Lutra Lutra) in Southeast Georgia

Total Page:16

File Type:pdf, Size:1020Kb

Lutra Lutra) in Southeast Georgia ECOSYSTEMS AND SPECIES CONSERVATION; IN GEORGIA Status of the Otter (Lutra lutra) in Southeast Georgia Final report Submitted by: George Gorgadze (NACRES) Submitted to: International Otter Survival Fund (IOSF) Submission date: January 30, 2005 1 Table of Contents 1. Introduction .............................................................................................................................................3 2. Approach and research methods ..........................................................................................................3 2.1 General approach ........................................................................................................................................3 2.2 Survey Method .............................................................................................................................................4 2.3 Footprint identification ..............................................................................................................................4 2.4 Evaluation of current threats .....................................................................................................................4 2.5 GIS analysis and mapping ..........................................................................................................................4 2.6 Interview with key informants ...................................................................................................................4 3. The First Study Area ...............................................................................................................................5 3.1 General description .....................................................................................................................................5 3.2 Survey Results ...............................................................................................................................................6 3.3 Threats ...........................................................................................................................................................9 4. The Second Study Area ..........................................................................................................................11 4.1 General description ....................................................................................................................................11 4.2 Survey Results .............................................................................................................................................12 4.3 Threats .........................................................................................................................................................14 5. The Third Study Area ............................................................................................................................15 5.1 General description ....................................................................................................................................15 5.2 Survey Results .............................................................................................................................................16 5.3 Threats .........................................................................................................................................................18 6. Discussion ................................................................................................................................................19 7. Conclusion ...............................................................................................................................................22 8. Acknowledgements .................................................................................................................................24 9. References ................................................................................................................................................25 10. Appendix 1. Map of Georgia ...............................................................................................................27 11. Appendix 2. Otter survey form ............................................................................................................................28 2 1. Introduction The escalation of human impacts has caused serious damage to Georgian biodiversity (especially wildlife) over the last several decades. The Eurasian otter, one of most endangered species of the Georgian fauna, is still suffering under the influence of poaching, habitat loss, disturbance and pollution. No fundamental research has been undertaken on otters and, therefore, data provided in the literature are scarce. Further, no DNA analysis has been undertaken in this part of the world and, so the actual number of subspecies is not clear. Based on preliminary studies, for Otter survey in southeast Georgia three study areas were chosen: 1) two largest rivers (Iori and Alazani), 2) Lagodekhi reserve – rivers Kabali, Shromiskhevi and 3) Lagodekhiskhevi. Surveys in the Lagodekhi nature Reserve and adjacent areas were conducted during July-August 2004; in the Vashlovani Nature Reserve and adjacent areas in August 2004, and in Iori valley in September 2004. Additional survey in all study areas was carried out during snow cover in November-December. 2. Approach and research methods 2.1. General approach Based on preliminary assessment, three study areas were chosen in southeast Georgia. The first was The Lagodekhi nature Reserve and Lagodekhi Managed reserve and adjacent areas, total area 803 km2. The second was The Vashlovani Nature Reserve and National Park and adjacent areas, total area 1839 km2. The third was Chachuna Managed reserve and Iori valley, total area 1383 km2. Map of the study areas Two largest rivers of southeast Georgia (Iori and Alazani), also Lagodekhi reserve – rivers Kabali, Shromiskhevi and Lagodekhiskhevi were also examined during the survey. 