Redalyc.Distribution, Relative Abundance and Diversity of Deep

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.Distribution, Relative Abundance and Diversity of Deep Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Nunes, Diogo M.; Travassos, Paulo; Ferreira, Rômulo; Hazin, Fabio Distribution, relative abundance and diversity of deep-sea species at São Pedro and São Paulo Archipelago, Brazil Latin American Journal of Aquatic Research, vol. 44, núm. 2, mayo, 2016, pp. 228-237 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175046298004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 44(2): 228-237, 201Deep6 -sea species at São Pedro and São Paulo Archipelago 228 1 DOI: 10.3856/vol44-issue2-fulltext-4 Research Article Distribution, relative abundance and diversity of deep-sea species at São Pedro and São Paulo Archipelago, Brazil 1 2 3 Diogo M. Nunes , Paulo Travassos , Rômulo Ferreira3 & Fabio Hazin 1Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco Fazenda Saco, Serra Talhada-PE, Brasil 2Laboratório de Ecologia Marinha, Departamento de Pesca e Aquicultura Universidade Federal Rural de Pernambuco, Recife, Brasil 3Laboratório de Oceanografia Pesqueira, Departamento de Pesca e Aquicultura Universidade Federal Rural de Pernambuco, Recife, Brasil Corresponding author: Diogo M. Nunes ([email protected]) ABSTRACT. The goal of the present study is to investigate vertical distribution, relative abundance and diversity of deep-sea species caught using baited traps at São Pedro and São Paulo Archipelago (SPSPA). The surveys were carried out between January 2012 and June 2014 at depths ranging from 170 to 700 m, comprising 53 hauls. Five species of crustaceans, ten of fishes and three of mollusks were caught. The deep-sea geryonid crab Chaceon gordonae was the most abundant species, followed by the Gadiform (Moridae) fish Physiculus sp. The results showed a clear bathymetric stratification, with some species being restricted to shallower layers (170-300 m) and others showing a wider distribution (200-700 m). Several factors can influence the vertical distribution of these species, including oceanographic and biological characteristics. In the future, more studies should be conducted in order to elucidate the interaction between distribution, relative abundance and diversity with various elements that make up the dynamics of this complex ecosystem. Keywords: Chaceon gordonae, Physiculus sp., bottom traps, oceanic islands, Mid-Atlantic Ridge, Equatorial Atlantic Ocean. Distribución, abundancia relativa y diversidad de especies de aguas profundas en el Archipiélago de São Pedro y São Paulo, Brasil RESUMEN. El objetivo del presente estudio es analizar la distribución vertical, abundancia relativa y diversidad de las especies de profundidad capturadas con trampas cebadas en el Archipiélago de São Pedro y São Paulo. Las operaciones de pesca se realizaron entre enero 2012 y junio de 2014, en profundidades de 170 a 700 m, totalizando 53 lances. Se capturaron cinco especies de crustáceos, diez de peces y tres de moluscos. El cangrejo geriónido de aguas profundas Chaceon gordonae fue la especie más abundante, seguido por el pez gadiforme (Moridae), Physiculus sp. Los resultados obtenidos mostraron una clara estratificación batimétrica, con especies restringidas en las capas menos profundas (170-300 m) y otros con amplia distribución vertical (200-700 m). Existen varios factores que pueden influir en la distribución vertical de estas especies, incluyendo las características oceanográficas y biológicas. En el futuro, se requiere efectuar más estudios para comprender la interacción entre la distribución, abundancia relativa y diversidad de las especies de profundidad de este complejo ecosistema. Palabras clave: Chaceon gordonae, Physiculus sp., trampas de fondo, islas oceánicas, Cordillera Meso- Atlántica, Océano Atlántico Ecuatorial. INTRODUCTION Atlantic Ridge, being influenced by a complex system of surface and subsurface currents, and by the São Pedro and São Paulo Archipelago (SPSPA) is a Intertropical Convergence Zone (ICZ) (Travassos et small and isolated group of rocky islands at the al., 1999; Sichel et al., 2008). Equatorial Atlantic Ocean (0°55’10”N, 29°20’33”W), Studies conducted at SPSPA, since the first between the African and the American continents. It is scientific station was installed in 1998, have generated located about 1,010 km from the Brazilian coast a significant amount of information on this complex (Lubbock & Edwards, 1981), as part of the Mid- marine ecosystem, contributing not only to a better ____________________ Paper presented in the 5th Brazilian Congress of Marine Biology, 17-21 May 2015, Porto de Galinhas, Brazil. 