Vertebrate Time-Tree Elucidates the Biogeographic Pattern of a Major Biotic Change Around the K–T Boundary in Madagascar

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Time-Tree Elucidates the Biogeographic Pattern of a Major Biotic Change Around the K–T Boundary in Madagascar Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K–T boundary in Madagascar Angelica Crottinia,b,1, Ole Madsenc, Celine Pouxd,e,f, Axel Straußa, David R. Vieitesg, and Miguel Vencesa,2 aDivision of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, 38106 Braunschweig, Germany; bSezione di Zoologia e Citologia, Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milan, Italy; cAnimal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, The Netherlands; dUniversité Lille Nord de France, Campus Lille 1-Université des Sciences et Technologies de Lille, Laboratoire de Génétique et Évolution des Populations Végétales, F-59650 Villeneuve d’Ascq, France; eCentre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8198, F-59650 Villeneuve d’Ascq, France; fVertebrate Department, Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium; and gMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain Edited by David B. Wake, University of California, Berkeley, CA, and approved January 18, 2012 (received for review August 25, 2011) The geographic and temporal origins of Madagascar’s biota have reconstruction of molecular time-trees have started to resolve long been in the center of debate. We reconstructed a time-tree the biogeography of Madagascar, previously characterized as one including nearly all native nonflying and nonmarine vertebrate of the greatest mysteries of natural history (10, 11). For numerous clades present on the island, from DNA sequences of two single-copy Malagasy clades of amphibians, squamates, and mammals, sister- BDNF RAG1 protein-coding nuclear genes ( and ) and a set of congru- group relationships to African taxa and a Cenozoic age are now ent time constraints. Reconstructions calculated with autocorrelated well established, suggesting a predominance of Out-of-Africa over- or independent substitution rates over clades agreed in placing the – origins of the 31 included clades in Cretaceous to Cenozoic times. The seas dispersal favored by oceanic paleocurrents (11 15). However, two clades with sister groups in South America were the oldest, the exact timing of colonizations, as well as their possible clustering followed by those of a putative Asian ancestry that were significantly in particular periods, remain unstudied for many vertebrate clades older than the prevalent clades of African ancestry. No colonizations and are contentious for others (11), largely because of the use of EVOLUTION from Asia occurred after the Eocene, suggesting that dispersal and different molecular markers and time constraints. In addition, the vicariance of Asian/Indian groups were favored over a comparatively closest relatives of several other taxa are found in South America short period during, and shortly after, the separation of India and or Asia (16, 17). The temporal pattern of vertebrate colonization Madagascar. Species richness of clades correlates with their age but of Madagascar from these different source continents has not been those clades that have a large proportion of species diversity in rain- comprehensively studied to date. fi fi forests are signi cantly more species-rich. This nding suggests an Analyses of molecular data have led to great progress in un- underlying pattern of continuous speciation through time in Mada- derstanding the timing of vertebrate diversification (18, 19). Here, gascar’s vertebrates, with accelerated episodes of adaptive diversifi- cation in those clades that succeeded radiating into the rainforests. we generated a comprehensive dataset that uses the same molec- ular markers and time constraints for nearly all terrestrial and Cretaceous-Tertiary | historical biogeography | lineage diversification | freshwater vertebrate clades occurring on Madagascar and their rainforest adaptation | overseas dispersal sister taxa. The selected genes, BDNF (brain-derived neurotrophic factor) and RAG1 (recombination activating gene 1), are single- adagascar’s unique biodiversity has attracted the interest copy, protein-coding, and universal among gnathostomes. We use Mof evolutionary biologists and biogeographers for a long multiple cross-validated time constraints in a single time-tree to time. This island was part of the Gondwana supercontinent. As a obtain compatible age estimates across clades (20). Those esti- part of Indo-Madagascar, it separated from Africa 160–130 Mya. mates allow us to assess general biogeographic patterns of Mada- The breakup of Indo-Madagascar and northwards drifting of gascar’s colonization by vertebrates, for which we test whether: (i) India and the Seychelles started 88 Mya, leaving Madagascar the majority of extant vertebrate clades colonized Madagascar isolated in the Indian Ocean and without subaerial connection to – – during or after the K T boundary, as suggested by the fossil record any other landmass for the last 65 80 Myr (1). (7); (ii) colonizations followed different temporal patterns The isolation of Madagascar coincided with the end of the depending on the source continent; (iii) species richness of clades Cretaceous, a period of global mass extinction and biotic turnover, fi probably linked to a major meteorite impact marking the Creta- are related to their age in Madagascar; and (iv) clade diversi cation fl ceous–Tertiary (K–T) boundary at 65.5 Mya (2). In Madagascar, was in uenced by habitat type. the different composition of the Late Cretaceous vs. the