Thesis Maayan Kreitzman

Total Page:16

File Type:pdf, Size:1020Kb

Thesis Maayan Kreitzman PERENNIAL AGRICULTURE: AGROMONY AND ENVIRONMENT IN LONG-LIVED FOOD SYSTEMS by Maayan Kreitzman B.Sc., The University of British Columbia, 2008 M.Sc. The Hebrew University of Jerusalem, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Resources, Environment, and Sustainability) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2020 © Maayan Kreitzman, 2020 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the dissertation entitled: Perennial agriculture: agronomy and environment in long-lived food systems. submitted by Maayan Kreitzman in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Resources, Environment, and Sustainability Examining Committee: Dr. Kai Chan, Institute for Resources, Environment, and Sustainability Supervisor Dr. Kristin Mercer, College of Food, Agricultural, and Environmental Sciences, Ohio State University Supervisory Committee Member Dr. Claire Kremen, Institute for Resources, Environment, and Sustainability and Zoology University Examiner Dr. Terry Sunderland, Department of Forest and Conservation Science University Examiner ii Abstract Perennial agricultural systems are fundamentally characterized by their longevity, as they consist chiefly of long-lived woody plants with permanent root and shoot systems that can be managed for continuous ground cover. This is known to promote a host of ecosystem services, and indeed agricultural landscapes that include perennials have been shown to support wildlife, enhance pest regulation, sequester carbon, limit erosion and water pollution, and promote pollination. Yet, the agroforestry and agroecology literatures that characterize environmental benefits of perennials (which mostly involve non-food producing trees and grasslands, especially in temperate climates) are largely separate from agronomic literature about the management and yields of perennial crops themselves. Thus little is known about how tree crops actually support a range of ecosystem services and other benefits. This thesis takes a multi-disciplinary approach to study agronomic, nutritional, environmental, and social dimensions of perennial crops for human food. It first characterizes the distribution and yields of perennial staple crops worldwide, finding that perennial crops, many of which are not yet heavily commodified, can provide staple nutrition at yields comparable to those of annual staples while supplying more varied nutrition than common annual staples. Second, it surveys food production and environmental outcomes on fourteen perennial polyculture farms in the US Midwest, finding that these farms enhance biodiversity and several other ecosystem services, although these new plantings produce less food than neighboring annual cropland. Third, it explores the practices, livelihoods, and values of perennial farmers, finding that they implement iii sophisticated adaptive management and derive satisfaction from fulfilling largely relational values alongside livelihood needs. Perennial agriculture thus offers the potential to produce significant amounts of nutritionally important food in multifunctional landscapes. If managed in diversified systems, perennials can enhance multiple ecosystem services compared to simplified perennial management and annual cropland. More widespread transition to perennials in existing agricultural land should be informed by the specific ecological opportunities offered by perennial plants (including continuous groundcover), and by the knowledges and values of producers, to realize the potential of these systems for achieving sustainable food security. iv Lay Summary The accelerating climate and ecological crisis facing the world makes the challenge of feeding people while reducing humanity’s impacts on the planet and regenerating its damaged life support systems an urgent one. Perennial agriculture, where long-lived plants (that are often woody trees and bushes) produce food year after year, can mitigate many of the problems with annual agriculture. But, the advantages and challenges of transitioning land to perennial agriculture depend on many factors, including how much food and nutrition perennial crops produce, what type of landscape they replace, how many environmental benefits they generate, how they are managed, and how easy and cost-effective it is for farmers to change their practices and livelihoods. This thesis explores these contexts for transitioning to perennial crops through global data assembly and original data collection in the US Midwest. The multifunctional environmental and agronomic benefits of perennial crops justify including them as part of the pathway towards sustainable food security. v Preface This thesis is my original work. I identified the research problems, obtained research funding, designed the research program, gathered and analyzed the data (with some assistance, as specified below), and wrote the chapters. My advisory committee (Drs. Kai Chan, Sean Smukler, Kristin Mercer, and Navin Ramankutty) provided valuable feedback on my research design, initial results, and draft chapters. Chapters 2 through 4 were written as stand-alone pieces for publication in peer-reviewed journals. This has led to some overlap in the introductory content of the chapters. As the final publications will be co-authored, terms like “we” instead of “I” are used to reflect co-authorship for those chapters. The nature of my contribution and those of all co-authors to each chapter is explained below: Chapter 2 is a verbatim manuscript of an article that is soon to be submitted. I am the lead author and wrote the first draft of the paper. I developed the project idea and