The Large Barbs (Barbus Spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a Description of a New Species, Barbus Osseensis

Total Page:16

File Type:pdf, Size:1020Kb

The Large Barbs (Barbus Spp., Cyprinidae, Teleostei) of Lake Tana (Ethiopia), with a Description of a New Species, Barbus Osseensis THE LARGE BARBS (BARBUS SPP., CYPRINIDAE, TELEOSTEI) OF LAKE TANA (ETHIOPIA), WITH A DESCRIPTION OF A NEW SPECIES, BARBUS OSSEENSIS by * LEO A.J. NAGELKERKE and FERDINAND A. SIBBING (Experimental Zoology Group, WageningenInstitute of Animal Sciences (WIAS), Wageningen University,Marijkeweg 40, 6709 PG Wageningen, The Netherlands) ABSTRACT Recently the complex of 'large', hexaploid barbs (genus Barbus) of Lake Tana, Ethiopia, was revised as 14 species (NAGELKERKE& SIBBING, 1997), seven of which were new. This paper describes another new species, Barbus osseensis and summarises the major features of the former new species (B. crassibarbis, B. megastoma, B. longissimus, B. tsanensis, B. brevicephalus, B. truttiformis, and B. platydorsus). Figures of all fifteen large barb species of Lake Tana are presented, and an identification key for specimens larger than 15 cm standard length is provided. The position of the large hexaploid barbs within the genus Barbus is discussed. KEY WORDS:barbins, Barbus, cyprinids, Ethiopia, hexaploid, identification key, Labeo- barbus, Lake Tana, species flock. INTRODUCTION The genus Barbus The cyprinid genus Barbus Cuvier & Cloquet, 1816, at present includes c. 800 species in Eurasia and Africa. It is generally accepted that the genus is a paraphyletic assemblage within the subfamily Cyprininae (HOWES, 1987), but a proper revision of the phylogenetic relationships among the different species of the genus Barbus has not been made until now (cf BERREBI et al., 1996). The type species of the genus, Barbus barbus (L.) 1758, the widely distributed European barb, belongs to what is called Barbus 'sensu stricto'. This is a monophyletic group of European and some north- African species (LEVEQUE & DAGET, 1984). This group of evolutionary tetraploids is now considered to form the subgenus Barbus (Barbus) (BERREBI, 1995). * Corresponding author; e-mail: nand.sibbingC morf.edc.wau.nl 180 The hexaploid 'large' African barbs, which have more or less parallel striae on the exposed part of their scales, are generally larger than 150 mm standard length as adults and lack conspicuous body markings such as dots or stripes (HOWES, 1987). These barbs are included in Barbus 'sensu lato,' which is probably composed of several phylogenetic lineages. According to HOWES (1987) the Barbus intermedius complex of Lake Tana belongs to one of these (possibly monophyletic) lineages: the barbins, which also includes the genus Varicorhinus RÜPPELL, 1836. The 'large' Lake Tana barbs could therefore be more related to varicorhinus, than they are to Barbus 'sensu stricto.' This corroborates with studies of OELLERMAN & SKELTON (1990) and by GOLUBTSOV & KRYSANOV (1993), who found that 'large' Barbus from South-Africa and Ethiopia (among which B. intermediu.s) as well as Varicorhinus beso from Ethiopia are all evolutionary hexaploids, while the 'small' African barbs, like B. humilis Boulenger, 1902, B. trispilopleura Boulenger, 1902, and B. pleurogramma Boulenger, 1902, in Lake Tana, are evolutionary diploids and probably constitute a separate lineage. Moreover, hybrids of 'large' Barbus and Varicorhinus have been found several times in Lake Tana (NAGELKERKE & SIBBING, 1996), suggesting that they are more related to each other than the 'large' barbs are to the 'small' barbs. The status of the genus Barbus is all the more confusing, because (1) ill-defined terms (e.g. 'large barbs' or ' sensu stricto') are used, (2) taxonomic categories do not reflect the outcome of phylognetic (e.g. genetic) research (as in the case of Varicorhinus), or (3) phylogenetic lineages do not have a formal taxonomic rank at all (e.g. barbins). In an attempt to at least clear part of this problem, BERREBI recently (1995) proposed that all hexaploid, 'large' African barbs belong to the subgenus Barbus (Labeobarbus) Riippell, 1836. The 'Barbus intermedius coniplex'qf Lake Tana BANISTER (1973) lumped 50 nominal species and subspecies of East- African barbs into one species: Barbus intermedius Rüppell, 1836, in- cluding all 'large' barbs from Lake Tana. The latter were even considered as belonging to a single subspecies: B. intermedius intermedius. Recently it was shown, supported by multivariate analysis, that among these at least 14 morphotypes are distinct (NAGELKERKE et al., 1994, 1995a) and that 11of them can even be distinguished at lengths of less than 100 mm (NAGELKERKE et al., 1995a). Based on these morphological differences there is ample evidence that we were dealing with 'taxonomic species' (sensu MINA, 1992) and that these species most probably constitute the world's only known intact cyprinid species flock (NAGELKERKE, 1997; NAGELKERKE et al., 1994, 1995a, 1995b; SIBBING et al., 1998). .