extant vertebrate fauna led to the hypothesis of a major biotic change in deep time (3). The Cretaceous fauna included lungfishes, gars, Author contributions: D.R.V. and M.V. designed research; A.C., O.M., C.P., and D.R.V. nonranoid giant frogs, dinosaurs, and marsupial and gondwana- performed research; A.C., O.M., C.P., A.S., and M.V. analyzed data; and A.C. and M.V. – wrote the paper. therian mammals (3 8), whereas the extant vertebrate fauna is fl composed of mainly percomorph freshwater fishes, ranoid frogs, The authors declare no con ict of interest. modern squamate reptiles, lemurs, rodents, carnivores, afro- This article is a PNAS Direct Submission. therian mammals, bats, and numerous families of birds (9). Data deposition: The sequences reported in this paper have been deposited in the Gen- bank database (accession nos. JQ073048–JQ073135, JQ073138–JQ073291). The full align- Reconstructing the temporal pattern of this striking biotic ments reported in this paper have been deposited in the Dryad data repository, turnover is hampered by the almost complete lack of post-Cre- datadryad.org (http://dx.doi.org/10.5061/dryad.50r80407). taceous and pre-Pleistocene terrestrial fossil deposits. This fossil 1Present address: Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus gap presents difficulties in understanding how and when the extant Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal. clades of vertebrates colonized the island, and how their sub- 2To whom correspondence should be addressed. E-mail: [email protected]. fi sequent diversi cation took place. In recent times, explicit pa- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. leogeographic and paleoclimatic modeling associated with the 1073/pnas.1112487109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1112487109 PNAS Early Edition | 1of6 Downloaded by guest on September 25, 2021 Results after the Oligocene (Fig. 2B). The dispersal of the ancestors of day Vertebrate Time-Trees Based on Congruent Time Constraints. Phy- geckos to the Mascarene Islands located east of Madagascar oc- logenetic analyses of the combined 1,747 base pairs of RAG1 curred at 22 Mya, and dispersals to the continental Seychelles, and and BDNF for 188 taxa representing nonflying and nonmarine to Asia and Africa occurred in the Oligocene and Eocene (36–28 Malagasy vertebrate clades, their known non-Malagasy sister- Mya). Dispersals to the Comoro islands west of Madagascar were groups, and a set of other vertebrate taxa, recovered most of the recovered by both analyses post-Oligocene, in agreement with fi generally accepted deep and shallow relationships among verte- favorable surface currents in this period, a pattern con rmed by brates (Fig. 1). Time-tree reconstruction with 43 selected time the cross-validations also for those Comoro-Malagasy splits used constraints was based on two approaches that either allow sub- as age constraints in the main analyses. stitution rates to vary independently over clades (ICR) or in an fl autocorrelated fashion (ACR) (Materials and Methods). The Clade Age and Rainforest Habitat In uence Species Richness. Besides the extraordinary degree of endemism at higher taxonomic levels, extremes of the 95% credibility intervals (CrIs) from the two ’ approaches were merged into a single composite CrI (21). Madagascar s biota is characterized by a high, although in- A high congruence among most of an initial set of 48 time completely known, species richness, and by a high proportion of range-restricted species that are microendemic to particular areas constraints was obtained in three cross-validation approaches of the island (9). This pattern might also be typical for other using ACR, here named CV1–CV3 (see SI Appendix for details). tropical regions, but Madagascar is a particularly well-suited In CV1 we assessed statistically the effect of removing single model region to determine the underlying patterns
Recommended publications
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Custom Trip
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Custom Trip October 20—November 6, 2016 Guide: Ken Behrens All photos taken during this trip by Ken Behrens Annotated bird list by Jerry Connolly TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with the opening of a satellite office in the country several years ago, we further solidified our expertise in the “Eighth Continent.” This custom trip followed an itinerary similar to that of our main set-departure tour. Although this trip had a definite bird bias, it was really a general natural history tour. We took our time in observing and photographing whatever we could find, from lemurs to chameleons to bizarre invertebrates. Madagascar is rich in wonderful birds, and we enjoyed these to the fullest. But its mammals, reptiles, amphibians, and insects are just as wondrous and accessible, and a trip that ignored them would be sorely missing out. We also took time to enjoy the cultural riches of Madagascar, the small villages full of smiling children, the zebu carts which seem straight out of the Middle Ages, and the ingeniously engineered rice paddies. If you want to come to Madagascar and see it all… come with Tropical Birding! Madagascar is well known to pose some logistical challenges, especially in the form of the national airline Air Madagascar, but we enjoyed perfectly smooth sailing on this tour. We stayed in the most comfortable hotels available at each stop on the itinerary, including some that have just recently opened, and savored some remarkably good food, which many people rank as the best Madagascar Custom Tour October 20-November 6, 2016 they have ever had on any birding tour.
