Cohomology of Line Bundles: Proof Of

Total Page:16

File Type:pdf, Size:1020Kb

Cohomology of Line Bundles: Proof Of arXiv:1003.5217 Cohomology of Line Bundles: A Computational Algorithm Ralph Blumenhagen,1,2, a) Benjamin Jurke,1,2, b) Thorsten Rahn,1, c) and Helmut Roschy1, d) 1)Max-Planck-Institut f¨ur Physik, F¨ohringer Ring 6, 80805 M¨unchen, Germany 2)Kavli Institute for Theoretical Physics, Kohn Hall, UCSB, Santa Barbara, CA 93106, USA (Dated: 29 October 2010) We present an algorithm for computing line bundle valued cohomology classes over toric varieties. This is the basic starting point for computing massless modes in both heterotic and Type IIB/F-theory compactifica- tions, where the manifolds of interest are complete intersections of hypersurfaces in toric varieties supporting additional vector bundles. CONTENTS classes Hi(Y ; V ) of the vector bundle V over a Calabi- Yau three-fold Y . The largest class of such Calabi-Yau I. Introduction 1 threefolds is given by complete intersections over toric ambient varieties X. For the vector bundles various con- II. Algorithm for line bundle cohomology 2 structions have been discussed in the literature. The A. Preliminaries 2 three most prominent ones are, on the one hand, monad B. Cechˇ cohomology for P2 3 and extension constructions, for which the vector bundle C. A preliminary algorithm conjecture 4 is defined via (exact) sequences of direct sums of line bun- D. Further examples 4 dles. On the other hand, for elliptically fibered Calabi- delPezzo-1surface 4 Yau manifolds, the spectral cover construction provides a large class of stable holomorphic vector bundles. How- delPezzo-3surface 5 ever, in all three cases, the computation of the massless E. The final algorithm conjecture 6 spectrum, i.e. of vector bundle cohomology classes, boils i III. Summary and Conclusions 7 down to determine the cohomology H (X; L) of line bun- dles L over toric ambient varieties X. Therefore, it is Added: Proof of the algorithm 7 pretty obvious that it would be important to have a tool Acknowledgement 7 to determine these line bundle cohomology classes in a straightforward way, i.e. without invoking any manifold A. Mathematical Background 7 dependent tricks. 1. Sheaves 7 The same problem also appears in other kinds of string 2.Sheafcohomology 8 compactification like Type IIB orientifolds with B-type 3. Cechcohomologyˇ 8 D-branes or in F-theory compactifications on Calabi-Yau 4. Holomorphic line bundles and divisors 9 fourfolds. Here one is confronted for instance with com- 5.Indextheorems 9 puting line bundle cohomology classes over curves, which arise due to the intersection of seven-brane wrapped di- visors on a three-dimensional compact internal manifold. I. INTRODUCTION Such cohomology classes count both the charged matter arXiv:1003.5217v3 [hep-th] 28 Oct 2010 zero modes and instanton zero modes in case one of the It is clear that the computation of line bundle cohomol- seven-branes is a Euclidean three-brane instanton. ogy classes over D-dimensional varieties is an interesting In the string theory literature, some indications how mathematical question of its own. Our motivation for such a generalization of Bott’s theorem to general toric approaching this problem, however, originates from the spaces might look like implicitly appeared in the papers1 appearance of this problem in various classes of compact- and2, however to our knowledge the algorithm used ifications of string theory. in those papers was never really completely revealed.3 First of all, in supersymmetric compactifications of the More recently, it was in the mathematics literature that heterotic string from ten to four space-time dimensions, the problem was systematically approached and solved4. the massless spectrum is given by certain cohomology However, it appears to us that the algorithm used in1,2 is much easier and economical, so that now, after non- trivially extending it to its most generic form, we find it appropriate to eventually reveal it. a)[email protected] In this letter we will proceed by motivating the b)[email protected] algorithm by a couple of non-trivial examples based on c)[email protected] direct computations of the Cechˇ cohomology. Then the d)[email protected] algorithm is formulated as a conjecture (which is so 2 simple that it fits less than a single page). We postpone with the extracted set the computation of vector bundle cohomologies and N many further string theoretic applications to a more F = {xα = xα = ... = xα =0} . (4) 5 1 2 |Sα| extensive paper . α=1 The information contained in F is nothing else than the The high-performance C/C++ implementation Stanley-Reisner ideal SR of the toric variety X cohomCalg of the algorithm is available under SR = S , S ,..., S . (5) http://wwwth.mppmu.mpg.de/members/... 