3 2.2. Survey Method The study areas were divided into 10 km grid squares. 600 m of potential good habitat in each 10 km grid square were checked. The intervals between sites were 5-8 km. For rivers the total stretch of 600 m and both side at each survey site were examined, even if otter signs were found. For fish ponds 600 m around the shores of ponds were checked. If the survey site included a bridge, both sides of the bank under the bridge were examined. For each survey site the survey form were filled (Appendix 2.). 2.3. Footprint identification Footprint measurements such as the width and length of the footprint, pad, and toe were taken for each mammal track wherever possible. These measurements were analyzed to identify the total number of species distributed in the region. 2.4. Evaluation of current threats A special field form was used to record current threats. The form incorporated the major threat types outlined in 2000 IUCN Red List of Threatened Species, that were expected to occur in the study area. 2.5. GIS analysis and mapping GPS locations were taken for nearly all data collected during the field studies, including the boundaries of plant communities, animal footprints and other signs. This information was analyzed in GIS and maps have been produced. 2.6. Interview with key informants Interviews with local stakeholders, such as forest guards and local hunters, were carried out to get general information about fauna in the area and human impacts (hunting, trading, and habitat disturbance) on the otter population. 4 3. The First Study Area 3.1. General description Location and size The first study area is situated on the southern aspects of the far eastern end of the Kakheti section of the Great Caucasus range, includes the Lagodekhi nature Reserve and Lagodekhi Managed reserve and adjacent areas, total area 803 km2. The Lagodekhi nature reserve was founded in 1912 and was the first protected area in Georgia. The reserve was expanded three times-in 1936, 1970 and 2003. At present, the Nature Reserve covers 22,358 ha and the newly established Managed Reserve is 1,998 ha. Relief The study area is characterized by a complicated relief and geomorphological structure, with a wide diversity of soil and climatic conditions. The elevation ranges between 300 m. and 3,500 m. above sea level. These features account for high diversity of flora and vegetation. The main watersheds are the Ninigori, Kudigori and Kochalo. The latter is a complicated mountain system that contains a great number of fork mountain ranges and gorges. Hydrology The main rivers of the study area are the Ninostskhevi, the Shromiskhevi, the Lagodekhiskhevi, the Kabali and the Tushcai. There are also numerous creeks, streams and springs. The rivers frequently change their beds, particularly after flooding. Climate Climatic conditions depending on the altitude (see Table below) as well as aspect. Subnival and Alpine zones are characterized by the most severe climatic conditions, whereas the Forested zone (especially in the middle and lower regions) has milder climatic conditions. Climatic variables at various altitudes Altitudinal Annual Absolute Absolute Ann. mean Ann. mean Average range mean t°C max t°C min t°C precipitation relative depth of (m.a.s.l.) (mm) humidity snow cover (%) (cm) 400-1,000 11.3 38.0 -25.0 1100 73.5 <100 1,000-1,500 6.9 - - 1250 - 100 1,500-1,800 4.7 - - 1450 - 100 1,800-2,200 3.5 - - 1650 75.2 110 2,200-2,500 2.2 - - 1700 - 140 2,500-3,000 -0.3 - -30.0 1800 - 200 3,000-3,500
Recommended publications
  • Some Remarks on the Current Efforts for Future Protection of the Kura Water Resources Through Trans-Boundary Cooperation and Modernized National Policy Measures
    International Journal of Hydrology Case Report Open Access Some remarks on the current efforts for future protection of the kura water resources through trans-boundary cooperation and modernized national policy measures Abstract Volume 1 Issue 4 - 2017 Azerbaijan locates in the downstream of the Kura river basin. Protection of the bio- Mehman Agarza Oglu Rzayev resources of the Kura River is important for the future welfare and health of the Department of Agricultural Water and Soil, Azerbaijan Scientific- population living in this basin. Therefore coordinated action for the rational use of Production Association of Hydraulic Engineering and Amelioration, the water resources between basin countries is necessary to mitigate main trans- Azerbaijan boundary problems of changes in hydrological flows, worsening of the river water quality, degradation of the ecosystem and intensified flooding due to the observed Correspondence: Mehman Agarza oglu Rzayev, Department consequence of global climate changes taking place in the recent period. This of Agricultural Water and Soil, Azerbaijan Scientific-Production manuscript outlines the proposals within UNDP-GEF Kura - Araz Project ((Kura II Association of Hydraulic Engineering and Amelioration, Project) to improve interaction and cooperation between Azerbaijan and Georgia as a Azerbaijan, Tel +994503246061, Email [email protected] model for future deepening of the relationship between all basin countries to protect fresh water resources and ecological safety of the entire river ecosystem. Received: September 04, 2017 | Published: November 10, 2017 Introduction industrial wastewaters and return flow from agriculture, imposing health, ecological and aesthetic threats. Water pollution takes place Kura River is the main waterway in Caucasus area, originates from due to the mining industry, agriculture and livestock activities starting eastern Turkey, with the total length of 1515 km and inflow to the from the upstream basin countries.4,5 The cooperation between the Caspian Sea through Georgia and Azerbaijan.
