Ecological and Evolutionary Significance of Genomic GC Content
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Irish Vegetation Classification (IVC) Community Synopsis
Irish Vegetation Classification (IVC) www.biodiversityireland.ie/ivc Community Synopsis Scientific name Trichophorum cespitosum/germanicum – Eriophorum angustifolium bog/heath Common name Deergrass – Common Cottongrass bog/heath Community code BG2F Vegetation Trichophorum cespitosum/germanicum is the main component of this community, forming large wefts of mottled brown stems later in the year. Calluna vulgaris and Erica tetralix form the patchy dwarf shrub layer. Other constants are Eriophorum angustifolium , Molinia caerulea , Potentilla erecta and Narthecium ossifragum . In the bryophyte layer, cushions of Racomitrium lanuginosum are the most regular feature but it tends not to dominate and is frequently joined by Sphagnum tenellum , Sphagnum capillifolium , Hypnum jutlandicum and Pleurozia purpurea . Further investigation amongst these plants will often yield some diminutive strands of Odontoschisma sphagni and Diplophyllum albicans . Several other species of sphagna are occasional. Cladonia uncialis is frequent but provides sparse cover. Ecology This is a community of upland peatlands (mean altitude 370 m, n = 112) occurring on wet, acidic and infertile peats. Mainly these are the deep, ombrogenous peats of upland blanket bog, but this vegetation also occurs on shallower soils as wet heath. Sub-communities No sub-communities have been described for this community. Similar communities In no other community does Trichophorum attain such dominance. In the HE4A Molinia caerulea – Trichophorum cespitosum/germanicum bog/heath, Molinia -
Effect of Growth Regulators on the in Vitro Multiplication of Dendrocalamus Hamiltonii
Shatakshi Kapruwan et al. Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 11( Version 1),November 2014, pp.83-86 RESEARCH ARTICLE OPEN ACCESS Effect of growth regulators on the in vitro multiplication of Dendrocalamus Hamiltonii Shatakshi Kapruwan, Meena Bakshi, Manpreet Kaur* Department of Plant Physiology, Forest Research Institute Dehradun Abstract: Bamboos are versatile multipurpose forest product, which are important economically and are often referred to as ‘GREEN GOLD’. Dendrocalamus hamiltonii is one of the economically important species of Bamboo in India. Government of India is running National Bamboo Mission to encourage the production of Bamboos in India. The present work was undertaken to study the effect of Auxins and Cytokinins on the in vitro multiplication of nodal cuttings with axillary buds Dendrocalamus hamiltonii a bamboo species growing in North east region of India and north western Himalayas. The growth medium used was MS (1962) basal medium supplemented with BAP, Kn and NAA at varying concentrations. The multiplication rate of shoots increased with increasing the concentration of NAA and Kn. However the optimum results were obtained on MS medium supplemented with a combination of 0.5 mg/l NAA, 0.5 mg/l Kn and 1 mg/l BAP. Effect of TDZ concentration was also observed, and the results revealed that 0.25 mg/l TDZ, 0.25 mg/l PGH with 1 mg/l BAP were found to be most suitable for in vitro multiplication of Dendrocalamus hamiltonii. Key Words: Dendrocalamus hamiltonii, M S Medium, multiplication, TDZ. I. Introduction: forestry species, including bamboos. -
Site Synopsis
SITE SYNOPSIS SITE NAME: CLOONLOUM MORE BOG NHA SITE CODE: 002307 Cloonloum More Bog NHA is situated approximately 5 km south-west of Tulla, mainly in the townlands of Cloonloum More and Clooncool in Co. Clare. The site comprises a raised bog that includes both areas of high bog and cutover bog. The north-western margin of the site is bounded by a road, while the other margins are bounded by areas of cutover and grassland. The raised bog consists of one crescent-shaped lobe. There is an absence of permanent pools and hummocks/hollows on the high bog and there are large areas of cutover. This raised bog is of particular interest as it is one of the few remaining raised bogs in the county. A small lake, Lough Gara, is included at the south of the site. Much of the high bog vegetation is typical