses to persist in warmer provide strong evidence that C4 grasses outperform C3 grasses at climates than their C3 relatives.
    [Show full text]
  • Jan Dvorak (As Quickly Written Down by a Person with Poor Hearing…Me)
    1/22/2018 The Impact of Polyploidy on Genome Evolution in Poales and Other Monocots “I don’t have to emphasize that gene duplications are the fabric of evolution in plants.” -Jan Dvorak (as quickly written down by a person with poor hearing…me) Michael R. McKain The University of Alabama @mrmckain @mrmckain Poales Diversity Grass genomes: the choose your own adventure of genome evolution • ~22,800 species • ~11,088 species in Poaceae • Transposons (McClintock, Wessler) • GC content bias (Carels and Bernardi 2000) • Three WGD events 0 0 4 0 0 • rho (Peterson et al. 2004) 3 y c n 0 e 0 u 2 q e r F • 0 sigma (Tang et al. 2010) 0 1 • tau (Tang et al. 2010, Jiao et al. 2014) 0 %GC Givnish et al. 2010 @mrmckain Schnable et al., 2009 Zeroing in on WGD placement Banana genome Pineapple genome How has ancient polyploidy altered the genomic landscape in grasses and other Poales? D’Hont et al. 2012 Ming, VanBuren et al. 2015 Recovered sigma after grass divergence from commelinids Recovered sigma after grass+pineapple divergence from commelinids @mrmckain @mrmckain 1 1/22/2018 Phylotranscriptomic approach Coalescence-based Phylogeny of 234 Single-copy genes • Sampling 27 transcriptomes and 7 genomes • Phylogeny consistent with previous • Representation for all families (except Thurniaceae) in nuclear gene results Poales • Conflicting topology with • RNA from young leaf or apical meristem, a combination of chloroplast genome tree: Moncot Tree of Life and 1KP • Ecdeiocolea/Joinvillea sister instead of • General steps: a grade • Trinity assembly • Typha
    [Show full text]
  • The Journal of the American Bamboo Society Volume 18
    The Journal of the American Bamboo Society Volume 18 BAMBOO SCIENCE & CULTURE The Journal of the American Bamboo Society is published by the American Bamboo Society Copyright 2004 ISSN 0197– 3789 Bamboo Science and Culture: The Journal of the American Bamboo Society is the continuation of The Journal of the American Bamboo Society President of the Society Board of Directors Gerald Morris Michael Bartholomew Kinder Chambers Vice President James Clever Dave Flanagan Ian Connor Dave Flanagan Treasurer Ned Jaquith Sue Turtle David King Lennart Lundstrom Secretary Gerald Morris David King Mary Ann Silverman Steve Stamper Membership Chris Stapleton Michael Bartholomew Mike Turner JoAnne Wyman Membership Information Membership in the American Bamboo Society and one ABS chapter is for the calendar year and includes a subscription to the bimonthly Magazine and annual Journal. See http://www.bamboo.org for current rates or contact Michael Bartholomew, 750 Krumkill Rd. Albany NY 12203-5976. On the Cover: Otatea glauca L. G. Clark & Cortés growing at the Quail Botanical Garden in Encinitas,CA (See: “A New Species of Otatea from Chiapas, Mexico” by L.G. Clark and G. Cortés R in this issue) Photo: L. G. Clark, 1995. Bamboo Science and Culture: The Journal of the American Bamboo Society 18(1): 1-6 © Copyright 2004 by the American Bamboo Society A New Species of Otatea from Chiapas, Mexico Lynn G. Clark Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa 50011-1020 U. S. A and Gilberto Cortés R. Instituto Tecnológico de Chetumal, Apartado 267, Chetumal, Quintana Roo, México Otatea glauca, a narrow endemic from Chiapas, Mexico, is described as new.
    [Show full text]
  • A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution Across the Poales
    GBE A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution across the Poales Michael R. McKain1,2,*, Haibao Tang3,4,JoelR.McNeal5,2, Saravanaraj Ayyampalayam2, Jerrold I. Davis6, Claude W. dePamphilis7, Thomas J. Givnish8,J.ChrisPires9, Dennis Wm. Stevenson10,and James H. Leebens-Mack2 1Donald Danforth Plant Science Center, St. Louis, Missouri Downloaded from https://academic.oup.com/gbe/article-abstract/8/4/1150/2574085 by guest on 17 January 2019 2Department of Plant Biology, University of Georgia 3Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China 4School of Plant Sciences, iPlant Collaborative, University of Arizona 5Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University 6L. H. Bailey Hortorium and Department of Plant Biology, Cornell University 7Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, Pennsylvania 8Department of Botany, University of Wisconsin-Madison 9Division of Biological Sciences, University of Missouri, Columbia 10New York Botanical Garden, Bronx, New York *Corresponding author: E-mail: [email protected]. Accepted: March 7, 2016 Data deposition: Alignments, trees, and analyses for this project have been deposited at Dryad under the accession doi:10.5061/dryad.305s0. DNA sequences have been deposited at GenBank under the accession PRJNA313089. Abstract Comparisons of flowering plant genomes reveal multiple rounds of ancient polyploidy characterized by large intragenomic syntenic blocks. Three such whole-genome duplication (WGD) events, designated as rho (r), sigma (s), and tau (t), have been identified in the genomes of cereal grasses. Precise dating of these WGD events is necessary to investigate how they have influenced diversification rates, evolutionary innovations, and genomic characteristics such as the GC profile of protein-coding sequences.
    [Show full text]
  • Trajectories of Rice-Based Farming Systems
    TRAJECTORIES OF RICE-BASED FARMING SYSTEMS IN MAINLAND SOUTHEAST ASIA R. A. CRAMB (EDITOR) TRAJECTORIES OF RICE-BASED FARMING SYSTEMS 1 IN MAINLAND SOUTHEAST ASIA 2 TRAJECTORIES OF RICE-BASED FARMING SYSTEMS IN MAINLAND SOUTHEAST ASIA R. A. CRAMB (EDITOR) 2015 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia’s international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing- country researchers in areas where Australia has special research competence. It also administers Australia’s contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2015 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] R. A. Cramb, G. D. Gray, M. Gummert, S. M. Haefele, R. D. B. Lefroy, J. C. Newby, W. Stür, and P. Warr,. TRAJECTORIES OF RICE-BASED FARMING SYSTEMS in Mainland Southeast Asia. Australian Centre for International Agricultural Research, 2015.
    [Show full text]