Forty-First DOE Solar Photochemistry P.I. Meeting

Total Page:16

File Type:pdf, Size:1020Kb

Forty-First DOE Solar Photochemistry P.I. Meeting Proceedings of the Forty-First DOE Solar Photochemistry P.I. Meeting Gaithersburg Marriott Washingtonian Center Gaithersburg, Maryland June 3-5, 2019 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy FOREWORD The 41st Department of Energy Solar Photochemistry Principal Investigators’ Meeting, sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, is being held June 3-5, 2019 at the Washingtonian Marriott in Gaithersburg, Maryland. These proceedings include the meeting agenda, abstracts of the formal presentations and posters, and a list of participants. The Solar Photochemistry Program supports fundamental, molecular-level research on solar energy capture and conversion in the condensed phase and at interfaces. This conference is the annual meeting of the grantees who conduct research with support from this Program. The gathering is intended to facilitate the exchange of ideas and foster collaboration among these researchers. The meeting this year features an invited presentation by Harry Atwater, Director of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is the Department of Energy’s Fuels from Sunlight Energy Innovation Hub, a multi-investigator research and development center that was established in 2010 and renewed in 2015. Its mission is currently focused on creating a scientific foundation for the solar-driven conversion of carbon dioxide into renewable transportation fuels. Prof. Atwater will tell us about recent JCAP discoveries and research accomplishments. I would like to express my thanks to Justin Johnson who continues to spend part of his time as a detailee for the Solar Photochemistry Program, assisting with numerous critical behind-the- scenes tasks. Special appreciation also goes to Teresa Crockett of the Office of Basic Energy Sciences and Connie Lansdon of the Oak Ridge Institute for Science and Education for their assistance with logistics for this meeting. Finally, I am grateful to all of the participants in this meeting who have contributed so much to the continued success of the Solar Photochemistry Program. Chris Fecko Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences ii TABLE OF CONTENTS Foreword ........................................................................................................................................ ii Program ....................................................................................................................................... xii Abstracts of Oral Presentations Session I – Opening Session Pathways to Selective and Efficient Carbon Dioxide Reduction Harry A. Atwater .................................................................................................................1 Session II – Electron Transfer and Proton-Coupled Electron Transfer A Bigger, Better Inverted Region John R. Miller, Richard A. Holroyd, Andrew R, Cook, Norihiko Takeda, Tomoyasu Mani, Marshall D. Newton, Matthew J. Bird, and Hung-Cheng Chen................................3 Proton-Coupled Electron Transfer Drives Grotthuss-Type Proton Transfer in Artificial Photosynthesis Devens Gust, Thomas A. Moore, and Ana L. Moore ..........................................................6 Hydrogen Bonding Interactions in Photoinduced PCET Dmitry E. Polyansky, Sergei V. Lymar, Mehmed Z. Ertem, and Gerald F. Manbeck ........8 Session III – Molecular Chromophores and Catalysts Model Dyes for Study of Electron Transfer Processes at Metal Oxide Semiconductor Interfaces E. Galoppini, R. A. Bartynski, L. Gundlach, A. Teplyakov, R. Harmer, H. Fan, S. Rangan, J. Vierek, J. Nieto-Pescador, and B. Abraham ....................................................11 Molecular Modules for Photochemical and Catalytic Function in Artificial Photosynthesis Karen L. Mulfort, Lars Kohler, Dugan Hayes, Ryan G. Hadt, Jens Niklas, Oleg G. Poluektov, Lin X. Chen, and David M. Tiede ...................................................................14 Aryl Ether Weak Donor-Based Dyes as Strong Photoinduced Oxidants Roberta R. Rodrigues, Adithya Peddapuram, and Jared H. Delcamp ...............................17 iii Session IV – Supramolecular Assemblies Photoacid Dye-Sensitized Solar Energy Conversion using Water as a Protonic Semiconductor Leanna Schulte, Simon Luo, Rylan Kautz, Joseph Cardon, William White, and Shane Ardo ...................................................................................................................................18 Organic, Nanoscale, and Self-Assembled Structures Relevant to Solar Energy Conversion Michael J. Therien .............................................................................................................20 Microsecond Charge Separation Lifetimes in Semiconducting Single-Walled Carbon Nanotube Heterojunctions Jeff Blackburn, Hyun Suk Kang, Dana Sulas, Andrew Ferguson, Justin Johnson, and Garry Rumbles ...................................................................................................................23 Session V – Singlet Fission and Triplet Dynamics Ultrafast Vibrational Nano-Thermometers to Probe Triplet Separation vs. Relaxation during Singlet Fission Eric R. Kennehan, Grayson S. Doucette, and John B. Asbury ..........................................28 Triplet Energy Transduction in Designed Chromophore Architectures Melissa K. Gish, Nadia V. Korovina, Marissa Martinez, Natalie A. Pace, Nicholas Pompetti, Matthew C. Beard, and Justin C. Johnson .........................................................32 Singlet Fission in Nanocrystal-Molecule Hybrid Structures Zhiyuan Huang and Ming Lee Tang ..................................................................................36 Quantum Interferences among Dexter Energy Transfer Pathways Shuming Bai, Peng Zhang, Spiros S. Skourtis, and David N. Beratan ..............................38 Session VI – Bioinspired/Biohybrid Approaches Modular Nanoscale and Biomimetic Assemblies for Photocatalytic Hydrogen Generation Kara L. Bren, Todd D. Krauss, and Ellen M. Matson .......................................................40 Photochemical N2 Reduction by Nanoparticle-Nitrogenase Complexes Katherine A. Brown, Jesse Ruzicka, Hayden Kallas, Bryant Chica, David W. Mulder, John W. Peters, Gordana Dukovic, Lance C. Seefeldt, and Paul W. King ........................43 iv Session VII – Semiconductor Nanoparticles for Solar Energy Conversion Controlling the Optical and Electrical Properties of QDs, QD assemblies, and QD Films for Solar Energy Conversion Daniel Kroupa, Haipeng Lu, Noah Bronstein, Yong Yan, Nathan Neale, Elisa Miller, Mike Carroll, Marissa Martinez, Arthur J. Nozik, Justin C. Johnson, and Matthew C. Beard ..................................................................................................................................45 Hot-Carrier Dynamics in Quantum Dots Manipulated by Spin-Exchange Auger Interactions Rohan Singh, Wenyong Liu, Jaehoon Lim, Istvan Robel, and Victor I. Klimov ..............50 Time-Domain Atomistic Studies of Far-from-Equilibrium Dynamics in Nanoscale Materials for Solar Energy Harvesting Oleg V. Prezhdo .................................................................................................................52 Metal-Tipped and Electrochemically Wired Semiconductor Nanocrystals: Modular Constructs for Directed Charge Transfer Jeffry Pyun, S. Scott Saavedra, and Neal R. Armstrong ....................................................57 Session VIII – Semiconductor Photoelectrodes Modulation of Photoinduced Charge Transfer at the Semiconductor Interface Rebecca Scheidt, Elizabeth Kerns, Greg Samu, and Prashant V. Kamat ..........................59 Molecular Level Functionalization, Atomically Thin Photoelectrodes, and Protective Coatings Based on Two-Dimensional Materials Ellen X. Yan, Annelise C. Thompson, Burton H. Simpson, Miguel A. Cabán-Acevedo, Kimberly M. Papadantonakis, Bruce S. Brunschwig, and Nathan S. Lewis .....................63 Photoexcited Charge Carrier Dynamics at Photocatalytic Semiconductor/liquid Interfaces Zed Xu, Haotian Shi, Bingya Hou, Fengyi Zhao, Tim Lian, and Stephen B. Cronin .......65 Investigating Ultrafast Dynamics in Solid-State Photocatalytic and Photovoltaic Materials Using Time-Resolved Mössbauer Spectroscopy Cali Antolini, Melissa A. Smith, Jacqueline Escolastico, Nathan Girard, Xiaoyi Zhang, E. Ercan Alp, Benjamin T. Young, and Dugan Hayes ......................................................67 Session IX – Heterogeneous Solar Fuels Catalysts Tracking Structures in Solar Fuels Catalysis: In-situ X-ray Characterization of Interfacial Water-Splitting Molecular and Thin-Film Catalysts David M. Tiede, Gihan Kwon, Alex B. F. Martinson, Tae Wu Kim, Emily Sprague- Klein, Karen L. Mulfort, Oleg G. Poluektov, and Lin X. Chen .......................................69 v Nanoscale Probing of Carrier-Selective Catalyst-Semiconductor Contacts in Water- Splitting Photoelectrodes Shannon W. Boettcher, Forrest Laskowski, Michael Nellist, Jingjing Qui, Sebastian Oener, and Adrian Gordon .................................................................................................72 Proton-Coupled Electron Transfer Studies of Homogeneous and Heterogeneous Energy Conversion Catalysts Daniel G. Nocera ...............................................................................................................75 Session X – Building Systems for
Recommended publications
  • Donor-Acceptor Interaction and Photochemistry of Polymethylene-Linked Bichromophores in Solution
    9042 J. Am. Chem. Soc. 1996, 118, 9042-9051 Donor-Acceptor Interaction and Photochemistry of Polymethylene-Linked Bichromophores in Solution Song-lei Zhang, Matthew J. Lang, Steven Goodman,† Christopher Durnell, Vlastimil Fidlar,‡ Graham R. Fleming, and Nien-chu C. Yang* Contribution from the Department of Chemistry, UniVersity of Chicago, Chicago, Illinois 60637 ReceiVed July 17, 1996X Abstract: The ground-state and the excited-state spectroscopic properties of four series of polymethylene-linked anthracene-dialkylaniline bichromophores were compared as a probe to the relationship between energetics and distance in photoinduced electron transfer (PET). The results demonstrate that, when the energy level of the charge- transfer (CT) state is lowered below that of the localized excited state by appropriate substituents, there is a strong electron-donor-acceptor (EDA) interaction in the ground state which is absent in other bichromophores. Absorption and fluorescence excitation studies revealed that there is an unusually strong EDA interaction in the ground state of A-2 which is absent in other members in the A series. When A-2 is excited directly into this EDA absorption, it exhibits two CT emissions, one at 490 nm and the other at 605 nm. The quantum yield (τf) and the lifetime (Φf) of the two emissions are dependent on the viscosity of the alkane solvent. The Φf and the τf of the 490 nm emission increased when the solvent viscosity was increased; however, those of the 605 nm emission remained essentially unchanged. The risetime of the 605 nm emission is 420 ps, but that of the 490 nm emission is instrument-function limiting.
    [Show full text]
  • Ivan Julian Dmochowski, Ph.D
    Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 P: 215-898-6459; Email: [email protected] URL: http://dmochowskigroup.chem.upenn.edu/index.html Academic Appointments Professor of Chemistry, University of Pennsylvania, July, 2015 – Present Undergraduate Chair of Chemistry, University of Pennsylvania, Jan, 2015 – Present Associate Professor of Chemistry, University of Pennsylvania, 2010 – 2015 Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2010 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2016 Crano Award, Akron Section, American Chemical Society 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications 1 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order . Chem. Comm. (9) 1031- 1032, 1996.