of raised bogs in Ireland, consisting of Ling Heather (Calluna vulgaris), Cross-leaved Heath (Erica tetralix), White Beak- sedge (Rhynchospora alba) and Deergrass (Scirpus cespitosus). Bog-rosemary (Andromeda polifolia) is found on this bog, although not in abundance. The bog moss (Sphagnum spp.) cover is quite variable, with species such as S. capillifolium, S. magellanicum and S. fuscum. The cutover areas surrounding the bog have become dominated by Purple Moor-grass (Molinia caerulea) and Gorse (Ulex europaeus). The lake at the south of the bog is surrounded by the Common Reed (Phragmites australis) and the Bulrush (Typha latifolia). Current landuse on the site consists of peat-cutting around the edge of the high bog, and the drainage associated with this. -
Full Article
Volume 3(4): 599 TELOPEA Publication Date: 12 April 1990 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19904909 Journal of Plant Systematics 6 DOPII(liPi Tm st plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea Vol. 3(4): 599 (1990) 599 SHORT COMMUNICATION Amphibromus nervosus (Poaceae), an earlier combination and further synonyms Arthur Chapman, Bureau of Flora & Fauna, Canberra, has kindly pointed out to me that the combination Amphibromus nervosus (J. D. Hook.) Baillon had been made in 1893, earlier than the combination made by G. C. Druce re ported in our revision of the genus Amphibromus in Australia (Jacobs and Lapinpuro 1986). Baillon's combination had been overlooked by Index Kewensis and by the Chase Index (Chase and Niles 1962). The full citation is: Amphibromus nervosus (J. D. Hook.) Baillon, Histoire des Plantes 12: 203 (1893). BASIONYM: Danthonia nervosa J. D. Hook., Fl.FI. Tasm. 2: 121, pI.pl. 163A (1858). Hooker based his combination on the illegitimate Avena nervosa R. Br. (see Jacobs and Lapinpuro 1986 for further comment). Amphibromus nervosus (1. D. Hook.) G. C. Druce then becomes a superfluous combina tion and is added to the synonymy. Arthur Chapman also kindly pointed out a synonym that to the best of my knowledge has not been used beyond its initial publication. This synonym is: Avenastrum nervosum Vierh., Verhandlungen der Gesellschaft Deutscher Naturforscher und Artze 85. Versammlung zu Wien (Leipzig) 1: 672 (1913). This name was based on the illegitimate Avena nervosa R. -
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
Flore Et Végétation Du Parc National De La Ruvubu Au Burundi: Diversité, Structure Et Implications Pour La Conservation
FACULTE DES SCIENCES Ecole Interfacultaire de Bioingénieurs Service d’Ecologie du Paysage et Systèmes de Production Végétale Flore et végétation du Parc National de la Ruvubu au Burundi: diversité, structure et implications pour la conservation Thèse présentée en vue de l’obtention du Diplôme de Docteur en Sciences Par Tatien MASHARABU Promoteurs: Professeur Marie-Françoise GODART Professeur Jan BOGAERT Professeur Marie Josée BIGENDAKO-POLYGENIS 04 Octobre 2011 FACULTE DES SCIENCES Ecole Interfacultaire de Bioingénieurs Service d’Ecologie du Paysage et Systèmes de Production Végétale Flore et végétation du Parc National de la Ruvubu au Burundi: diversité, structure et implications pour la conservation Thèse présentée en vue de l’obtention du Diplôme de Docteur en Sciences Par Tatien MASHARABU DEA en Sciences (Université Libre de Bruxelles, 2007) DEA en Biologie Appliquée (Université du Burundi, 2004) Licence en Sciences Biologiques (Université du Burundi, 2002) Composition du jury: Professeur Farid DAHDOUH-GUEBAS (Président, Université Libre de Bruxelles) Professeur Nausicaa NORET (Secrétaire, Université Libre de Bruxelles) Professeur Marie-Françoise GODART (Promoteur, Université Libre de Bruxelles) Professeur Jan BOGAERT (Co-Promoteur, Université de Liège/Gembloux Agro-Bio Tech) Professeur Marie Josée BIGENDAKO-POLYGENIS (Co-Promoteur, Université du Burundi) Docteur Steven DESSEIN (Membre, Jardin Botanique National de Belgique) 04 Octobre 2011 Masharabu T., 2011. Flore et végétation du Parc National de la Ruvubu au Burundi: diversité, structure et implications pour la conservation. Thèse de doctorat, Université Libre de Bruxelles, 224 p. Avant-propos AVANT-PROPOS Cette thèse a été réalisée dans un premier temps au Laboratoire de Botanique Systématique et de Phytosociologie et dans un second temps au Service d’Ecologie du Paysage et Systèmes de Production Végétale (Service FK060) de l’Université Libre de Bruxelles (ULB). -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