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Carp, Bighead (Hypophthalmichthys Nobilis)
    Bighead Carp (Hypophthalmichthys nobilis) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, February 2011 Revised, June 2018 Web Version, 8/16/2018 Photo: A. Benson, USGS. Public domain. Available: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=551. (June 2018). 1 Native Range and Status in the United States Native Range From Jennings (1988): “The bighead carp is endemic to eastern China, […] in the lowland rivers of the north China plain and South China, including the Huai (Huai Ho), Yangtze, Pearl, West (Si Kiang), Han Chiang and Min rivers (Herre 1934; Mori 1936; Chang 1966; Chunsheng et al. 1980).” Status in the United States From Nico et al. (2018): “This species has been recorded from within, or along the borders of, at least 18 states. There is evidence of reproducing populations in the middle and lower Mississippi and Missouri rivers and the species is apparently firmly established in the states of Illinois and Missouri (Burr et al. 1996; Pflieger 1997). Pflieger (1997) received first evidence of natural reproduction, capture of young 1 bighead carp, in Missouri in 1989. Burr and Warren (1993) reported on the taking of a postlarval fish in southern Illinois in 1992. Subsequently, Burr et al. (1996) noted that bighead carp appeared to be using the lower reaches of the Big Muddy, Cache, and Kaskaskia rivers in Illinois as spawning areas. Tucker et al. (1996) also found young-of-the-year in their 1992 and 1994 collections in the Mississippi River of Illinois and Missouri. Douglas et al. (1996) collected more than 1600 larvae of this genus from a backwater outlet of the Black River in Louisiana in 1994.
    [Show full text]
  • Pathogen Susceptibility of Silver Carp (Hypophthalmichthys Molitrix) and Bighead Carp (Hypophthalmichthys Nobilis) in the Wabash River Watershed
    Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed FINAL REPORT Kensey Thurner PhD Student Maria S Sepúlveda, Reuben Goforth, Cecon Mahapatra Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907 Jon Amberg, US Geological Service, Upper Midwest Environmental Sciences Center, La Crosse, WI 54603 Eric Leis, US Fish and Widlife Service, La Crosse Fish Health Center, Onalaska, WI 54650 9/22/2014 Silver Carp (top) and Bighead Carp (bottom) caught in the Tippecanoe River, Photos by Alison Coulter Final Report 9/22/2014 - Page 2 Executive Summary The Pathogen Susceptibility of Silver Carp (Hypophthalmichthys molitrix) and Bighead Carp (Hypophthalmichthys nobilis) in the Wabash River Watershed project was undertaken to address the lack of available information regarding pathogens in the highly invasive Silver and Bighead Carps, collectively known as bigheaded carps. Very little is known about the prevalence and effects of parasites, bacteria and viruses on the health of invasive bigheaded carp populations in the United States or the effects of bigheaded carps on the disease risk profile for sympatric, native fish of the U.S. The main objectives of this project were to conduct a systematic survey of parasites, bacteria and viruses of Asian carps and a representative number of native Indiana fish species in the upper and middle Wabash and the lower Tippecanoe Rivers, Indiana; to determine the susceptibility of Asian carps to a representative number of natural pathogens using in vitro approaches; and to involve anglers in the development of a cost effective state-wide surveillance program for documentation of viral diseases of fish.