    [Show full text]
  • C-2 Ch 2 & 3 Atoms & Molecules
    Molecular and Supramolecular Photochemistry Modern Molecular Photochemistry of Organic Molecules Or Principles of Photochemistry N. J. Turro, V. Ramamurthy and J. C. Scaiano Chapters 1 & 2 Photochemistry Interaction of Light with Matter (Molecules) • Organic Photochemistry • Inorganic Photochemistry • Photobiology What is the difference between thermochemistry and photochemistry? • Mode of activation • Activated by collisions (thermo) • Activated by light (photo) • Selectivity in activation • Entire molecule gets activated • Only the chromophore that absorbs the light gets activated • Energy distribution • Energy used for vibrational/rotational transition • Energy used for electronic transition only Visualization of Thermal Reactions • Transition state connects a single reactant to a single product (intermediate) and it is a saddle point along the reaction course. • Collisions are a reservoir of continuous energy (~ 0.6 kcal/mol per impact). • Collisions can add or remove energy from a system. • Concerned with a single surface. Visualization of Photochemical Reactions We need to deal with two surfaces (ground and excited state. Adiabatic Diabatic Photochemistry starts with interaction of a Photon with a Molecule • What is a photon? • What is a molecule? • How do they interact? • What are the consequences of interaction? The Basic Laws of Photochemistry Grotthuss-Draper law The First Law of Photochemistry: light must be absorbed for photochemistry to occur. Grotthus Drapper Stark-Einstein law The Second Law of Photochemistry: for each photon of light absorbed by a chemical system, only one molecule is activated for a photochemical Stark Einstein reaction. The Light Paradigm (500 BC-1850 AD) 500 2018 BC AD 55 BC 1000 1500 1700 Lucretius Newton (1643-1727) Maxwell (1831-1879) Particles! Waves! …but then came the 1900s - new people, tools, and paradigms! Paradigm 1800s: Light consists of waves (energy propagated by waves): Energy is spread over space like a liquid.
    [Show full text]
  • Harry Atwater Is Currently Howard Hughes Professor and Professor of Applied Physics and Materials Science at the California Institute of Technology
    Harry Atwater is currently Howard Hughes Professor and Professor of Applied Physics and Materials Science at the California Institute of Technology. His research interests center around two intertwined research themes photovoltaics and renewable energy and plasmonics and metamaterials. Atwater and his group have been active in photovoltaics research for more than 20 years. Recently they have pioneered new fabrication approaches to III-V semiconductor multijunction cells, and have actively research projects on III-V thin film cells, silicon wire array solar cells, silicon thin film cells and plasmonic light absorber structures. Atwater received his S.B. (1981), S.M. (1983), and Ph.D. (1987) in Electrical Engineering from the Massachusetts Institute of Technology. He currently serves as Director of the Caltech Center for Sustainable Energy Research, and is also Director of the Center for Light-Material Interactions, a DOE Energy Frontier Research Center. Professor Atwater was most recently named as Director of the Resnick Institute. Dr. Atwater has consulted extensively for industry and government, and has actively served the materials community in various capacities, including Material Research Society Meeting Chair (1997), Materials Research Society President (2000), AVS Electronic Materials and Processing Division Chair (1999), and Board of Trustees of the Gordon Research Conferences. He serves on the Director’s Review Committee, Chemistry and Materials Science Division, Lawrence Livermore National Laboratory. He has served on the Department of Energy, Office of Science, Division of Materials Sciences Visiting Committee; Stanford University Department of Materials Science and Engineering Visiting Committee; National Science Foundation Division of Materials Research Visiting Committee. Atwater is founder and chief technical advisor for Alta Device, a solar energy company, and Aonex Corporation, a compound semiconductor materials company.