1 2 N ...blumenha/cohomcalg/. Note that the more physical definition of a toric variety given here is equivalent to the one in terms of cones, fans and triangulations. A choice of a phase corresponds to II. ALGORITHM FOR LINE BUNDLE COHOMOLOGY the choice of a triangulation of the polytope defined via D the I vertices νi ∈ Z . These vertices satisfy the R linear In this section we will present an algorithm for the relations computation of line bundle cohomologies Hi(X; O(D)) I (r) over a toric variety X. We will motivate the algorithm Qi νi =0 for r =1, . , R. (6) following the original development. The final conjecture i=1 is given in section II E. For further introductions to toric geometry consult7–11 or for a more mathematical treatment12,13. A. Preliminaries Given such a toric space, the hypersurface {xi = 0} naturally defines a divisor Di of X. By the relation of divisors and line bundles summarized in appendix A 4, To define the framework we are working in, let us this also defines a line bundle Li = OX (Di), which we briefly summarize some facts about toric varieties re- also denote as spectively, their physical counter part, the gauged linear (1) (R) sigma models (GLSM). Li = OX Qi ,...,Qi . (7) A toric variety is a generalization of projective spaces, The tangent bundle T of the toric variety is defined as which contains a set of homogeneous coordinates H := X the cokernel of the map β in the sequence {xi : i =1,...,I} equipped with a number R of equiva- I lence relations β ⊕R α ։ (r) (r) 0 −→ OX ֒−→ OX (Di) − TX −→ 0 . (8) Q1 QI (x1,...,xI ) ∼ (λr x1,...,λr xI ), (1) i=1 (r) In order to compute, for instance, the vector bundle co- for r =1,...,R with the weights Q ∈ Z and λ ∈ C∗ = i r homology Hq(X; T ), one needs as input only the line C−{0}. We will always assume that the weights are cho- X bundle cohomology classes Hq(X; O (D )) with q = sen such that one really gets a bona fide toric space. A X i 0,...,D. powerful method to study such spaces is the GLSM6, in The determination of these cohomology classes for gen- which the homogeneous coordinates are chiral superfields (r) eral line bundles L = O (k ,...,k ) is the problem we and the Q are charges under R Abelian U(1) gauge X 1 R i will address in this letter. Due to the Riemann-Roch- symmetries in a two-dimensional N = (2, 2) supersym- Hirzebruch theorem, the cohomology classes Hq(X; L) metric gauge theory. The Fayet-Iliopoulos parameters ξ r satisfy an index theorem (see appendix A 5) of these U(1) gauge symmetries, can be interpreted as the K¨ahler parameters of the geometric space. D The vanishing of the D-terms of a GLSM then splits χ(X; L)= (−1)q hq(X; L)= ch(L) Td(X) , (9) the space of Fayet-Iliopoulos parameters ξ ∈ RR into q=0 X R-dimensional cones, in which the D-flatness conditions where the right hand side can be computed easily, once can be solved. These cones are also called phases and the intersection form on X is known. correspond geometrically to the K¨ahler cones. In each The simplest toric varieties are the projective spaces such cone, for the D-terms to be solvable one finds sets n P , for which F = {x1 = x2 = ... = xn+1 = 0}. For of collections of coordinates these spaces, the line bundle cohomology is known due to Bott’s theorem Sα = xα1 , xα2 ,...,xα|Sα| with α =1,...,N, (2) n+k for q =0, k ≥ 0 which are not allowed to simultaneously vanish. The toric n q Pn −k−1 variety of dimension D = I − R in this phase is then h ( ; O(k)) = n for q = n, k< −n . (10) defined as 0 else I C − F The goal is now to generalize this result to toric ambient X = (3) (C∗)R spaces. 3 B. Cechˇ cohomology for P2 To motivate the algorithm, we consider a simple ex- ample for which the Cechˇ cohomology can really be com- puted with pencil and paper. We want to compute the Cechˇ cohomology of P2. First we need a suitable covering by open sets, which for this projective space is provided by 2 Ui := [x1 : x2 : x3] ∈ P : xi =0 . (11) Then the Cechˇ cochains for the covering UP2 = {U1,U2,U3} take the form 0 Cˇ (UP2 ; F )= F (U1) ⊕ F (U2) ⊕ F (U3) 1 Cˇ (UP2 ; F )= F (U12) ⊕ F (U23) ⊕ F (U13) (12) 2 Cˇ (UP2 ; F )= F (U123), where we used the abbreviation Uij...k = Ui∩Uj ∩···∩Uk. Now we consider a line bundle F = O(−p) with p > 0 and compute the local sections on all open sets, where the FIG.