2292 Latin American Journal of Aquatic Research understanding of its dynamics, but of the functioning of diameter bucket-entry; Trap 2- rectangular trap with oceanic insular ecosystems worldwide (Vaske-Jr. et al., 2.0x0.60x0.60 m and 0.15 m diameter bucket-entry; 2006; Leite et al., 2008; Motoki et al., 2010; Lima et and Trap 3- conical trap with 1.00 m diameter x 0.60 m al., 2011; Melo et al., 2012; Vieira et al., 2012; Branco height. The dimensions of the traps were based on a et al., 2013; Viana et al., 2013). previous deep-sea survey performed by the REVIZEE With regard to fish diversity, for instance, 108 Program off Northeast Brazil (Oliveira et al., 2014). species have already been identified, some of them The relative abundance of species caught was endemic to the Archipelago (Viana et al., 2009, Vaske- estimated by the catch per unit effort (CPUE) in number Jr. et al., 2010), such as Stegastes sanctipauli (Lubbock of individuals caught per haul and trap (Olivera et al., & Edwards, 1981), Prognathodes obliquus (Lubbock & 2014). For the analysis of vertical distribution, the Edwards, 1981), Enneanectes smithi (Lubbock & CPUE by species was calculated by 100 m strata. The Edwards, 1981), Anthias salmopunctatus (Lubbock & relative abundance was also compared between two Edwards, 1981), and Emblemariopsis sp. (Lubbock & areas: West Seamount and SPSPA. Differences in Edwards, 1981; Feitoza et al., 2003; Vaske-Jr. et al., CPUE between depths, area and day time (day and 2005; Floeter et al., 2008). Studies on benthic night) were tested for species with more than 10 invertebrates, on the other hand, have suggested a individuals caught and for taxonomic groups vertical stratification of communities, an aspect that (crustaceans and fishes). Five hauls that remained acquires particular importance when the steep relief of immersed between 24 and 27 h were discarded from SPSPA is taken into account, emphasizing its analysis. Statistical analysis consisted on application of ecological importance and fragility (Sichel et al., 2008; a normality test Shapiro-Wilk, followed by Bartlett Viana et al., 2009). Several other researches have Test for homogeneity of variances. After the focused on many other species, from zooplankton to heteroscedasticity of data was confirmed, a non- crabs Grapsus grapsus and Chaceon gordonae, and parametric analysis for comparison of medians was lobster Panulirus echinatus (Pinheiro et al., 2003; used (Wilcoxon and Kruskal-Wallis). Statistical Freire et al., 2011; Melo et al., 2012; Ferreira et al., analysis were made using R Program (R Development 2016), as well as mollusks, including 48 taxa, 26 new Core Team, 2007), with 95% confident level (P < 0.05). occurrences to the area, and 19 new species for science Counts in number of individuals were used to (Leite et al., 2008; Lima et al., 2011). estimate mean abundance, number of species and All species surveys conducted in SPSPA to date, species richness index, Margalef (d’), Shannon-Wiener however, have concentrated in shallow waters, less than (H’) diversity index, and Pielou’s evenness index (J’) 250 m deep, so that current knowledge about deep-sea per haul, depth strata, area and for major assemblages, fauna of this important island ecosystem is still almost resulting in a specific classification and ordination. absent (Viana et al., 2012a). This work, therefore, Cluster analysis were calculated by means of the Bray- intended to undertake an investigation on the spatial Curtis index to inspect similarities between taxonomic distribution, relative abundance, and diversity of deep- composition for each haul in terms of relative sea species caught in SPSPA, using baited traps, in abundance (CPUE). Data were log (x+1) transformed order to expand the present knowledge on the structure and then assemblages characteristics were studied by of insular community, including the