core arguments in collaboration with the second author, Eric Toensmeier, with the support of Dr. Navin Ramakutty. A research assistant, Santiago Tomassi was employed to review literature which formed the main data for the paper. Drs. Navin Ramankutty, Sean Smukler and I worked together to refine the analysis. Dr. Kai Chan contributed to reviewing the manuscript and incorporating relevant literature. Chapter 3 is based on my own empirical fieldwork. I oversaw all aspects of the study from design to final analysis, and am the lead author on the resulting manuscript, which is a version of the chapter herein. I developed the project idea and research methods; collected the data in the vi field with the Noah Sullivan and Harold Eyster; carried out the data analysis; and led the writing. Drs. Sean Smukler and Matthew Mitchell contributed to developing the fieldwork protocol. Keefe Keely contributed to finding fieldwork sites. Dr. Adrian Verster contributed to the genetic data analysis. Harold Eyster contributed to the biodiversity analysis. Aldona Czajewska carried out the counting and identification of arthropods. Drs. Matthew Mitchell, Kai Chan, and Sean Smukler, as well as my other committee members contributed to structuring the article. All the co-authors contributed to the interpretation of study results and provided feedback on multiple article drafts. Chapter 4 is also based on my empirical fieldwork. I led the writing the interview protocol, conducted the interviews, coded the interviews, and led the writing of the manuscript. Dr. Mollie Chapman, Dr. Kai Chan, Adrian Semmelink, and Dr. Leila Harris contributed to formulating the interview protocol (the latter two played an advisory role and are not co-authors on the paper). Keefe Keeley contributed to finding interview subjects. Drs. Mollie Chapman, Keefe Keeley and Kai Chan contributed to situating the work in relevant literatures, crafting the argument, and provided feedback on the manuscript. This work was approved by the UBC Human Research Ethics Board, certificate H17-03248-A002. vii Table of Contents Abstract ......................................................................................................................................... iii Lay Summary .................................................................................................................................v Preface ........................................................................................................................................... vi Table of Contents ....................................................................................................................... viii List of Tables .............................................................................................................................. xiv List of Figures ...............................................................................................................................xv List of Abbreviations ................................................................................................................ xvii Acknowledgements .................................................................................................................. xviii Dedication .....................................................................................................................................xx Chapter 1: Introduction ................................................................................................................1 1.1 Perennial agriculture in the global food system .............................................................. 1 1.2 Research objectives on two scales .................................................................................
Recommended publications
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • Lista De Especies De Curculionoidea Depositadas En La Colecci.N De
    Acta Zool. Mex. (n.s.) 87: 147-165 (2002) LISTA DE LAS ESPECIES DE CURCULIONOIDEA (INSECTA: COLEOPTERA) DEPOSITADAS EN LA COLECCIÓN DEL MUSEO DE ZOOLOGÍA "ALFONSO L. HERRERA", FACULTAD DE CIENCIAS, UNAM (MZFC) Juan J. MORRONE1, Raúl MUÑIZ2, Julieta ASIAIN3 y Juan MÁRQUEZ1,3 1 Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, UNAM, Apdo. postal 70-399, CP 04510 México D.F., MÉXICO 2 Lago Cuitzeo # 144, CP 11320. México, D. F. MÉXICO 3 Laboratorio Especializado de Morfofisiología Animal, Facultad de Ciencias, UNAM, Apdo. postal 70-399, CP 04510 México D.F., MÉXICO RESUMEN La colección del Museo de Zoología "Alfonso L. Herrera" incluye 1,148 especímenes de Curculionoidea, que pertenecen a 397 especies, 217 géneros y 14 familias. La familia mejor representada es Curculionidae, con 342 especies, seguida de Dryophthoridae (12), Erirhinidae (8), Belidae (7), Oxycorynidae (6), Brentidae (4), Nemonychidae (4), Rhynchitidae (4), Anthribidae (3), Apionidae (2), Brachyceridae (2), Attelabidae (1), Ithyceridae (1) y Raymondionymidae (1). Muchos de los especímenes provienen de otros países (Argentina, Chile, Brasil y E.U.A., entre otros). La mayoría de los ejemplares mexicanos son de los estados de Hidalgo (44 especies), Morelos (13), Nayarit (12) y Veracruz (12). Palabras Clave: Coleoptera, Curculionoidea, Curculionidae, colección. ABSTRACT The collection of the Museo de Zoología "Alfonso L. Herrera" includes 1,148 specimens of Curculionoidea, which belong to 397 species, 217 genera, and 14 families. The best represented family is Curculionidae, with 342 species, followed by Dryophthoridae (12), Erirhinidae (8), Belidae (7), Oxycorynidae (6), Brentidae (4), Nemonychidae (4), Rhynchitidae (4), Anthribidae (3), Apionidae (2), Brachyceridae (2), Attelabidae (1), Ithyceridae (1), and Raymondionymidae (1).