    [Show full text]
  • An Overview of Snow Photochemistry: Evidence, Mechanisms and Impacts
    Atmos. Chem. Phys., 7, 4329–4373, 2007 www.atmos-chem-phys.net/7/4329/2007/ Atmospheric © Author(s) 2007. This work is licensed Chemistry under a Creative Commons License. and Physics An overview of snow photochemistry: evidence, mechanisms and impacts A. M. Grannas1, A. E. Jones2, J. Dibb3, M. Ammann4, C. Anastasio5, H. J. Beine6, M. Bergin7, J. Bottenheim8, C. S. Boxe9, G. Carver10, G. Chen11, J. H. Crawford11, F. Domine´12, M. M. Frey12,13, M. I. Guzman´ 9,14, D. E. Heard15, D. Helmig16, M. R. Hoffmann9, R. E. Honrath17, L. G. Huey18, M. Hutterli2, H. W. Jacobi19, P. Klan´ 20, B. Lefer29, J. McConnell21, J. Plane15, R. Sander22, J. Savarino12, P. B. Shepson23, W. R. Simpson24, J. R. Sodeau25, R. von Glasow26, 27, R. Weller19, E. W. Wolff2, and T. Zhu28 1Department of Chemistry, Villanova University, Villanova, PA 19085, USA 2British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, UK 3Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH 03824, USA 4Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland 5Department of Land, Air & Water Resources, University of California at Davis, Davis, CA 95616, USA 6Consiglio Nazionale delle Ricerche – Istituto Inquinamento Atmosferico (C.N.R. – I.I.A); Via Salaria Km 29,3; 00016 Monterotondo Scalo, Roma, Italy 7School of Civil and Environmental Engineering and School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 8Air Quality Research Branch,
    [Show full text]
  • Ivan Julian Dmochowski, Ph.D
    Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 URL: http://www.sas.upenn.edu/~ivandmo/ Phone: 215-898-6459; Fax: 215-898-2037 Email: [email protected] Academic Appointments Associate Professor of Chemistry, University of Pennsylvania, 2010 – Present Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2009 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications: h-index = 21 (March, 2013) 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order. Chem. Comm. (9) 1031- 1032, 1996. 1 2. J.J. Wilker, I.J. Dmochowski, J.H. Dawson, J.R. Winkler, H.B. Gray, Substrates for rapid delivery of electrons and holes to buried active sites in proteins .
    [Show full text]
  • Glossary of Terms Used in Photochemistry, 3Rd Edition (IUPAC
    Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007. doi:10.1351/pac200779030293 © 2007 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC AND BIOMOLECULAR CHEMISTRY DIVISION* SUBCOMMITTEE ON PHOTOCHEMISTRY GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY 3rd EDITION (IUPAC Recommendations 2006) Prepared for publication by S. E. BRASLAVSKY‡ Max-Planck-Institut für Bioanorganische Chemie, Postfach 10 13 65, 45413 Mülheim an der Ruhr, Germany *Membership of the Organic and Biomolecular Chemistry Division Committee during the preparation of this re- port (2003–2006) was as follows: President: T. T. Tidwell (1998–2003), M. Isobe (2002–2005); Vice President: D. StC. Black (1996–2003), V. T. Ivanov (1996–2005); Secretary: G. M. Blackburn (2002–2005); Past President: T. Norin (1996–2003), T. T. Tidwell (1998–2005) (initial date indicates first time elected as Division member). The list of the other Division members can be found in <http://www.iupac.org/divisions/III/members.html>. Membership of the Subcommittee on Photochemistry (2003–2005) was as follows: S. E. Braslavsky (Germany, Chairperson), A. U. Acuña (Spain), T. D. Z. Atvars (Brazil), C. Bohne (Canada), R. Bonneau (France), A. M. Braun (Germany), A. Chibisov (Russia), K. Ghiggino (Australia), A. Kutateladze (USA), H. Lemmetyinen (Finland), M. Litter (Argentina), H. Miyasaka (Japan), M. Olivucci (Italy), D. Phillips (UK), R. O. Rahn (USA), E. San Román (Argentina), N. Serpone (Canada), M. Terazima (Japan). Contributors to the 3rd edition were: A. U. Acuña, W. Adam, F. Amat, D. Armesto, T. D. Z. Atvars, A. Bard, E. Bill, L. O. Björn, C. Bohne, J. Bolton, R. Bonneau, H.