Recommended publications
  • The Jouanolou-Thomason Homotopy Lemma
    The Jouanolou-Thomason homotopy lemma Aravind Asok February 9, 2009 1 Introduction The goal of this note is to prove what is now known as the Jouanolou-Thomason homotopy lemma or simply \Jouanolou's trick." Our main reason for discussing this here is that i) most statements (that I have seen) assume unncessary quasi-projectivity hypotheses, and ii) most applications of the result that I know (e.g., in homotopy K-theory) appeal to the result as merely a \black box," while the proof indicates that the construction is quite geometric and relatively explicit. For simplicity, throughout the word scheme means separated Noetherian scheme. Theorem 1.1 (Jouanolou-Thomason homotopy lemma). Given a smooth scheme X over a regular Noetherian base ring k, there exists a pair (X;~ π), where X~ is an affine scheme, smooth over k, and π : X~ ! X is a Zariski locally trivial smooth morphism with fibers isomorphic to affine spaces. 1 Remark 1.2. In terms of an A -homotopy category of smooth schemes over k (e.g., H(k) or H´et(k); see [MV99, x3]), the map π is an A1-weak equivalence (use [MV99, x3 Example 2.4]. Thus, up to A1-weak equivalence, any smooth k-scheme is an affine scheme smooth over k. 2 An explicit algebraic form Let An denote affine space over Spec Z. Let An n 0 denote the scheme quasi-affine and smooth over 2m Spec Z obtained by removing the fiber over 0. Let Q2m−1 denote the closed subscheme of A (with coordinates x1; : : : ; x2m) defined by the equation X xixm+i = 1: i Consider the following simple situation.
    [Show full text]
  • Connections on Bundles Md
    Dhaka Univ. J. Sci. 60(2): 191-195, 2012 (July) Connections on Bundles Md. Showkat Ali, Md. Mirazul Islam, Farzana Nasrin, Md. Abu Hanif Sarkar and Tanzia Zerin Khan Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh, Email: [email protected] Received on 25. 05. 2011.Accepted for Publication on 15. 12. 2011 Abstract This paper is a survey of the basic theory of connection on bundles. A connection on tangent bundle , is called an affine connection on an -dimensional smooth manifold . By the general discussion of affine connection on vector bundles that necessarily exists on which is compatible with tensors. I. Introduction = < , > (2) In order to differentiate sections of a vector bundle [5] or where <, > represents the pairing between and ∗. vector fields on a manifold we need to introduce a Then is a section of , called the absolute differential structure called the connection on a vector bundle. For quotient or the covariant derivative of the section along . example, an affine connection is a structure attached to a differentiable manifold so that we can differentiate its Theorem 1. A connection always exists on a vector bundle. tensor fields. We first introduce the general theorem of Proof. Choose a coordinate covering { }∈ of . Since connections on vector bundles. Then we study the tangent vector bundles are trivial locally, we may assume that there is bundle. is a -dimensional vector bundle determine local frame field for any . By the local structure of intrinsically by the differentiable structure [8] of an - connections, we need only construct a × matrix on dimensional smooth manifold . each such that the matrices satisfy II.
    [Show full text]
  • Vector Bundles on Projective Space
    Vector Bundles on Projective Space Takumi Murayama December 1, 2013 1 Preliminaries on vector bundles Let X be a (quasi-projective) variety over k. We follow [Sha13, Chap. 6, x1.2]. Definition. A family of vector spaces over X is a morphism of varieties π : E ! X −1 such that for each x 2 X, the fiber Ex := π (x) is isomorphic to a vector space r 0 0 Ak(x).A morphism of a family of vector spaces π : E ! X and π : E ! X is a morphism f : E ! E0 such that the following diagram commutes: f E E0 π π0 X 0 and the map fx : Ex ! Ex is linear over k(x). f is an isomorphism if fx is an isomorphism for all x. A vector bundle is a family of vector spaces that is locally trivial, i.e., for each x 2 X, there exists a neighborhood U 3 x such that there is an isomorphism ': π−1(U) !∼ U × Ar that is an isomorphism of families of vector spaces by the following diagram: −1 ∼ r π (U) ' U × A (1.1) π pr1 U −1 where pr1 denotes the first projection. We call π (U) ! U the restriction of the vector bundle π : E ! X onto U, denoted by EjU . r is locally constant, hence is constant on every irreducible component of X. If it is constant everywhere on X, we call r the rank of the vector bundle. 1 The following lemma tells us how local trivializations of a vector bundle glue together on the entire space X.