influence of multi-dimensional scaling (MDS) ordination followed by ANOSIM (Analysis of Similarities), a non- oceanographic processes in their distribution and parametric permutation procedure that tests hypotheses abundance. about sample (haul) similarity (Clarke, 1993). Groupings were then tested by SIMPER (Similarity MATERIALS AND METHODS Percentage Analysis) to identify the principal contri- butor species (Gotelli & Ellison, 2004). Multivariate Eight scientific expeditions were conducted around São analysis was performed with the help of the PRIMER Pedro and São Paulo Archipelago, with “Transmar I” (Plymouth Routines Multivariate Ecological Research) fishing boat, between January 2012 and June
Recommended publications
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Ices/Nafo Wgdec Report 2015
    ICES/NAFO WGDEC REPORT 2015 ICES ADVISORY COMMITTEE ICES CM 2015/ACOM:27 Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC) 16–20 February 2015 Horta, Azores, Portugal International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2015. Report of the ICES/NAFO Joint Working Group on Deep-water Ecology (WGDEC), 16–20 February 2015, Horta, Azores, Portugal. ICES CM 2015/ACOM:27. 113 pp. For permission to reproduce material from this publication, please apply to the Gen- eral Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. © 2015 International Council for the Exploration of the Sea ICES/NAFO WGDEC REPORT 2015 | i Contents Executive summary ................................................................................................................ 4 Opening of the meeting ........................................................................................................ 5 1 Adoption of the agenda ................................................................................................ 6 2 Provide all available new information on distribution of VMEs in the North Atlantic with a view to advising on any new closures to bottom fisheries or revision of existing closures to bottom fisheries (NEAFC standing request). In addition, provide new information on location of habitats sensitive to particular fishing activities (i.e. vulnerable marine ecosystems, VMEs) within EU waters (EC request) ................................... 8 2.1 Introduction ........................................................................................................... 8 2.2 Areas within the NEAFC regulatory area ........................................................
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Decapod Crustacea from the South-West Indian Ocean
    ANNALS OF THE SOUTH AFRICAN MUSEUM ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM CRUSTACEA LIBRARY Volume 52 Band SMlTHSm.,Jl/\N INSTITUTION r-T', J ~ -'-(~, t~ April 1969 April Rt,U ..~ lu ;J-119 Part 7 Dee! DECAPOD CRUSTACEA FROM THE SOUTH-WEST INDIAN OCEAN By B. F. KENSLEY are issued in parts at irregular intervals as material becomes available Obtainable from the South African Museum, P.O. Box 61, Cape Town word uitgegee in dele op ongeree1de tye na beskikbaarheid van stof OUT 01' PRINT/UIT DRUK I, 2(1, 3, 5, 7--s), 3(1-2, 5, t.-p.i.}, 5(2, 5, 7-9), 6(1, t.-p.i.}, 7(1, 3), 8, 9(1-2}, 10(1-3), 11(1-2, 7, t.-p.i.}, 21, 24(2), 27, 31(1-3}, 38, 44(4)· Price of this part/Prys van hierdie deel R2.IO Trustees of the South African Museum © Trustees van die Suid-Afrikaanse Museum 1969 Printed in South Africa by In Suid-Afrika gedruk deur The Rustica Press, Pty., Ltd. Die Rustica-pers ,Edms., Bpk. Court Road, Wynberg, Cape Courtweg. Wynberg, Kaap DECAPOD CRUSTACEA FROM THE SOUTH-WEST INDIAN OCEAN By B. F. KENSLEY South African Museum, Cape Town Introduction Station list • Species list . Systematic discussion Distribution . Summary Acknowledgements References • The material dealt with in this paper comes from several sources. The greatest proportion was collected on the seventh cruise of the R/V Anton Bruun, in 1964, as part of the International Indian Ocean Expedition. The station numbers of the Anton Bruun are designated by the letters BRU, while catalogue numbers of the Zoology Department, University of Cape Town, are designated either as NAD (off the Natal coast) PED (offMoc:;ambique coast), MDD (off the south-western coast of Malagasy Republic), or WBS (Walter's Shoal).