International Journal of Biodiversity Andconservation
OPEN ACCESS International Journal of Biodiversity andConservation April-June 2020 ISSN 2141-243X DOI: 10.5897/IJBC www.academicjournals.org About IJBC International Journal of Biodiversity and Conservation (IJBC)provides rapid publication (monthly) of articles in all areas of the subject such as Information Technology and its Applications in Environmental Management and Planning, Environmental Management and Technologies, Green Technology and Environmental Conservation, Health: Environment and Sustainable Development etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in IJBC are peer reviewed. Indexing The International Journal of Biodiversity and Conservation is indexed in: CAB Abstracts, CABI’s Global Health Database, China National Knowledge Infrastructure (CNKI), Dimensions Database, Google Scholar, Matrix of Information for The Analysis of Journals (MIAR), Microsoft Academic IJBC has an h5-index of 13 on Google Scholar Metrics Open Access Policy Open Access is a publication model that enables the dissemination of research articles to the global community without restriction through the internet. All articles published under open access can be accessed by anyone with internet connection. The International Journal of Biodiversity and Conservation is an Open Access journal. Abstracts and full texts of all articles published in this journal are freely accessible to everyone immediately after publication without any form of restriction. Article License All articles published by International Journal of Biodiversity and Conservation are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited. -
22. Tribe ERAGROSTIDEAE Ihl/L^Ä Huameicaozu Chen Shouliang (W-"^ G,), Wu Zhenlan (ß^E^^)
POACEAE 457 at base, 5-35 cm tall, pubescent. Basal leaf sheaths tough, whit- Enneapogon schimperianus (A. Richard) Renvoize; Pap- ish, enclosing cleistogamous spikelets, finally becoming fi- pophorum aucheri Jaubert & Spach; P. persicum (Boissier) brous; leaf blades usually involute, filiform, 2-12 cm, 1-3 mm Steudel; P. schimperianum Hochstetter ex A. Richard; P. tur- wide, densely pubescent or the abaxial surface with longer comanicum Trautvetter. white soft hairs, finely acuminate. Panicle gray, dense, spike- Perennial. Culms compactly tufted, wiry, erect or genicu- hke, linear to ovate, 1.5-5 x 0.6-1 cm. Spikelets with 3 fiorets, late, 15^5 cm tall, pubescent especially below nodes. Basal 5.5-7 mm; glumes pubescent, 3-9-veined, lower glume 3-3.5 mm, upper glume 4-5 mm; lowest lemma 1.5-2 mm, densely leaf sheaths tough, lacking cleistogamous spikelets, not becom- villous; awns 2-A mm, subequal, ciliate in lower 2/3 of their ing fibrous; leaf blades usually involute, rarely fiat, often di- length; third lemma 0.5-3 mm, reduced to a small tuft of awns. verging at a wide angle from the culm, 3-17 cm, "i-^ mm wide, Anthers 0.3-0.6 mm. PL and &. Aug-Nov. 2« = 36. pubescent, acuminate. Panicle olive-gray or tinged purplish, contracted to spikelike, narrowly oblong, 4•18 x 1-2 cm. Dry hill slopes; 1000-1900 m. Anhui, Hebei, Liaoning, Nei Mon- Spikelets with 3 or 4 florets, 8-14 mm; glumes puberulous, (5-) gol, Ningxia, Qinghai, Shanxi, Xinjiang, Yunnan [India, Kazakhstan, 7-9-veined, lower glume 5-10 mm, upper glume 7-11 mm; Kyrgyzstan, Mongolia, Pakistan, E Russia; Africa, America, SW Asia]. -
Edible Seeds and Grains of California Tribes