    [Show full text]
  • Cretaceous Fossil Gecko Hand Reveals a Strikingly Modern Scansorial Morphology: Qualitative and Biometric Analysis of an Amber-Preserved Lizard Hand
    Cretaceous Research 84 (2018) 120e133 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Cretaceous fossil gecko hand reveals a strikingly modern scansorial morphology: Qualitative and biometric analysis of an amber-preserved lizard hand * Gabriela Fontanarrosa a, Juan D. Daza b, Virginia Abdala a, c, a Instituto de Biodiversidad Neotropical, CONICET, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuman, Argentina b Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Lee Drain Building Suite 300, Huntsville, TX 77341, USA c Catedra de Biología General, Facultad de Ciencias Naturales, Universidad Nacional de Tucuman, Argentina article info abstract Article history: Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that Received 16 May 2017 today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is Received in revised form available regarding the origin of scansoriality, which subsequently became widespread and diverse in 15 September 2017 terms of ecomorphology in this clade. An undescribed amber fossil (MCZ Re190835) from mid- Accepted in revised form 2 November 2017 Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, Available online 14 November 2017 preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized Keywords: Squamata paleobiology adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use Paraphalanges morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis Hand evolution and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus.
    [Show full text]
  • Lygodactylus Picturatus Williamsi Subsp. Novo
    446 VOL. XX A STARTLINGLY TURQUOISE-BLUE GECKO FROM TANGANYIKA By Arthur Loveridge, (Museum of Comparative Zoology,Cambridge, Mass.) During a recent collecting trip in Central Tanganyika. Territory, Mr. J. G. Williams visited the thick, low-level, rain forest at Kimboza to the south-east of the Uluguru Mountains. While there his attention was attracted to a small gecko by its brilliant coloration. Having shot it without damage, and believing it to be new, he submitted it to me for determination. I take pleasure in naming it: Lygodactylus picturatus Williamsi subsp. novo Type.-Coryndon Memorial Museum, No. 50/898, an adult d from Kimboza Forest at 1,000 feet, Eastern Province, Tanganyika Territory. Collected by J. G. Williams, 23rd November, 1950. Diagnosis.-In its scalation apparently indistinguishable from typical picturatus, occurring in the surrounding savannah region, but strikingly different in coloration, which may be definedas follows : d. Above entire upper surfaces brilliant turquoise blue; from nostril through eye to nape is a broad black streak; three or four scales above this a sharply defined black chevron, one or two scales in width, extends back to the nape except for a two• scale-wrde interruption above each orbit; flanks finely speckled with black; limbs almost immaculate. Below, chin and throat turquoise blue overlaid by an ill-defined black chevron on the mental and along the base of the labials; four parallel, broad, some• times coalescing, black streaks extend from chin to neck; forelimbs, chest, belly, and base of tail pale orange, deepening to orange towards the sides and on the hind limbs, rest of tail bluish grey p.