    [Show full text]
  • Photochemistry
    Photochemistry 1.1 Introduction:- Photochemistry is concerned with reactions which are initiated by electronically excited molecules. Such molecules are produced by the absorption of suitable radiation in the visible and near ultraviolet region of the spectrum. Photochemistry is basic to the world we live in with sun as the central figure, the origin of life must have been a photochemical act. Simple gaseous molecules like methane, ammonia and carbon dioxide must have reacted photochemically to synthesize complex organic molecules like proteins and nucleic acids. Photobiology, the photochemistry of biological reactions, is a rapidly developing subject and helps in understanding the phenomenon of photosynthesis, phototaxin, photoperiodism, vision and mutagenic effects of light. The relevance of photochemistry also lies in its varied applications in science and technology. Synthetic organic photochemistry has provided methods for the manufacture of many chemicals which could not be produced by dark reactions. Some industrially viable photochemical syntheses include synthesis of vitamin D2 from ergosterol isolated from yeast, synthesis of caprolactum which is the monomer for Nylon 6, manufacture of cleaning solvents and synthesis of some antioxidants. Photoinitiated polymerization and photopolymerisation are used in photography, lithoprinting and manufacture of printed circuits for the electronic industry. The photophysical phenomena of flourescence and phosphorescence have found varied applications in fluorescent tube lights, TV screens, as luminescent dials for watches, as “optical brighteners” in white dress materials, as paints in advertisement hoardings and so on. Another revolutionary application of electronically excited molecular systems is laser technology. The two main processes, therefore, studied under photochemistry are: 1. Photophysical process 2. Photochemical process 1.
    [Show full text]
  • 6Th IC4N Book of Abstracts
    IC4N SPONSORS 2019 BOOK OF ABSTRACTS 6th International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems Edited by: Efstathios I. Meletis CORFU, GREECE • JUNE 30 – JULY 3 This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/) It can be accessed in the University of Texas at Arlington’s institutional repository, ResearchCommons, at: http://hdl.handle.net/10106/28271 Publication Design and Formatting by Brittany Griffiths Cover Design by Brittany Griffiths Published and made openly accessible by: University of Texas at Arlington Libraries 702 Planetarium Pl. Arlington, TX 76019 Published in 2019 ISBN 978-0-9898878-6-1 Mavs Open Press 2019 University of Texas at Arlington BOOK OF ABSTRACTS 6th IC4N • 2019 Table of Contents xiii Foreword xv Conference Symposia Plenary Lecture xviii Radical Molecular Nanotechnology Sir Fraser Stoddart Keynote Lectures xx Artificial Magnetic Atoms Björgvin Hjörvarsson, Vassilios Kapaklis xxi Chemistry and Devices from Halide Perovskites Semiconductors Mercouri G. Kanatzidis Conference Abstracts 2 Impact of Nanoparticles on Amyloid Peptide and Protein Aggregation T. John, H.J. Risselada, B. Abel 3 Mechanistics of Spectrum Manipulation, Energy and Electron Transfer Reaction in Hybrid Materials Maria Abrahamsson, Elin Sundin, Deise Barbosa de Mattos, Mark Johnstone, Ambra Dreos, Henrik Sundén 4 From Carbon-Rich Molecules to Carbon-Rich Materials Igor Alabugin 5 Preparation and Characterization of Nanostructured AgNiO Thin Films A. Stamatelatos, N. Kanistras, D. I. Anyfantis, E. Violatzi, D. Geralis, S. Grammatikopoulos, M. Tsarmpopoulou, M.M. Sigalas, P. Poulopoulos 6 Responsive Self-Assembled Peptide Biomaterials and Applications Chrysanthi Pinelopi Apostolidou, Anna Mitraki i ii TABLE OF CONTENTS 7 Coexistence of Ferroelectricity and Two-Dimensional Electron Gas at an Oxide Interface A.