    [Show full text]
  • FISHES (C) Val Kells–November, 2019
    VAL KELLS Marine Science Illustration 4257 Ballards Mill Road - Free Union - VA - 22940 www.valkellsillustration.com [email protected] STOCK ILLUSTRATION LIST FRESHWATER and SALTWATER FISHES (c) Val Kells–November, 2019 Eastern Atlantic and Gulf of Mexico: brackish and saltwater fishes Subject to change. New illustrations added weekly. Atlantic hagfish, Myxine glutinosa Sea lamprey, Petromyzon marinus Deepwater chimaera, Hydrolagus affinis Atlantic spearnose chimaera, Rhinochimaera atlantica Nurse shark, Ginglymostoma cirratum Whale shark, Rhincodon typus Sand tiger, Carcharias taurus Ragged-tooth shark, Odontaspis ferox Crocodile Shark, Pseudocarcharias kamoharai Thresher shark, Alopias vulpinus Bigeye thresher, Alopias superciliosus Basking shark, Cetorhinus maximus White shark, Carcharodon carcharias Shortfin mako, Isurus oxyrinchus Longfin mako, Isurus paucus Porbeagle, Lamna nasus Freckled Shark, Scyliorhinus haeckelii Marbled catshark, Galeus arae Chain dogfish, Scyliorhinus retifer Smooth dogfish, Mustelus canis Smalleye Smoothhound, Mustelus higmani Dwarf Smoothhound, Mustelus minicanis Florida smoothhound, Mustelus norrisi Gulf Smoothhound, Mustelus sinusmexicanus Blacknose shark, Carcharhinus acronotus Bignose shark, Carcharhinus altimus Narrowtooth Shark, Carcharhinus brachyurus Spinner shark, Carcharhinus brevipinna Silky shark, Carcharhinus faiformis Finetooth shark, Carcharhinus isodon Galapagos Shark, Carcharhinus galapagensis Bull shark, Carcharinus leucus Blacktip shark, Carcharhinus limbatus Oceanic whitetip shark,
    [Show full text]
  • Gadiformes Selected Meristic Characters in Species Belonging to the Order Gadiformes Whose Adults Or Larvae Have Been Collected in the Study Area
    548 Gadiformes Selected meristic characters in species belonging to the order Gadiformes whose adults or larvae have been collected in the study area. Total vertebrae, second dorsal and anal fin rays are numerous in the Bathygadidae and Macrouridae, but are seldom reported. Classification sequence and sources of meristic data: Eschmeyer, 1990; Fahay and Markle, 1984; Fahay, 1989; Cohen et al., 1990; Iwamoto, 2002; Iwamoto and Cohen, 2002a; 2002b; Merrett, 2003. PrC = principal caudal rays; ~ = approximately Family Precaudal Total Dorsal Anal Pectoral Pelvic Species Vertebrae Vertebrae Fin Rays Fin Rays Fin Rays Fin Rays Bregmacerotidae Bregmaceros atlanticus 14 53–55 47–56 49–58 16–21 5–7 Bregmaceros cantori 14 45–49 45–49 45–49 16–23 (family) 5–7 Bregmaceros sp. 14–15 52–59 52–59 58–69 16–23 (family) 5–7 Bregmaceros houdei 13–14 47–50 47–50 41–46 16–23 (family) 5–7 Family Precaudal Total First + Second Anal Pectoral Pelvic Species Vertebrae Vertebrae Dorsal Fin Rays Fin Rays Fin Rays Fin Rays Bathygadidae Bathygadus favosus 12–14 ~70 9–11+125 110 15–18 9(10) Gadomus dispar 12–13 80+ 12–13 – 18–20 8 Gadomus longifilis 11–13 – 9–11 – 14–16 8–9 Macrouridae Caelorinchus caribbeus 11–12 – 11–12+>110 >110 17–20 7 Caelorinchus coelorhynchus 11–12 – 10–11 – (17)18–20(21) 7 Caelorinchus occa 12–13 – 9–11 – 17–20 7 Coryphaenoides alateralis – 13 – 21–23 8 Coryphaenoides armatus 13–15 – 10–12+~125 ~135 19–21 10–11 Coryphaenoides brevibarbis 12–13 – 9 – 19–20 8–9 Coryphaenoides carapinus 12–15 – 10–11+100 117 17–20 9–11 Coryphaenoides guentheri
    [Show full text]
  • Evolutionary Transformations of the Reproductive System in Eubrachyura (Crustacea: Decapoda)
    EVOLUTIONARY TRANSFORMATIONS OF THE REPRODUCTIVE SYSTEM IN EUBRACHYURA (CRUSTACEA: DECAPODA) DISSERTATION zur Erlangung des akademischen Grades Doctor rerum naturalium (Dr. rer. nat.) eingereicht an der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von M. Sc. Katja, Kienbaum, geb. Jaszkowiak Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Lebenswissenschaftlichen Fakultät der Humboldt-Universität zu Berlin Prof. Dr. Bernhard Grimm Gutachter 1. Prof. Dr. Gerhard Scholtz 2. PD Dr. Thomas Stach 3. PD Dr. Christian Wirkner Tag der mündlichen Prüfung: 03.05.2019 CONTENT C ONTENT A BSTRACT v i - vii Z USAMMENFASSUNG viii - x 1 | INTRODUCTION 1 - 11 1.1 | THE BRACHYURA 1 1.1.1 | OBJECT OF INVESTIGATION 1 - 5 1.1.2 | WHAT WE (DO NOT) KNOW ABOUT THE PHYLOGENY OF EUBRACHURA 6 - 10 1. 