National Plant Data Team August 2012 Edible Seeds and Grains of California Tribes and the Klamath Tribe of Oregon in the Phoebe Apperson Hearst Museum of Anthropology Collections, University of California, Berkeley August 2012 Cover photos: Left: Maidu woman harvesting tarweed seeds. Courtesy, The Field Museum, CSA1835 Right: Thick patch of elegant madia (Madia elegans) in a blue oak woodland in the Sierra foothills The U.S. Department of Agriculture (USDA) prohibits discrimination in all its pro- grams and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sex- ual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250–9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. Acknowledgments This report was authored by M. Kat Anderson, ethnoecologist, U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS) and Jim Effenberger, Don Joley, and Deborah J. Lionakis Meyer, senior seed bota- nists, California Department of Food and Agriculture Plant Pest Diagnostics Center. Special thanks to the Phoebe Apperson Hearst Museum staff, especially Joan Knudsen, Natasha Johnson, Ira Jacknis, and Thusa Chu for approving the project, helping to locate catalogue cards, and lending us seed samples from their collections. -
A Massively Parallel Pyrosequencing Analysi
How are plant and fungal communities linked to each other in belowground ecosystems? A massively parallel pyrosequencing analysis of the association specificity of root-associated fungi and their host plants Hirokazu Toju1,2, Hirotoshi Sato1,2, Satoshi Yamamoto1,2, Kohmei Kadowaki1,2, Akifumi S. Tanabe1, Shigenobu Yazawa3, Osamu Nishimura3 & Kiyokazu Agata3 1Graduate School of Global Environmental Studies, Kyoto University, Kyoto 606-8501, Japan 2Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan 3Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Keywords Abstract Common mycorrhizal network, endophytes, metagenomics, mycorrhizae, network theory, In natural forests, hundreds of fungal species colonize plant roots. The preference plant communities. or specificity for partners in these symbiotic relationships is a key to understand- ing how the community structures of root-associated fungi and their host plants Correspondence influence each other. In an oak-dominated forest in Japan, we investigated the Hirokazu Toju, Graduate School of Human root-associated fungal community based on a pyrosequencing analysis of the and Environmental Studies, Kyoto University, roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were iden- Sakyo, Kyoto 606-8501, Japan. tified on at least two plant species. Although many mycorrhizal and root-endo- Tel: +81-75-753-6766; Fax: +81-75-753- 6722; E-mail: [email protected] phytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Funding Information Likewise, fungi displayed remarkable variation in their association specificity for This work was supported by the Funding plants even within the same phylogenetic or ecological groups. -
Rytidosperma Popinensis (Blue Wallabygrass) Rytidosperma Popinensis
Notesheet for Rytidosperma popinensis (blue wallabygrass) Rytidosperma popinensis blue wallabygrass T A S M A N I A N F L O R A S P E C I E S N O T E S H E E T Image by Adam Smith Scientific name: Rytidosperma popinensis (D.I.Morris) A.M.Humphreys & H.P.Linder, Ann. Missouri Bot. Gard. 97: 359-360 (2010) Common name: blue wallabygrass (Wapstra et al. 2005) Group: vascular plant, monocotyledon, family Poaceae Name history: Austrodanthonia popinensis, Danthonia popinensis (now Rytidosperma fulvum) Status: Threatened Species Protection Act 1995: delisted April 2016 Environment Protection and Biodiversity Conservation Act 1999: Not listed Distribution: Endemic status: endemic to Tasmania Tasmanian NRM Region: North, South Figure 1. The distribution of Rytidosperma popinensis Plate 1. Rytidosperma popinensis: habit (image by Louise Gilfedder) 1 Threatened Species Section – Department of Primary Industries, Parks, Water and Environment Notesheet for Rytidosperma popinensis (blue wallabygrass) IDENTIFICATION AND ECOLOGY majority of subpopulations occur on roadside Rytidosperma popinensis is a tufted glabrous verges in the Southern and Northern Midlands. perennial grass in the Poaceae family that grows These sites are generally on flat or gently up to 45 cm high (Morris 1990, Curtis & Morris sloping ground, on rock-free soils with a sandy 1994). It is endemic to Tasmania’s Midlands loam or sandy clay loam topsoil (Gilfedder & and lower Derwent Valley (Figure 1), growing Kirkpatrick 1997). The underlying substrate for the most part along roadside verges. includes Jurassic dolerite, Triassic sandstone and Quaternary wind-blown sands. Elevation The species is characterised by its bluish foliage ranges from 15 to 200 m above sea level.