    [Show full text]
  • The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera)
    BULLETIN OF THE ENTOMOLOGICAL SOCIETY OF MALTA (2010) Vol. 3 : 55-143 The Curculionoidea of the Maltese Islands (Central Mediterranean) (Coleoptera) David MIFSUD1 & Enzo COLONNELLI2 ABSTRACT. The Curculionoidea of the families Anthribidae, Rhynchitidae, Apionidae, Nanophyidae, Brachyceridae, Curculionidae, Erirhinidae, Raymondionymidae, Dryophthoridae and Scolytidae from the Maltese islands are reviewed. A total of 182 species are included, of which the following 51 species represent new records for this archipelago: Araecerus fasciculatus and Noxius curtirostris in Anthribidae; Protapion interjectum and Taeniapion rufulum in Apionidae; Corimalia centromaculata and C. tamarisci in Nanophyidae; Amaurorhinus bewickianus, A. sp. nr. paganettii, Brachypera fallax, B. lunata, B. zoilus, Ceutorhynchus leprieuri, Charagmus gressorius, Coniatus tamarisci, Coniocleonus pseudobliquus, Conorhynchus brevirostris, Cosmobaris alboseriata, C. scolopacea, Derelomus chamaeropis, Echinodera sp. nr. variegata, Hypera sp. nr. tenuirostris, Hypurus bertrandi, Larinus scolymi, Leptolepurus meridionalis, Limobius mixtus, Lixus brevirostris, L. punctiventris, L. vilis, Naupactus cervinus, Otiorhynchus armatus, O. liguricus, Rhamphus oxyacanthae, Rhinusa antirrhini, R. herbarum, R. moroderi, Sharpia rubida, Sibinia femoralis, Smicronyx albosquamosus, S. brevicornis, S. rufipennis, Stenocarus ruficornis, Styphloderes exsculptus, Trichosirocalus centrimacula, Tychius argentatus, T. bicolor, T. pauperculus and T. pusillus in Curculionidae; Sitophilus zeamais and
    [Show full text]
  • Fossil History of Curculionoidea (Coleoptera) from the Paleogene
    geosciences Review Fossil History of Curculionoidea (Coleoptera) from the Paleogene Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Ulitsa Frunze, 11, 630091 Novosibirsk, Novosibirsk Oblast, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia Received: 23 June 2020; Accepted: 4 September 2020; Published: 6 September 2020 Abstract: Currently, some 564 species of Curculionoidea from nine families (Nemonychidae—4, Anthribidae—33, Ithyceridae—3, Belidae—9, Rhynchitidae—41, Attelabidae—3, Brentidae—47, Curculionidae—384, Platypodidae—2, Scolytidae—37) are known from the Paleogene. Twenty-seven species are found in the Paleocene, 442 in the Eocene and 94 in the Oligocene. The greatest diversity of Curculionoidea is described from the Eocene of Europe and North America. The richest faunas are known from Eocene localities, Florissant (177 species), Baltic amber (124 species) and Green River formation (75 species). The family Curculionidae dominates in all Paleogene localities. Weevil species associated with herbaceous vegetation are present in most localities since the middle Paleocene. A list of Curculionoidea species and their distribution by location is presented. Keywords: Coleoptera; Curculionoidea; fossil weevil; faunal structure; Paleocene; Eocene; Oligocene 1. Introduction Research into the biodiversity of the past is very important for understanding the development of life on our planet. Insects are one of the Main components of both extinct and recent ecosystems. Coleoptera occupied a special place in the terrestrial animal biotas of the Mesozoic and Cenozoics, as they are characterized by not only great diversity but also by their ecological specialization.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • Entomologi Och Naturalhistoria 2009