    [Show full text]
  • Preliminary Analysis of Correlated Evolution of Morphology and Ecological Diversification in Lacertid Lizards
    Butll. Soc. Cat. Herp., 19 (2011) Preliminary analysis of correlated evolution of morphology and ecological diversification in lacertid lizards Fèlix Amat Orriols Àrea d'Herpetologia, Museu de Granollers-Ciències Naturals. Francesc Macià 51. 08402 Granollers. Catalonia. Spain. [email protected] Resum S'ha investigat la diversitat morfològica en 129 espècies de lacèrtids i la seva relació amb l'ecologia, per mitjà de mètodes comparatius, utilitzant set variables morfomètriques. La mida corporal és la variable més important, determinant un gradient entre espècies de petita i gran mida independentment evolucionades al llarg de la filogènia dels lacèrtids. Aquesta variable està forta i positivament correlacionada amb les altres, emmascarant els patrons de diversitat morfològica. Anàlisis multivariants en les variables ajustades a la mida corporal mostren una covariació negativa entre les mides relatives de la cua i les extremitats. Remarcablement, les espècies arborícoles i semiarborícoles (Takydromus i el clade africà equatorial) han aparegut dues vegades independentment durant l'evolució dels lacèrtids i es caracteritzen per cues extremadament llargues i extremitats anteriors relativament llargues en comparació a les posteriors. El llangardaix arborícola i planador Holaspis, amb la seva cua curta, constitueix l’única excepció. Un altre cas de convergència ha estat trobat en algunes espècies que es mouen dins de vegetació densa o herba (Tropidosaura, Lacerta agilis, Takydromus amurensis o Zootoca) que presenten cues llargues i extremitats curtes. Al contrari, les especies que viuen en deserts, estepes o matollars amb escassa vegetació aïllada dins grans espais oberts han desenvolupat extremitats posteriors llargues i anteriors curtes per tal d'assolir elevades velocitats i maniobrabilitat. Aquest és el cas especialment de Acanthodactylus i Eremias Abstract Morphologic diversity was studied in 129 species of lacertid lizards and their relationship with ecology by means of comparative analysis on seven linear morphometric measurements.
    [Show full text]
  • Genetic Variation Among Various Populations of Spadefoot Toads (Pelobates Syriacus, Boettger, 1869) at Breeding Sites in Northern Israel
    Advances in Biological Chemistry, 2013, 3, 440-447 ABC http://dx.doi.org/10.4236/abc.2013.35047 Published Online October 2013 (http://www.scirp.org/journal/abc/) Genetic Variation among various populations of spadefoot toads (Pelobates syriacus, Boettger, 1869) at breeding sites in northern Israel Gad Degani School of Science and Technology, Tel Hai Academic College, Upper Galilee, Israel Email: [email protected] Received 1 August 2013; revised 9 September 2013; accepted 21 September 2013 Copyright © 2013 Gad Degani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT 1. INTRODUCTION A genetic study was carried out on spadefoot toads Spadefoot toads (Pelobates syriacus) are distributed in: (Pelobates syriacus) from habitats of various locations Azerbaijan (syriacus), Bulgaria (balcanicus), Greece and altitudes in northern Israel. Cytochrome b and (balcanicus), Iran (syriacus), Iraq (syriacus), Israel 12S were amplified by PCR for the analysis of genetic (syriacus), Lebanon (syriacus), Romania (balcanicus), variation based on five DNA polymorphisms and for Russia (syriacus), Syria (syriacus) and Turkey (syriacus). RAPD PCR. The nucleotide sequences of the mito- They belong to Pelobatidae, with only one genus, Pelo- chondrial DNA fragments were determined from a bates, which contains four species [1-3]. Dzukic et al. [3] 460 bp clone of cytochrome b and a 380 bp clone of reported that the distribution range of P. syriacus in the 12S (GenBank accession numbers, FJ595199-FJ59- Balkans is much larger than the previously known, rather 5203). No genetic variation was found among the compact but disjunctive.