    [Show full text]
  • Proposal for Amendment of Appendix I Or II for CITES Cop16
    Langue originale: anglais CoP17 Prop. 30 CONVENTION SUR LE COMMERCE INTERNATIONAL DES ESPECES DE FAUNE ET DE FLORE SAUVAGES MENACEES D'EXTINCTION ____________________ Dix-septième session de la Conférence des Parties Johannesburg (Afrique du Sud), 24 septembre – 5 octobre 2016 EXAMEN DES PROPOSITIONS D'AMENDEMENT DES ANNEXES I ET II A. Proposition Inscription de Lygodactylus williamsi à l’Annexe I en application de l’Article II, paragraphe 1 de la Convention qui satisfait au critère B i) et iv) de l’annexe 1 de la résolution Conf. 9.24 (Rev. CoP16). B. Auteur de la proposition Union européenne et République-Unie de Tanzanie.* C. Justificatif 1. Taxonomie 1.1 Classe: Reptilia 1.2 Ordre: Squamata 1.3 Famille: Gekkonidae 1.4 Genre, espèce ou sous-espèce, et auteur et année: Lygodactylus williamsi Loveridge, 1952 1.5 Synonymes scientifiques: Lygodactylus picturatus williamsi, Loveridge, 1952 1.6 Noms communs: anglais: Turquoise Dwarf Gecko, William’s Dwarf Gecko français: Gecko néon bleu espagnol: Gecko enano de William, Gecko azul o Williams swahili: Baragaja allemand: Türkis-Zwerggecko, Himmelblauer Zwergtaggecko, Blauer Zwergtaggecko, Blauer Haftschwanzgecko 1.7 Numéros de code: 2. Vue d'ensemble Lygodactylus williamsi est un petit gecko endémique de plusieurs parcelles de forêts isolées dans la République-Unie de Tanzanie (ci-après la Tanzanie) (Flecks et al., 2012a). Les mâles sont de couleur bleu vif ce qui fait que l’espèce est particulièrement recherchée sur le marché international des animaux de compagnie (Maisch, 2013). La demande a fortement progressé suite à la publication de la description de l’espèce dans le Guide pratique des reptiles d’Afrique orientale par Spawls et al., (2002) (Weinsheimer et Flecks, 2010).
    [Show full text]
  • Taxonomy Systematik
    Taxonomy Domain: Eukaryota - Whittaker & Margulis,1978 Kingdom: Animalia - Linnaeus, 1758 - animals Subkingdom: Bilateria - (Hatschek, 1888) Cavalier-Smith, 1983 Branch: Deuterostomia - Grobben, 1908 Infrakingdom: Chordonia - (Haeckel, 1874) Cavalier-Smith, 1998 Phylum: Chordata - Bateson, 1885 - Chordates Subphylum: Vertebrata - Cuvier, 1812 - Vertebrates Infraphylum: Gnathostomata - Auct. - Jawed Vertebrates Superclass: Tetrapoda - Goodrich, 1930 Class: Sauropsida Subclass: Diapsida Infraclass: Lepidosauromorpha Superorder: Lepidosauria - ? Order: Squamata Suborder: Lacertilia Infraorder: Gekkota Family: Gekkonidae Subfamily: Gekkoninae Genus: Lygodactylus - Gray, 1864 Specific name: williamsi - Loveridge, 1952 Scientific name: Lygodactylus williamsi - Loveridge, 1952 Systematik Klasse: Reptilien (Reptilia) Ordnung: Schuppenkriechtiere (Squamata) Unterordnung: Echsen (Lacertilia) Überfamilie: Geckoartige (Gekkota) Familie: Geckos (Gekkonidae) Gattung: Zwerggeckos (Lygodactylus) Arten: Himmelblauer Zwergtaggecko (Lygodactylus williamsi) Unterarten: --- Peter Kaiser Seite - 1 - Systematik_Lygodactylus.doc, 26.12.2011 Art Unterart Unterart Terra typica Erstbeschreiber (wissenschaftl. Name) (wissenschaftl. Name) (deutscher Name) Lygodactylus angolensis E Angola, Zimbabwe, Tanzania, Kenya, BOCAGE, 1896 Republic of South Africa, S Democratic Republic of the Congo (Zaire), Mozambique, N Botswana ?, NE Namibia. Type locality: Hanha, Benguela, Angola. Lygodactylus angularis Lygodactylus angularis angularis Gelbkopf-Taggecko SW Tanzania, Malawi,
    [Show full text]
  • Zootaxa, Squamata, Gekkonidae, Lygodactylus
    Zootaxa 1073: 31–35 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1073 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Rediscovery and redescription of the Malagasy dwarf gecko Lygodactylus klemmeri MARTA PUENTE*, ACHILLE P. RASELIMANANA** & MIGUEL VENCES*** *Laboratorio de Anatomía Animal, Facultad de Ciencias, Universidade de Vigo, E-36200 Vigo, Spain; ** WWF-Antsakaviro BP 738, Antananarivo 101, Madagascar; [email protected] *** Institute for Biodiversity and Ecosystem Dynamics (IBED), Zoological Museum, University of Amsterdam, Mauritskade 61, 1092 AD Amsterdam, The Netherlands; [email protected] Corresponding author: Marta Puente, [email protected] Abstract Lygodactylus klemmeri Pasteur, 1964 is a small diurnal gekkonid lizard described on the basis of a single male specimen from Antsingy forest in western Madagascar, deposited in the Paris museum. This specimen could not be retrieved during recent years in the