    Entomologi och naturalhistoria 2009 Följande lista över entomologiska böcker och tryck omfattar en rad olika ämnesområden och inkluderar många olika insektsgrupper. Vissa insektsgrupper har fått egna rubriker. Dessa grupper kan även finnas behandlade under andra avdelningar, varför det kan löna sig att leta också under dessa. I den här katalogen har jag särskilt velat lyfta fram några klassiska insektsverk som haft stor betydelse för entomologins utveckling i dess olika former. Jag begagnar även tillfället att slå ett slag för den i boksamlarkretsar välkände entomologen och Linné-kännaren Felix Bryk, som trots en verksamhet som rörde sig över vida fält alltid behöll bibliophilens känsla för det estetiskt tilltalande, något som löper som en röd tråd genom hans produktion. Han presenteras i en särskilt avdelning och med en kort biografi. Trycken är kompletta och i gott antikvariskt skick, skurna och häftade i 8:o, samt bär pappomslag om ej annat anges. Betalning och sändning efter överenskommelse. Porto tillkommer vid postutskick. Använd gärna e-post vid beställning. Mikael Sörensson, Zoologiska Institutionen, Helgonavägen 3, S-223 62 Lund (tel. 046-222 78 02 el. 046-151597). E-MAIL: [email protected] Ak. avh. = akademisk avhandling; a.u. = allt utkommet; b.om. = bakre omslag; ded. = dedikation; fl = fläck(ar); fr.om. = främre omslag; hfrbd = halvfranskt band; hklbd = halvklotband; klbd = klotband; namnt = namnteckning; osk. = oskuren; ouppsk. = ouppskuren; pl(r), pls = plansch(er); pp = sidor; samt. = samtida; sid = sidor; skom. = skyddsomslag; stpl. = stämpel; sär. = särtryck; tit. = titelblad; u.omsl. = utan omslag; utv. = utvikbar(a); AEF = Acta Ent. Fennica; ASZBV = Ann. Soc. Zool.-Bot.Fenn. Vanamo.; AfZ = Arkiv för Zoologi; ASFFF = Acta Soc.
    [Show full text]
  • Genomes of the Hymenoptera Michael G
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes.
    [Show full text]
  • Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
    Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae.
    [Show full text]
  • Annual Report Table of Contents
    The largest natural history museum in Canada known for: nature inspiration and engagement; arctic knowledge and exploration; species discovery and change; and a 10.5 million specimen collection housed at a 76 hectare research campus. 2014-2015 AnnuAl report table of contents MESSAGE FROM THE CHAIR . 3 MESSAGE FROM THE PRESIDENT AND CHIEF EXECUTIVE OFFICER . 5 PERFORMANCE MEASURES FOR 2014-2015 . 7 OUR PEOPLE . 13 COMMUNICATING RESEARCH RESULTS . 15 INVOLVING THE COMMUNITY . 23 COLLABORATORS . 26 MANAGING OUR FINANCIAL RESOURCES . 33 message from the chair Sustainability is a word increasingly heard in Governance: at a micro level with respect to the ongoing health and viability of an enterprise; and at a macro level with respect to our ability to maintain a regenerating natural environment capable of supporting current global trends of increasing population, economic growth, and energy consumption . Responding to both of these aspects of sustainability have been central themes to progress at the Canadian Museum of Nature (CMN) in the past year . At the macro level, the Canadian Museum of Nature conducts research to create knowledge which has direct relevance to Stephen henley understanding environmental change . Chair, Board of Trustees And, through the National Natural History Collection, it maintains a scientific body leadership will ensure that each of these of reference that is vital to environmental Centres of Excellence continues to make management . Fulfilling this role depends, important contributions to the body at the micro level, on the museum itself of knowledge that must be leveraged managing sustainable operations . To to manage environmental change in be relevant, the museum must be clear the Arctic and maintain a wealth of in the value it provides to the scientific biodiversity in Canada and worldwide .
