1 The bias of a 2D view: Comparing 2D and 3D mesophyll surface area estimates 2 using non-invasive imaging 3 4 Guillaume Théroux-Rancourt1*, J. Mason Earles2*, Matthew E. Gilbert1, Maciej A. 5 Zwieniecki1, C. Kevin Boyce3, Andrew J. McElrone4,5, and Craig R. Brodersen2 6 7 1Department of Plant Sciences, University of California Davis, Davis, CA, 95616 8 2School of Forestry & Environmental Studies, Yale University, New Haven, CT 06511 9 3Department of Geological Sciences, Stanford University, Stanford, CA 94305 10 4USDA-Agricultural Research Service, Davis, CA 95616 11 5Deparment of Viticulture and Enology, University of California, Davis, CA 95616 12 *: Equal contributions 13 Corresponding author: G. Théroux-Rancourt (
[email protected]) 14 15 16 Summary 17 • The surface area of the leaf mesophyll exposed to intercellular airspace per leaf 18 area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is 19 typically estimated from two-dimensional (2D) leaf sections and corrected for the 20 three-dimensional (3D) geometry of mesophyll cells, leading to potential 21 differences between the estimated and real cell surface area. 22 • Here, we examined how existing 2D methods used for estimating Sm compare to 23 3D values obtained from high-resolution X-ray computed tomography (microCT) for 24 23 species, with broad phylogenetic and anatomical coverage. 25 • Relative to 3D Sm values, uncorrected 2D Sm estimates were 15 to 30% lower on 26 average. Two of the four 2D Sm methods typically fell within 10% of 3D values. For 27 most species, only one slice was needed to accurately estimate Sm within 10% of 28 the leaf-level 3D median.