Paris collection and might be lost. Hence, the only existing information on this gecko is the original description and some subsequent remarks on the holotype by G. Pasteur. We here report on new material of L. klemmeri from the collection of the University of Antananarivo, Madagascar, and provide a comparison to published morphological data of the holotype. Key words: Squamata, Gekkonidae, Lygodactylus, Lygodactylus klemmeri, Madagascar, taxonomy Introduction Lygodactylus are dwarf lizards from the southern hemisphere, occuring with highest diversity in subsaharan Africa and Madagascar, and with two species in South America (sometimes considered as own genus, Vanzoia). In addition, the genus Microscalabotes is closely related to Lygodactylus (Puente et al. 2005). The systematics and phylogenetic relationships of these diurnal geckos are still largely uncharted.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • MADAGASCAR: the Wonders of the “8Th Continent” a Tropical Birding Set Departure
    MADAGASCAR: The Wonders of the “8th Continent” A Tropical Birding Set Departure November 3—28, 2013 Guide: Ken Behrens All photos taken during this trip. All photos by Ken Behrens unless noted otherwise. TOUR SUMMARY Madagascar has long been a core destination for Tropical Birding, and with last year’s opening of a satellite office in the country, we have further solidified our expertise in the “Eighth Continent.” This was another highly successful set-departure tour to this special island. It included both the Northwestern Endemics Pre-Trip at the start and the Helmet Vanga extension to the Masoala Peninsula at the end. Although Madagascar poses some logistical challenges, especially in the form of the national airline Air Madagascar, we had no problems on this tour, not even a single delayed flight! The birding was great, with 196 species recorded, including almost all of the island’s endemic birds. As usual, the highlight was seeing all five of the incredible ground-rollers, from the roadrunner-like Long-tailed of the spiny forest to the wonderful rainforest-dwelling Scaly. There was a strong cast of vangas, including Helmet, Bernier’s, and Sickle-billed. In fact, we saw every member of the family save the mysterious Red-tailed Newtonia which is only regularly seen in the far south. As normal, the couas were also a favorite. From the shy and beautiful Red-breasted of Madagascar Set Departure Tour Nov. 3-28, 2013 the eastern rainforest to the huge Giant Coua of the dry western forest, we were looking for and at couas virtually every day! The bizarre mesites form a Malagasy endemic family, and we had superb extended views of all three members of the family.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]
  • Analyses of Proposals to Amend
    CoP17 Prop. 30 Inclusion of Turquoise Dwarf Gecko Lygodactylus williamsi in Appendix I Proponents: United Republic of Tanzania and European Union Summary: The Turquoise Dwarf Gecko Lygodactylus williamsi is a species endemic to eastern Tanzania where it is known to occur in four isolated tropical lowland forest patches (Kimboza, Ruvu, Mbagalala and Muhalama) in the Uluguru foothills in the Morogoro Region. Within these forests it exclusively occurs on a species of screwpine Pandanus rabaiensis. It has an estimated area of occurrence of 20km² and area of occupancy of 8km². The species exhibits distinct sexual dichromatism; males have a striking turquoise-blue back while females and immature males are a greenish-bronze. Reproduction is reported to occur throughout the year with a relatively high output of offspring. Generation time is not known. The only available quantified information on population status is for that in the Kimboza Forest Reserve, estimated in 2009 at around 150,000 adults based on visual encounter surveys and mean number of specimens found per P. rabaiensis. Populations elsewhere have not been quantified; those in the Mbagalala and Muhalama forest patches are believed to be small due to the small number of P. rabaiensis trees. The estimated population in Kimboza forest in 2009 was believed to be around one-third smaller than the carrying capacity, based on the number of P. rabaiensis trees. If this represents an actual decline, this may be a result of collection pressure for international trade, which has reportedly been high since 2004. Reports suggest that some 22,000 were collected in 2005 and some 8000 per year in 2006 and 2007.