2 |MS AI 10 - 11 2 | THE MORPHOLOGY OF THE MALE AND FEMALE REPRODUCTIVE SYSTEM IN TWO 12 - 34 SPECIES OF SPIDER CRABS (DECAPODA: BRACHYURA: MAJOIDEA) AND THE ISSUE OF THE VELUM IN MAJOID REPRODUCTION. 2.1 | INTRODUCTION 13 - 14 2.2 | MATERIAL AND METHODS 14 - 16 2.3 | RESULTS 16 - 23 2.4 | DISCUSSION 24 - 34 3 | THE MORPHOLOGY OF THE REPRODUCTIVE SYSTEM IN THE CRAB 35 - 51 PERCNON GIBBESI (DECAPODA: BRACHYURA: GRAPSOIDEA) REVEALS A NEW COMBINATION OF CHARACTERS. 3.1 | INTRODUCTION 36 - 37 3.2 | MATERIAL AND METHODS 37 - 38 3.3 | RESULTS 39 - 46 3.4 | DISCUSSION 46 - 51 4 | THE REPRODUCTIVE SYSTEM OF LIMNOPILOS NAIYANETRI INDICATES A 52 - 64 THORACOTREME AFFILIATION OF HYMENOSOMATIDAE (DECAPODA, EUBRACHYURA).
    [Show full text]
  • Temporal and Spatial Management Tools for Marine Ecosystems: Case Studies from Northern Brazil and Northeastern United States
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2019 TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES Beatriz dos Santos Dias University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Aquaculture and Fisheries Commons, and the Marine Biology Commons Recommended Citation dos Santos Dias, Beatriz, "TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES" (2019). Doctoral Dissertations. 1714. https://doi.org/10.7275/15232062 https://scholarworks.umass.edu/dissertations_2/1714 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented by BEATRIZ DOS SANTOS DIAS Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment Of the requirement for the degree of DOCTOR OF PHILOSOPHY September 2019 Department of Environmental Conservation Wildlife, Fish, and Conservation Biology © Copyright by Beatriz dos Santos Dias 2019 All Rights Reserved TEMPORAL AND SPATIAL MANAGEMENT TOOLS FOR MARINE ECOSYSTEMS: CASE STUDIES FROM NORTHERN BRAZIL AND NORTHEASTERN UNITED STATES A Dissertation Presented By BEATRIZ DOS SANTOS DIAS Approved as to style and content by: ____________________________________________ Adrian Jordaan, Chair ____________________________________________ John T. Finn, Member ____________________________________________ Michael G.
    [Show full text]
  • Larval Growth
    LARVAL GROWTH Edited by ADRIAN M.WENNER University of California, Santa Barbara OFFPRINT A.A.BALKEMA/ROTTERDAM/BOSTON DARRYL L.FELDER* / JOEL W.MARTIN** / JOSEPH W.GOY* * Department of Biology, University of Louisiana, Lafayette, USA ** Department of Biological Science, Florida State University, Tallahassee, USA PATTERNS IN EARLY POSTLARVAL DEVELOPMENT OF DECAPODS ABSTRACT Early postlarval stages may differ from larval and adult phases of the life cycle in such characteristics as body size, morphology, molting frequency, growth rate, nutrient require­ ments, behavior, and habitat. Primarily by way of recent studies, information on these quaUties in early postlarvae has begun to accrue, information which has not been previously summarized. The change in form (metamorphosis) that occurs between larval and postlarval life is pronounced in some decapod groups but subtle in others. However, in almost all the Deca- poda, some ontogenetic changes in locomotion, feeding, and habitat coincide with meta­ morphosis and early postlarval growth. The postmetamorphic (first postlarval) stage, here­ in termed the decapodid, is often a particularly modified transitional stage; terms such as glaucothoe, puerulus, and megalopa have been applied to it. The postlarval stages that fol­ low the decapodid successively approach more closely the adult form. Morphogenesis of skeletal and other superficial features is particularly apparent at each molt, but histogenesis and organogenesis in early postlarvae is appreciable within intermolt periods. Except for the development of primary and secondary sexual organs, postmetamorphic change in internal anatomy is most pronounced in the first several postlarval instars, with the degree of anatomical reorganization and development decreasing in each of the later juvenile molts.