    [Show full text]
  • Recent Developments in Representation Theory
    RECENT DEVELOPMENTS IN REPRESENTATION THEORY Wilfried 5chmid* Department of Mathematics Harvard University Cambridge, MA 02138 For the purposes of this lecture, "representation theory" means representation theory of Lie groups, and more specifically, of semisimple Lie groups. I am interpreting my assignment to give a survey rather loosely: while I shall touch upon various major advances in the subject, I am concentrating on a single development. Both order and emphasis of my presentation are motivated by expository considerations, and do not reflect my view of the relative importance of various topics. Initially G shall denote a locally compact topological group which is unimodular -- i.e., left and right Haar measure coincide -- and H C G a closed unimodular subgroup. The quotient space G/H then carries a G- invariant measure, so G acts unitarily on the Hilbert space L2(G/H). In essence, the fundamental problem of harmonic analysis is to decompose L2(G/H) into a direct "sum" of irreducibles. The quotation marks allude to the fact that the decomposition typically involves the continuous ana- logue of a sum, namely a direct integral, as happens already for non- compact Abelian groups. If G is of type I -- loosely speaking, if the unitary representations of G behave reasonably -- the abstract Plan- cherel theorem [12] asserts the existence of such a decomposition. This existence theorem raises as many questions as it answers: to make the decomposition useful, one wants to know it explicitly and, most impor- tantly, one wants to understand the structure of the irreducible sum- mands. In principle, any irreducible unitary representation of G can occur as a constituent of L2(G/H), for some H C G.
    [Show full text]
  • Formal GAGA for Good Moduli Spaces
    FORMAL GAGA FOR GOOD MODULI SPACES ANTON GERASCHENKO AND DAVID ZUREICK-BROWN Abstract. We prove formal GAGA for good moduli space morphisms under an assumption of “enough vector bundles” (which holds for instance for quotient stacks). This supports the philoso- phy that though they are non-separated, good moduli space morphisms largely behave like proper morphisms. 1. Introduction Good moduli space morphisms are a common generalization of good quotients by linearly re- ductive group schemes [GIT] and coarse moduli spaces of tame Artin stacks [AOV08, Definition 3.1]. Definition ([Alp13, Definition 4.1]). A quasi-compact and quasi-separated morphism of locally Noetherian algebraic stacks φ: X → Y is a good moduli space morphism if • (φ is Stein) the morphism OY → φ∗OX is an isomorphism, and • (φ is cohomologically affine) the functor φ∗ : QCoh(OX ) → QCoh(OY ) is exact. If φ: X → Y is such a morphism, then any morphism from X to an algebraic space factors through φ [Alp13, Theorem 6.6].1 In particular, if there exists a good moduli space morphism φ: X → X where X is an algebraic space, then X is determined up to unique isomorphism. In this case, X is said to be the good moduli space of X . If X = [U/G], this corresponds to X being a good quotient of U by G in the sense of [GIT] (e.g. for a linearly reductive G, [Spec R/G] → Spec RG is a good moduli space). In many respects, good moduli space morphisms behave like proper morphisms. They are uni- versally closed [Alp13, Theorem 4.16(ii)] and weakly separated [ASvdW10, Proposition 2.17], but since points of X can have non-proper stabilizer groups, good moduli space morphisms are gen- erally not separated (e.g.