    [Show full text]
  • Otter News No. 124, July 2021
    www.otter.org IOSF Otter News No. 124, July 2021 www.loveotters.org Otter News No. 124, July 2021 Join our IOSF mailing list and receive our newsletters - Click on this link: http://tinyurl.com/p3lrsmx Please share our news Good News for Otters in Argentina Giant otters are classified as “extinct” in Argentina but there have been some positive signs of their return in recent months. The Ibera wetlands lie in the Corrientes region and are one of the world’s largest freshwater ecosystems. Rewilding Argentina is attempting to return the country’s rich biodiversity to the area with species such as jaguars, macaws and marsh deer. They have also been working to bring back giant otters and there have been some small successes and three cubs have recently been born as offspring of two otters that were reintroduced there. And there is more good news for the largest otter species. In May there was the first sighting of “wild” giant otters in Argentina for 40 years! Furthermore, there have been other success stories for otters across the south American nation. Tierra del Fuego, Argentina’s southern-most province, has banned all open-net salmon farming. This ban will help protect the areas fragile marine ecosystems, which is home to half of Argentina’s kelp forests which support species such as the southern river otter. This also makes Argentina the first nation in the world to ban such farming practices. With so many problems for otter species it is encouraging to see some steps forward in their protection in Argentina.
    [Show full text]
  • Birdwatching Tour
    PIRT “Via Pontica” Birdwatching Tour PROMOTING INNOVATIVE RURAL TOURISM IN THE BLACK SEA BASIN REGION 2014 Table of Contents Birdwatching Sites .......................................................................................................................................................................................................... 2 Armenia ...................................................................................................................................................................................................................... 2 Bulgaria .................................................................................................................................................................................................................... 18 Georgia ..................................................................................................................................................................................................................... 36 Turkey ...................................................................................................................................................................................................................... 51 Technical Requirements, Issues and Solutions ............................................................................................................................................................ 70 Detailed Itinerary ........................................................................................................................................................................................................
    [Show full text]
  • The Phylogeny of the Eremias Velox Complex of the Iranian Plateau and Central Asia (Reptilia, Lacertidae): Molecular Evidence from ISSR-PCR Fingerprints
    Iranian Journal of Animal Biosystematics(IJAB) Vol.5, No.1, 33-46, 2009 ISSN: 1735-434X The phylogeny of the Eremias velox complex of the Iranian Plateau and Central Asia (Reptilia, Lacertidae): Molecular evidence from ISSR-PCR fingerprints ESKANDAR RASTEGAR POUYANI Department of Biology, Faculty of Science, Tarbiat Moallem University of Sabzevar, P.O.Box, 397, Iran The rapid fringe-toed lizard, Eremias velox, is widely distributed in the Iranian plateau and Central Asia. Several local morphotypes have so far been reported from different parts of its range, representing this taxon as a species complex. In an attempt to reveal phylogenetic relationships among various populations of this complex group, 37 specimens from 13 geographically distant localities in Iran and central Asia, covering most parts of its range, were sampled. Using Inter Simple Sequence Repeat amplification (ISSR-PCR) as a molecular marker, whole the nuclear genome of all specimens was screened. Phylogenetic analysis of the prepared data set successfully recovered seven major clades within the E. velox complex. Relationships among the major clades were highly resolved with remarkable statistical supports and well correspond to the geographic distribution of the populations. The reconstructed phylogeny implies that the clade as a whole has been originated in the Iranian plateau and expanded into central Asia before uplifting the Kopet-Dagh Mountains. It has then undergone a rapid cladogenesis in the latter area and produced several morphotypes. Within the Iranian clades two main groups could be defined, the foothill and highland dwellers and the open plane and desert dweller populations. The phylogenetic tree together with the estimated amounts of genetic distances among the independent lineages, provide good grounds for a fundamental revision of the taxonomic status of the Eremias velox complex.