    [Show full text]
  • A Manual for Commercial Production of the Tiger Barb, ~C~T Etnlnmmi
    saeAU-8-97-002 C3 A Manual for Commercial Production of the Tiger Barb, ~c~t etnlnmmI. A T p y P i d T k Sp By: Clyde S. Tamaru, Ph.D. Brian Cole, M.S. Richard Bailey, B.A. Christopher Brown, Ph.o. Center for Tropical and Subtropical Aquaculture Publication Number 129 Commercial Production of Tiger 8arbs ACKNOWLEDGEMENTS This manual is a combined effort of three institutions, United States Department of Agriculture Center for Tropical and Subtropical Aquaculture CTSA!, and University of Hawaii Sea Grant Extension Service SGES! and Aquaculture Development Program ADP!, Department of Land and Natural Resources, State of Hawaii. Financial support for this project was provided by the Center for Tropical and Subtropical Aquaculture through grants from the US Department of Agriculture USDA grant numbers 93-38500-8583 and 94-38500-0065!. Production of the manual is also funded in part by a grant from the National Oceanic and Atmospheric Administration, project kA/AS-1 which is sponsored by the University of Hawaii Sea Grant College Program, School of Ocean Earth Science and Technology SOEST!, under institutional Grant No. NA36RG0507 from NOAA Office of Sea Grant, Department of Commerce, UNIHI-SEAGRANT-TR-96-01. Support for the production of the manual was also provided by the Aquaculture Development Program, Department of Land and Natural Resources, State of Hawaii, as part of their Aquaculture Extension Project with University of Hawaii Sea Grant Extension, Service Contract Nos. 9325 and 9638. The views expressed herein are those of the authors and do not necessarily reflect the views of USDA or any of its sub-agencies.
    [Show full text]
  • Download This Article in PDF Format
    Knowl. Manag. Aquat. Ecosyst. 2021, 422, 13 Knowledge & © L. Raguž et al., Published by EDP Sciences 2021 Management of Aquatic https://doi.org/10.1051/kmae/2021011 Ecosystems Journal fully supported by Office www.kmae-journal.org français de la biodiversité RESEARCH PAPER First look into the evolutionary history, phylogeographic and population genetic structure of the Danube barbel in Croatia Lucija Raguž1,*, Ivana Buj1, Zoran Marčić1, Vatroslav Veble1, Lucija Ivić1, Davor Zanella1, Sven Horvatić1, Perica Mustafić1, Marko Ćaleta2 and Marija Sabolić3 1 Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb 10000, Croatia 2 Faculty of Teacher Education, University of Zagreb, Savska cesta 77, Zagreb 10000, Croatia 3 Institute for Environment and Nature, Ministry of Economy and Sustainable Development, Radnička cesta 80, Zagreb 10000, Croatia Received: 19 November 2020 / Accepted: 17 February 2021 Abstract – The Danube barbel, Barbus balcanicus is small rheophilic freshwater fish, belonging to the genus Barbus which includes 23 species native to Europe. In Croatian watercourses, three members of the genus Barbus are found, B. balcanicus, B. barbus and B. plebejus, each occupying a specific ecological niche. This study examined cytochrome b (cyt b), a common genetic marker used to describe the structure and origin of fish populations to perform a phylogenetic reconstruction of the Danube barbel. Two methods of phylogenetic inference were used: maximum parsimony (MP) and maximum likelihood (ML), which yielded well supported trees of similar topology. The Median joining network (MJ) was generated and corroborated to show the divergence of three lineages of Barbus balcanicus on the Balkan Peninsula: Croatian, Serbian and Macedonian lineages that separated at the beginning of the Pleistocene.