    [Show full text]
  • Structure, Chemistry, and Energetics of Organic and Inorganic Adsorbates on Ga-Rich Gaas and Gap(001) Surfaces
    Structure, Chemistry, and Energetics of Organic and Inorganic Adsorbates on Ga-Rich GaAs and GaP(001) Surfaces Thesis by Seokmin Jeon In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2014 (Defended September 30, 2013) ii 2014 Seokmin Jeon All Rights Reserved iii “No Pain, No Gain.” iv ACKNOWLEDGEMENTS I remember my wonderful mood when I first visited Caltech as a prospective student. Just before I came to Caltech, I visited the Columbia University, New York for the same purpose. I found everything in Pasadena including weather and people’s attitudes was attractive to me in contrast to what I found in New York. Living and studying in this beautiful place has been my best pleasure. Many individuals have supported, helped, and encouraged me to complete my Ph.D. course at Caltech, so it is my great pleasure to acknowledge them. I would like to thank my advisor, Professor Harry Atwater for his guidance and support. Especially, I appreciate him for providing me a great deal of freedom and independence on my thesis research. He has also shown me the wisdom, leadership, and enthusiasm that a leading scientist owns. My thesis committee, Professors Bill Goddard, Nate Lewis, and Jack Beauchamp are also my role models. It was my pleasure and honor to be advised by such great scientists. Many people in the Atwater group have contributed to the successful completion of my thesis research. Particularly, I would like to thank Jeff Bosco, Victor Brar, Seyoon Kim, Samantha Wilson, Min Jang, Jim Fakonas, Dan Tuner-Evans, Chris Chen, Yulia Tolstova, Hal Emmer, John Lloyd, Carissa Eisler, Siying Peng, Sunita Darbe, Amanda Shing, Imogen Pryce, Michael Kelzenberg, Jonathan Grandidier, Marina Leite, Gerald Miller, Vivian Ferry, Stanley Burgos, Ryan Briggs, Andrew Leenheer, Greg Kimball, Adele Tamboli, Deidre O’Caroll, Domenico Pacifici, Davis Darvish, Morgan Putnam, and Matt Sheldon for sharing their knowledge and skills, having time to discuss about research and science, and being good friends.
    [Show full text]
  • Unhindered Triangulene Salt Pairs: Substitution- Dependent Contact Ion Pairing and Complex Solvent- Separated Discotic Ions in Solution
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2015 UNHINDERED TRIANGULENE SALT PAIRS: SUBSTITUTION- DEPENDENT CONTACT ION PAIRING AND COMPLEX SOLVENT- SEPARATED DISCOTIC IONS IN SOLUTION Subrahmanyam Modekrutti University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Modekrutti, Subrahmanyam, "UNHINDERED TRIANGULENE SALT PAIRS: SUBSTITUTION-DEPENDENT CONTACT ION PAIRING AND COMPLEX SOLVENT-SEPARATED DISCOTIC IONS IN SOLUTION" (2015). Theses and Dissertations--Chemistry. 50. https://uknowledge.uky.edu/chemistry_etds/50 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.
    [Show full text]
  • Modification of Resins for Their Use in the Separation, Preconcentration and Determination of Metal Ions
    MODIFICATION OF RESINS FOR THEIR USE IN THE SEPARATION, PRECONCENTRATION AND DETERMINATION OF METAL IONS BY AKIL AHMAD Under the supervision of Dr. Aminul Islam Department of Chemistry Submitted in fulfillment of the requirement of the degree of Doctor of Philosophy DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY ALIGARH (INDIA) 2011 DEPARTMENT OF CHEMISTRY ALIGARH MUSLIM UNIVERSITY AMINUL ISLAM ALIGARH– 202002, INDIA PhD E-mail: [email protected] Assistant Professor Ph: (Off) 91-571-2703515 Analytical Chemistry Mob.: 91- 9358979659 DATE- 18th May, 2011 Certificate This is to certify that the thesis entitled “Modification of resins for their use in the separation, preconcentration and determination of metal ions ” being submitted by Mr. Akil Ahmad, for the award of Doctor of Philosophy in Chemistry, is a bonafide research work carried out by him under my supervision. The thesis, to my knowledge, fulfills the requirements for submission for the award of the degree of Doctor of Philosophy in Chemistry. Dr. Aminul Islam Dedicated in the memory of my Abba Acknowledgement At the outset, I wish to pay my most humble obeisance to the almighty Allah for giving me the wisdom and inspiration to take up this task. It has been Thy guiding hand that has brought this task to a successful completion. I express my deepest respect and the most sincere gratitude to my esteemed supervisor Dr. Aminul Islam for his scholastic guidance and ungrudged encouragement throughout the course of research work. His systematic and analytical approach blended with constructive criticism and innovative ideas helped me to understand the basics of research and to overcome many experimental hurdles.
    [Show full text]