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©2006 Rosenstiel School of Marine and Atmospheric Science, University of Miami. This manuscript is available at http://www.rsmas.miami.edu/bms and may be cited as: Reed, J. K., Weaver, D. C., & Pomponi, S. A. (2006). Habitat and fauna of deep-water Lophelia pertusa coral reefs off the southeastern US: Blake Plateau, Straits of Florida, and Gulf of Mexico. Bulletin of Marine Science, 78(2), 343-375. BULLETIN OF MARINE SCIENCE, 78(2): 343–375, 2006 CORAL REEF PAPER Habitat anD Fauna of Deep-Water LOPHELIA PERTUSA Coral Reefs off the Southeastern U.S.: BlaKE Plateau, Straits of FloriDA, anD Gulf of MEXico John K. Reed, Doug C. Weaver, and Shirley A. Pomponi Abstract Expeditions from 1999 to 2004 for biomedical research explored various deep-sea coral ecosystems (DSCE) off the southeastern U.S. (Blake Plateau, Straits of Florida, and eastern Gulf of Mexico). Habitat and benthos were documented from 57 dives with human occupied submersibles and three with a remotely operated vehicle (ROV), and resulted in ~100 hrs of videotapes, 259 in situ digital images, 621 muse- um specimens, and > 400 microbial isolates. These were the first dives to document the habitat, benthic fauna, and fish diversity of some of these poorly known deep- water reefs. Fifty-eight fish species and 142 benthic invertebrate taxa were identi- fied. High-definition topographic SEABEAM maps and echosounder profiles were also produced. Sites included in this report range from South Carolina on the Blake Plateau to the southwestern Florida slope: 1) Stetson Lophelia reefs along the east- ern Blake Plateau off South Carolina; 2) Savannah Lophelia lithoherms along the western Blake Plateau off Georgia; 3) east Florida Lophelia reefs, 4) Miami Terrace escarpment in the Straits of Florida; 5) Pourtalès Terrace off the Florida Keys; and 6) west Florida Lophelia lithoherms off the southwestern Florida shelf in the Gulf of Mexico.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts
    NOAA Technical Report NMFS Circular 407 Distribution of Decapod Crustacea Off Northeastern United States Based on Specimens at the Northeast Fisheries Center, Woods Hole, Massachusetts Austin B. Williams and Roland L. Wigley December 1977 U.S. DEPARTMENT OF COMMERCE Juanita M, Kreps, Secretary National Oceanic and Atmospheric Administrati on Richard A. Frank, Administrator National Marine Fisheries Service Robert W, Schoning, Director The National Marine Fisheries Service (NMFS) does not approve, rec­ ommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales pro­ motion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication. '0. TE~TS IntroductIOn .... Annotated heckli, t A knowledgments Literature cited .. Figure l. Ranked bathymetrIc range of elected Decapoda from the nort hat ('rn l mt d 2. Ranked temperature range of elected Decapoda from the nort hea tern Table 1. A ociation of elected Decapoda with ix type, of ub. trat III Distribution of Decapod Crustacea ff orth rn United States Based on Specimens at th o t Fisheries Center, Woods HoI, a a hu AI)."II.'H.\ ILLIA~1.· AndH)[' J) r,. \\ j( LE,'1 AB,"I RA CI DiHlributional and l'n\ ironmrntal ummane are gl\rn In an .wno by ('hart , graph, and table, for 1:11 P(>('l(> of mannr d(>"apod l ru \II( INTROD TI N This report presents distrihutl!ll1al data for l:n species of manne dpcapod rrustacea (11 Pena idea, t 1 raridea.
    [Show full text]