    [Show full text]
  • Novitates Paleoentomologicae No
    Novitates Paleoentomologicae No. 13, pp. 1–22 30 December 2015 A new family of primitive serphitoid wasps in ȱȱǻ ¢DZȱǼ Michael S. Engel1,2 Abstract.ȱ ȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ǻDZȱ Ǽȱ ȱ ȱ ȱ ęȱȱArchaeoserphitidae Engel, new family. The family is based on Archaeoserphites melqartiȱǰȱ ȱȱȱǰȱȱȱ¢ȱȱȱȱǰȱ ȱȱ ȱȱȱ ȬǰȱȱǯȱȱArchaeoserphites have several ȱȱȱȱȱǻe.gǯǰȱȱǰȱȱȱ¢ȱDzȱ ȱȱȱȱĚDzȱȱȱȱǼǰȱ ȱ¢ȱ¡ȱȱ ȱȱȱǻe.gǯǰȱȱ ȱǰȱ ȱ¢ȱ DzȱȱDzȱ ȱDzȱȱǼǯȱȱȱȱȱ¢ȱȱȱȱ¡ȱȱȱȱ ǰȱȱȱ¢ȱMicroserphitinaeȱǰȱ ȱ¢ǰȱȱǯ ȱȱȱȱȱȱȱȱȱȱ ȱ ¢ȱ ȱ Ȧ¢ȱ ¢ǰȱ ȱ ȱ ¢ȱ ȱ ȱ ȱ ȱȱǻ ȱǭȱǰȱŘŖŖśǼǯȱȱȱȱȱȱȱȬ ȱȱȱȱȱǰȱ¢ȱȱȱ¢ȱȱ¢ȱ ȱȱȱȱȱȱȱȱȱȱȱȱȱȱ ǻe.gǯǰȱ ǰȱŗşŝřDzȱ ǰȱŗşŞŜDzȱȱǭȱ ǰȱŘŖŖŚǰȱŘŖŖŜǰȱŘŖŖŝǰȱŘŖŗřDzȱǰȱ ŘŖŖřǰȱŘŖŖśǰȱŘŖŖŜǰȱŘŖŖŞDzȱȱet alǯǰȱŘŖŗřǰȱŘŖŗřDzȱȱet alǯǰȱŘŖŖŝDzȱȱǭȱǰȱŘŖŖŞDzȱ ȱet alǯǰȱŘŖŖşDzȱȬȱet alǯǰȱŘŖŖşǰȱŘŖŗŗǰȱŘŖŗŗǰȱŘŖŗŚDzȱÛȱet alǯǰȱŘŖŗŖDzȱ 1ȱȱȱ¢ǰȱȱ ¢ȱǰȱȱȱȱ¢ȱǭȱȬ ¢ȱ¢ǰȱŗśŖŗȱȱȱȮȱȱŗŚŖǰȱ¢ȱȱ ǰȱ ǰȱ ȱŜŜŖŚśȬ ŚŚŗśǰȱȱǻȓǯǼǯ 2ȱȱȱ ȱ¢ǰȱȱȱȱȱ ¢ǰȱȱȱȱȱ ŝşthȱǰȱ ȱǰȱ ȱȱŗŖŖŘŚȬśŗşŘǰȱǯ DZȱĴDZȦȦ¡ǯǯȦŗŖǯŗŝŗŜŗȦǯŖŗřǯśŖŜŚ Copyright © M.S. Engel. ȱȱĴȬȬȱŚǯŖȱ ȱǻȱȬȬȱŚǯŖǼǯ ȱŘřŘşȬśŞŞŖ 2 Novitates Paleoentomologicae No. 13 McKellar & Engel, 2012; McKellar et al., 2013; Olmi et al., 2014). Nonetheless, there are a series of distinctive extinct families that are almost hallmarks of the Cretaceous, representing apparently monophyletic groups that did not persist into the Cenozoic and were perhaps dwindling long before the Mesozoic came to its climactic closure. Each can be assigned to a superfamily and associated with their modern cousins, and inform us of the early branching events within these groups and of putatively ground- plan features aiding phylogenetic studies through the
    [Show full text]
  • A Review of Australian Copiphorini (Orthoptera : Tettigoniidae : Conocephalinae)
    Aust. J. Zool., 1979, 27, 1015-49 A Review of Australian Copiphorini (Orthoptera : Tettigoniidae : Conocephalinae) Winston J. Bailey Department of Zoology, University of Western Australia. Nedlands. W.A. 6009. Abstract The Australian members of the tribe Copiphorini (Tettigoniidae) are reviewed and their relationship to the Indo-Pacific species clarified. The principal character used is the stridulatory file of the male. This permits clear distinction of species within the four genera Pseudorhynchus, Euconocephalus, Ruspolia and Mygalopsis. Seven new species are named: P. raggei, P. selonis, E. broughtoni, R. marshallae, M. sandowi, M. marki and M. thielei. All genera are keyed, all species described and synonyms given. Distribution patterns are noted but not discussed in any detail. Introduction The Australian Tettigoniidae have had scant taxonomic treatment in recent times. Riek (1976) has provided a review