    [Show full text]
  • Post Mortem and Genetic Study of an Eurasian Otter (Lutra Lutra) Carcass Collected in Hong Kong SAR
    Post mortem and genetic study of an Eurasian Otter (Lutra lutra) carcass collected in Hong Kong SAR China Published: October 2018 Kadoorie Farm & Botanic Garden Publication Series No.16 Post mortem and genetic study of an Eurasian Otter (Lutra Lutra) carcass collected in Hong Kong SAR Post mortem and genetic study of an Eurasian Otter (Lutra lutra) carcass collected in Hong Kong SAR, China October 2018 Authors and Editorial Miss. Wing Lam Fok Dr. Gary W.J. Ades Mr. Paul Crow Dr. Huarong Zhang Dr. Alessandro Grioni Mr. Yu Ki Wong Contents Introduction ............................................................................................................................... 3 Section 1: Post Mortem Examination ........................................................................................ 4 Section 2: Genetic analysis confirmed taxonomic identity of the otter .................................... 8 Conclusions ................................................................................................................................ 9 Implication of the dog attack and recommendations for L. lutra conservation ....................... 9 Acknowledgements .................................................................................................................. 10 References ............................................................................................................................... 10 Further Readings .....................................................................................................................
    [Show full text]
  • RBMP SEA Report ENG FINAL
    European Union Water Initiative Plus for Eastern Partnership Countries (EUWI+) STRATEGIC ENVIRONMENTAL ASSESSMENT (SEA) OF THE DRAFTALAZANI-IORI RIVER BASIN MANAGEMENT PLAN SEA Report November 2020 2 This SEA report was prepared by the national SEA team established for the pilot project “The Application of a Strategic Environmental Assessment (SEA) for the Draft Alazani-Iori River Basin Management Plan” (hereinafter also the SEA pilot project): Ms. Elina Bakradze (water and soil quality aspects), Ms. Anna Rukhadze (biodiversity, habitats and protected areas), Ms. Lela Serebryakova (health related aspects), Mr. Giorgi Guliashvili (hydrology and natural hazards), Mr. Davit Darsavelidze (socio-economic aspects), Mr. Irakli Kobulia (cultural heritage aspects and GIS) and the UNECE national consultant Ms. Irma Melikishvili (the team leader also covering climate change aspects), under the guidance and supervision of the UNECE international consultant Mr. Martin Smutny. Maps: The thematic maps presented in the SEA Report are produced by Mr. Irakli Kobulia on the basis of the GIS database provided by the EUWI + programme. The SEA Report also includes maps developed in the framework of the EUWI + programme (under result 2) by the REC Caucasus, subcontractor of the EUWI+ programme. The SEA pilot project was carried out under the supervision of Mr. Alisher Mamadzhanov, the EUWI+ programme leader from UNECE with the support provided by Ms. Christine Kitzler and Mr. Alexander Belokurov, UNECE and Ms. Eliso Barnovi, the EUWI+ Country Representative
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Pandion Wild Tours
    PANDION Wild Tours & Pelican Birding Lodge WILDLIFE HOLIDAYS IN BULGARIA, GREECE AND ROMANIA 2017 TOUR CALENDAR CONTENT Dear wildlife lovers, PANDION Wild Tours we will be really happy to take you on BIRDING TOURS a virtual journey to Bulgaria using as st th a vehicle this catalogue of ours. 21 – 29 Jan. 2017 Winter tour in Bulgaria..................2 Our tour agency, “Pandion Wild Tours”, 21 st April – 2nd May 2017 Spring birding tour has endeavoured for already 23 years to welcome Bulgaria and Greece.......................5 nature lovers from almost all European countries, Australia, New Zealand, South Africa, USA, Canada 26th May – 4th June 2017 Spring Birding in Bulgaria............8 and Japan. We are the oldest and most experienced 27th May – 3th June 2017 Wallcreeper & company for wildlife touring in Bulgaria. Vultures – Bulgaria.......................11 Bulgaria is a little country but there is no other like it in Europe: with such a great biodiversity within its small area! More than 250 en- 2nd – 9th Sept. 2017 Autumn Birding in Bulgaria........13 demic species of plants exist in Bulgaria along with many more rare and beautiful European ones. A very rich bird fauna, with some of the BUTTERFLY TOURS rarest representatives of European birds. In autumn, during migration, 10th – 18th June 2017 June Butterfly tour – Bulgaria.....15 you may enjoy really unforgettable sights watching scores of thousands th th of migrating large birds of prey, storks and pelicans, hundreds of thou- 8 – 15 July 2017 July Butterfly tour – Bulgaria......18 sands of smaller migratory birds. And all of them following for millennia BOTANICAL TOURS one and the same route called from ancient times Via Pontica flyway.