    [Show full text]
  • Resolving a Taxonomic and Nomenclatural Puzzle in Mantellid Frogs: Synonymization of Gephyromantis Azzurrae with G
    ZooKeys 951: 133–157 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.951.51129 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Resolving a taxonomic and nomenclatural puzzle in mantellid frogs: synonymization of Gephyromantis azzurrae with G. corvus, and description of Gephyromantis kintana sp. nov. from the Isalo Massif, western Madagascar Walter Cocca1, Franco Andreone2, Francesco Belluardo1, Gonçalo M. Rosa3,4, Jasmin E. Randrianirina5, Frank Glaw6, Angelica Crottini1,7 1 CIBIO, Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, No 7, 4485-661 Vairão, Portugal 2 Sezione di Zoologia, Mu- seo Regionale di Scienze Naturali, Via G. Giolitti, 36, 10123 Torino, Italy 3 Institute of Zoology, Zoological Society of London, Regent’s Park, NW1 4RY London, UK 4 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Bloco C2, Campo Grande, 1749-016 Lisboa, Portugal 5 Parc Botanique et Zoologique de Tsimbazaza, BP 4096, Antananarivo 101, Madagascar 6 Zoologische Staatssammlung München (ZSM-SNSB), Münchhausenstraße 21, 81247 München, Germany 7 Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, s/n, 4169- 007, Porto, Portugal Corresponding author: Angelica Crottini ([email protected]) Academic editor: A. Ohler | Received 14 February 2020 | Accepted 9 May 2020 | Published 22 July 2020 http://zoobank.org/5C3EE5E1-84D5-46FE-8E38-42EA3C04E942 Citation: Cocca W, Andreone F, Belluardo F, Rosa GM, Randrianirina JE, Glaw F, Crottini A (2020) Resolving a taxonomic and nomenclatural puzzle in mantellid frogs: synonymization of Gephyromantis azzurrae with G.
    [Show full text]
  • Madagascar Frog, Mantidactylus Pauliani
    Madagascar frog, Mantidactylus pauliani Compiler: Sylviane Rakotozafy Contributors: Sylviane Rakotozafy, Harilala Rahantalisoa, Falitiana Rabemananjara, Markus Roesch Suggested citation: Rakotozafy, L.M.S. et al (2019). A survival blueprint for the Madagascar frog, Mantidactylus pauliani, from Ankaratra Massif, Madagascar and an EDGE of Existence fellowship, Zoological Society of London, London, UK. 1. STATUS REVIEW 1.1 Taxonomy: Class: AMPHIBIA Order: ANURA Family: Mantellidae Genus: Mantidactylus (Guibe, 1974) Subgenus: Brygoomantis (Dubois, 1992) Common name: Madagascar frog, Paulian’s stream frog, sahona Taxonomic sources: Vences et al. 2002 M. pauliani is a small aquatic frog (male: 25-32mm, female: 24-34mm SVL) with a short snout and prominent eyes. The fingers and toes have rounded terminal disc and the feet are webbed. Dorsal colour is brown with large-dark brown spots, and there are dark-brown transversal band across the legs. The underside is pale white. Males have a very distinct femoral gland, which is also visible in females but is much smaller (see Blommers-Schlösser & Blanc, 1991). 1.2 Distribution and population status: M. pauliani is an endemic species to Madagascar and micro-endemic to the Ankaratra Massif. It is only known from Manjakatompo Ankaratra Protected Area, situated within District Ambatolampy, Vankinakaratra region. Due to ongoing declines in the extent and quality of its natural habitat, the population is assumed to be decreasing (IUCN, 2019). 1.2.1 Global distribution: Country Population Distribution Population Notes estimate trend (plus (plus references) references) Madagascar 1025 Individuals From 4 streams in Unknown Population (Andreone et al., Manjakatompo census in 2014) Ankaratra 2011 Protected Area 1.2.2 Local distribution: Country Region / Site Level of Protection Population size Reference(s) Notes province Madagascar Vakinanka Specimens were The creation of Research conducted by (Andreone et al.
    [Show full text]