    [Show full text]
  • 4. Coherent Sheaves Definition 4.1. If (X,O X) Is a Locally Ringed Space
    4. Coherent Sheaves Definition 4.1. If (X; OX ) is a locally ringed space, then we say that an OX -module F is locally free if there is an open affine cover fUig of X such that FjUi is isomorphic to a direct sum of copies of OUi . If the number of copies r is finite and constant, then F is called locally free of rank r (aka a vector bundle). If F is locally free of rank one then we way say that F is invertible (aka a line bundle). The group of all invertible sheaves under tensor product, denoted Pic(X), is called the Picard group of X. A sheaf of ideals I is any OX -submodule of OX . Definition 4.2. Let X = Spec A be an affine scheme and let M be an A-module. M~ is the sheaf which assigns to every open subset U ⊂ X, the set of functions a s: U −! Mp; p2U which can be locally represented at p as a=g, a 2 M, g 2 R, p 2= Ug ⊂ U. Lemma 4.3. Let A be a ring and let M be an A-module. Let X = Spec A. ~ (1) M is a OX -module. ~ (2) If p 2 X then Mp is isomorphic to Mp. ~ (3) If f 2 A then M(Uf ) is isomorphic to Mf . Proof. (1) is clear and the rest is proved mutatis mutandis as for the structure sheaf. Definition 4.4. An OX -module F on a scheme X is called quasi- coherent if there is an open cover fUi = Spec Aig by affines and ~ isomorphisms FjUi ' Mi, where Mi is an Ai-module.
    [Show full text]
  • 256B Algebraic Geometry
    256B Algebraic Geometry David Nadler Notes by Qiaochu Yuan Spring 2013 1 Vector bundles on the projective line This semester we will be focusing on coherent sheaves on smooth projective complex varieties. The organizing framework for this class will be a 2-dimensional topological field theory called the B-model. Topics will include 1. Vector bundles and coherent sheaves 2. Cohomology, derived categories, and derived functors (in the differential graded setting) 3. Grothendieck-Serre duality 4. Reconstruction theorems (Bondal-Orlov, Tannaka, Gabriel) 5. Hochschild homology, Chern classes, Grothendieck-Riemann-Roch For now we'll introduce enough background to talk about vector bundles on P1. We'll regard varieties as subsets of PN for some N. Projective will mean that we look at closed subsets (with respect to the Zariski topology). The reason is that if p : X ! pt is the unique map from such a subset X to a point, then we can (derived) push forward a bounded complex of coherent sheaves M on X to a bounded complex of coherent sheaves on a point Rp∗(M). Smooth will mean the following. If x 2 X is a point, then locally x is cut out by 2 a maximal ideal mx of functions vanishing on x. Smooth means that dim mx=mx = dim X. (In general it may be bigger.) Intuitively it means that locally at x the variety X looks like a manifold, and one way to make this precise is that the completion of the local ring at x is isomorphic to a power series ring C[[x1; :::xn]]; this is the ring where Taylor series expansions live.
    [Show full text]
  • Notes on Principal Bundles and Classifying Spaces
    Notes on principal bundles and classifying spaces Stephen A. Mitchell August 2001 1 Introduction Consider a real n-plane bundle ξ with Euclidean metric. Associated to ξ are a number of auxiliary bundles: disc bundle, sphere bundle, projective bundle, k-frame bundle, etc. Here “bundle” simply means a local product with the indicated fibre. In each case one can show, by easy but repetitive arguments, that the projection map in question is indeed a local product; furthermore, the transition functions are always linear in the sense that they are induced in an obvious way from the linear transition functions of ξ. It turns out that all of this data can be subsumed in a single object: the “principal O(n)-bundle” Pξ, which is just the bundle of orthonormal n-frames. The fact that the transition functions of the various associated bundles are linear can then be formalized in the notion “fibre bundle with structure group O(n)”. If we do not want to consider a Euclidean metric, there is an analogous notion of principal GLnR-bundle; this is the bundle of linearly independent n-frames. More generally, if G is any topological group, a principal G-bundle is a locally trivial free G-space with orbit space B (see below for the precise definition). For example, if G is discrete then a principal G-bundle with connected total space is the same thing as a regular covering map with G as group of deck transformations. Under mild hypotheses there exists a classifying space BG, such that isomorphism classes of principal G-bundles over X are in natural bijective correspondence with [X, BG].