of one genus, Tympanophora, and a number of other families are at present under consideration. Studies on the ecology, behaviour and physiology of various genera of Tettigoniidae are becoming more numerous, and the present review stems from a need to bring some taxonomic order to one genus, Mygalopsis, which is receiving considerable attention from both ecologists and physiologists in Western Australia (Sandow and Bailey 1978; Bailey and Stephen 1978; Thiele and Bailey 1980). The tribe Copiphorini was erected by Karny (1912) and includes four Australian genera: Pseudorhynchus Serville, Euconocephalus Karny, Ruspolia Schulthess (= Homorocoryphus Karny) and Mygalopsis Redtenbacher. These genera were re- viewed in part, in a study of Malayan, Melanesian and Australian tettigoniids by Hebard (1922). He pointed to the poor treatment one genus had received from previous workers, notably Euconocephalus.
    [Show full text]
  • Great Lakes Entomologist the Grea T Lakes E N Omo L O G Is T Published by the Michigan Entomological Society Vol
    The Great Lakes Entomologist THE GREA Published by the Michigan Entomological Society Vol. 45, Nos. 3 & 4 Fall/Winter 2012 Volume 45 Nos. 3 & 4 ISSN 0090-0222 T LAKES Table of Contents THE Scholar, Teacher, and Mentor: A Tribute to Dr. J. E. McPherson ..............................................i E N GREAT LAKES Dr. J. E. McPherson, Educator and Researcher Extraordinaire: Biographical Sketch and T List of Publications OMO Thomas J. Henry ..................................................................................................111 J.E. McPherson – A Career of Exemplary Service and Contributions to the Entomological ENTOMOLOGIST Society of America L O George G. Kennedy .............................................................................................124 G Mcphersonarcys, a New Genus for Pentatoma aequalis Say (Heteroptera: Pentatomidae) IS Donald B. Thomas ................................................................................................127 T The Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) of Missouri Robert W. Sites, Kristin B. Simpson, and Diane L. Wood ............................................134 Tymbal Morphology and Co-occurrence of Spartina Sap-feeding Insects (Hemiptera: Auchenorrhyncha) Stephen W. Wilson ...............................................................................................164 Pentatomoidea (Hemiptera: Pentatomidae, Scutelleridae) Associated with the Dioecious Shrub Florida Rosemary, Ceratiola ericoides (Ericaceae) A. G. Wheeler, Jr. .................................................................................................183
    [Show full text]