    [Show full text]
  • Small Carnivores of Karnataka: Distribution and Sight Records1
    Journal of the Bombay Natural History Society, 104 (2), May-Aug 2007 155-162 SMALL CARNIVORES OF KARNATAKA SMALL CARNIVORES OF KARNATAKA: DISTRIBUTION AND SIGHT RECORDS1 H.N. KUMARA2,3 AND MEWA SINGH2,4 1Accepted November 2006 2 Biopsychology Laboratory, University of Mysore, Mysore 570 006, Karnataka, India. 3Email: [email protected] 4Email: [email protected] During a study from November 2001 to July 2004 on ecology and status of wild mammals in Karnataka, we sighted 143 animals belonging to 11 species of small carnivores of about 17 species that are expected to occur in the state of Karnataka. The sighted species included Leopard Cat, Rustyspotted Cat, Jungle Cat, Small Indian Civet, Asian Palm Civet, Brown Palm Civet, Common Mongoose, Ruddy Mongoose, Stripe-necked Mongoose and unidentified species of Otters. Malabar Civet, Fishing Cat, Brown Mongoose, Nilgiri Marten, and Ratel were not sighted during this study. The Western Ghats alone account for thirteen species of small carnivores of which six are endemic. The sighting of Rustyspotted Cat is the first report from Karnataka. Habitat loss and hunting are the major threats for the small carnivore survival in nature. The Small Indian Civet is exploited for commercial purpose. Hunting technique varies from guns to specially devised traps, and hunting of all the small carnivore species is common in the State. Key words: Felidae, Viverridae, Herpestidae, Mustelidae, Karnataka, threats INTRODUCTION (Mukherjee 1989; Mudappa 2001; Rajamani et al. 2003; Mukherjee et al. 2004). Other than these studies, most of the Mammals of the families Felidae, Viverridae, information on these animals comes from anecdotes or sight Herpestidae, Mustelidae and Procyonidae are generally records, which no doubt, have significantly contributed in called small carnivores.
    [Show full text]
  • Biodiversity Profile of Afghanistan
    NEPA Biodiversity Profile of Afghanistan An Output of the National Capacity Needs Self-Assessment for Global Environment Management (NCSA) for Afghanistan June 2008 United Nations Environment Programme Post-Conflict and Disaster Management Branch First published in Kabul in 2008 by the United Nations Environment Programme. Copyright © 2008, United Nations Environment Programme. This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes without special permission from the copyright holder, provided acknowledgement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme Darulaman Kabul, Afghanistan Tel: +93 (0)799 382 571 E-mail: [email protected] Web: http://www.unep.org DISCLAIMER The contents of this volume do not necessarily reflect the views of UNEP, or contributory organizations. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP or contributory organizations concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries. Unless otherwise credited, all the photos in this publication have been taken by the UNEP staff. Design and Layout: Rachel Dolores
    [Show full text]