    [Show full text]
  • D-Modules on Flag Varieties and Localization of G-Modules
    D-modules on flag varieties and localization of g-modules. Jos´eSimental. October 7, 2013 1 (Twisted) Differential operators and D-modules. 1.1 Differential Operators. Let X be an algebraic variety. In this text, we assume all algebraic varieties are over C. Let R be a sheaf of rings on X. For R-modules F and G, define the sheaf HomR(F; G) as follows. For any open set U ⊂ X, the sections of HomR(F; G) on U are HomRjU (FjU ; GjU ). For any algebraic variety X, let CX be the constant sheaf of complex numbers C. Now assume that X is a smooth complex algebraic variety. Let OX be its sheaf of regular functions and VX be its sheaf of vector fields, that is, VX := DerC(OX ) := fθ 2 EndCX (OX ): θ(fg) = fθ(g) + θ(f)g; f; g 2 OX g. The sheaf DX of differential operators on X, is, by definition, the subsheaf (of associative rings) of EndCX (OX ) generated by OX and VX . Theorem 1.1 In the setup of the previous paragraph, if dim X = n, then for every point p 2 X there exists an affine open neighborhood U of p, x1; : : : ; xn 2 OX (U) and @1;:::;@n 2 VX (U) such that [@i;@j] = 0, @i(xj) = δij and VX (U) is free over OX (U) with basis @1;:::;@n. Proof. Let mp be the maximal ideal of OX;p. Since X is smooth of dimension n, there exist functions x1; : : : ; xn generating mp. Then, dx1; : : : ; dxn is a basis of ΩX;p, where ΩX is the cotangent sheaf of X.
    [Show full text]
  • The Chern Characteristic Classes
    The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP .
    [Show full text]
  • 4 Sheaves of Modules, Vector Bundles, and (Quasi-)Coherent Sheaves
    4 Sheaves of modules, vector bundles, and (quasi-)coherent sheaves “If you believe a ring can be understood geometrically as functions its spec- trum, then modules help you by providing more functions with which to measure and characterize its spectrum.” – Andrew Critch, from MathOver- flow.net So far we discussed general properties of sheaves, in particular, of rings. Similar as in the module theory in abstract algebra, the notion of sheaves of modules allows us to increase our understanding of a given ringed space (or a scheme), and to provide further techniques to play with functions, or function-like objects. There are particularly important notions, namely, quasi-coherent and coherent sheaves. They are analogous notions of the usual modules (respectively, finitely generated modules) over a given ring. They also generalize the notion of vector bundles. Definition 38. Let (X, ) be a ringed space. A sheaf of -modules, or simply an OX OX -module, is a sheaf on X such that OX F (i) the group (U) is an (U)-module for each open set U X; F OX ✓ (ii) the restriction map (U) (V ) is compatible with the module structure via the F !F ring homomorphism (U) (V ). OX !OX A morphism of -modules is a morphism of sheaves such that the map (U) F!G OX F ! (U) is an (U)-module homomorphism for every open U X. G OX ✓ Example 39. Let (X, ) be a ringed space, , be -modules, and let ' : OX F G OX F!G be a morphism. Then ker ', im ', coker ' are again -modules. If is an - OX F 0 ✓F OX submodule, then the quotient sheaf / is an -module.
    [Show full text]
  • Differential Geometry of Complex Vector Bundles
    DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi This is re-typesetting of the book first published as PUBLICATIONS OF THE MATHEMATICAL SOCIETY OF JAPAN 15 DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES by Shoshichi Kobayashi Kan^oMemorial Lectures 5 Iwanami Shoten, Publishers and Princeton University Press 1987 The present work was typeset by AMS-LATEX, the TEX macro systems of the American Mathematical Society. TEX is the trademark of the American Mathematical Society. ⃝c 2013 by the Mathematical Society of Japan. All rights reserved. The Mathematical Society of Japan retains the copyright of the present work. No part of this work may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copy- right owner. Dedicated to Professor Kentaro Yano It was some 35 years ago that I learned from him Bochner's method of proving vanishing theorems, which plays a central role in this book. Preface In order to construct good moduli spaces for vector bundles over algebraic curves, Mumford introduced the concept of a stable vector bundle. This concept has been generalized to vector bundles and, more generally, coherent sheaves over algebraic manifolds by Takemoto, Bogomolov and Gieseker. As the dif- ferential geometric counterpart to the stability, I introduced the concept of an Einstein{Hermitian vector bundle. The main purpose of this book is to lay a foundation for the theory of Einstein{Hermitian vector bundles. We shall not give a detailed introduction here in this preface since the table of contents is fairly self-explanatory and, furthermore, each chapter is headed by a brief introduction.
    [Show full text]