    [Show full text]
  • Indiana Aquatic Nuisance Species (ANS) Management Plan
    Indiana Aquatic Nuisance Species (ANS) Management Plan Aruana caught by angler in Lake George, Lake County, Indiana Photo credit: Brian Breidert, IDNR Indiana Department of Natural Resources Funded by: Division of Fish and Wildlife Edited by: Phil Seng and Gwen White, D.J. Case & Associates, Mishawaka, Indiana October 1, 2003 Indiana Aquatic Nuisance Species (ANS) Management Plan Table of Contents Page Executive summary 3 Introduction 6 Why should we be concerned? 6 Why are we hearing about more nuisance exotics? 6 Are all exotic species causing problems? 7 Why do some of these species become nuisances? 7 What principles should guide invasive species management in Indiana? 8 Which species are top priorities for management in Indiana? 8 Table 1. Aquatic nuisance species on the watch list and detected 9 Nuisance fish 10 Nuisance insects and crustaceans 13 Nuisance mussels and snails 14 Diseases, pathogens and parasites 15 Aquarium pets caught from Indiana waters 17 Nuisance plants 20 Which programs are engaged in management of invasive species? 23 What regulatory authorities control management of exotic species? 29 Federal role 30 Regional role 32 State role 33 Designing an integrated comprehensive regulatory approach 33 What can Hoosiers do to prevent and control the impacts of ANS? 40 Index to the strategic management plan 41 Description of strategic management plan 44 How will we know if we succeed? 58 Literature cited 60 Glossary of terms 63 List of agency and organization acronyms 64 Appendix A. List of introduced fish and crayfish 65 Appendix B. List of invasive aquatic plants 67 Appendix C. Priority list of ANS in the Great Lakes basin 69 Appendix D.
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan Ann Arbor.Michigan
    OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN ANN ARBOR.MICHIGAN THE CYPRINID DERMOSPHENOTIC AND THE SUBFAMILY RASBORINAE The Cyprinidac, the largest family of fishes, do not lend themselves readily to subfamily classification (Sagemehl, 1891; Regan, 1911 ; Ramaswami, 195513). Nevertheless, it is desirable to divide the family in some way, if only to facilitate investiga- tion. Since Gunther's (1868) basic review of the cyprinids the emphasis in classification has shifted from divisions that are rcadily differentiable to groupings intended to be more nearly phylogenetic. In the course of this change a subfamily classifica- tion has gradually been evolved. Among the most notable contributions to the development of present subfamily concepts are those of Berg (1912), Nikolsky (1954), and Banarescu (e-g. 1968a). The present paper is an attempt to clarify the nature and relationships of one cyprinid subfamily-the Rasborinae. (The group was termed Danioinae by Banarescu, 1968a. Nomen- claturally, Rasborina and Danionina were first used as "family group" names by Giinther; to my knowledge the first authors to include both Rasbora and Danio in a single subfamily with a name bascd on one of these genera were Weber and de Beaufort, 1916, who used Rasborinae.) In many cyprinids, as in most characins, the infraorbital bones form an interconnected series of laminar plates around the lower border of the eye, from the lacrimal in front to the dermo- sphenotic postcrodorsally. This series bears the infraorbital sensory canal, which is usually continued into the cranium above the dcrmosphenotic. The infraorbital chain of laminar plates is generally anchored in position relative to the skull anteriorly and 2 Gosline OCC.
    [Show full text]
  • Carps, Minnows Etc. the Cyprinidae Is One of the Largest Fish Families With
    SOF text final l/out 12/12/02 12:16 PM Page 60 4.2.2 Family Cyprinidae: Carps, Minnows etc. The Cyprinidae is one of the largest fish families with more than 1700 species world-wide. There are no native cyprinids in Australia. A number of cyprinids have been widely introduced to other parts of the world with four species in four genera which have been introduced to Australia. There are two species found in the ACT and surrounding area, Carp and Goldfish. Common Name: Goldfish Scientific Name: Carassius auratus Linnaeus 1758 Other Common Names: Common Carp, Crucian Carp, Prussian Carp, Other Scientific Names: None Usual wild colour. Photo: N. Armstrong Biology and Habitat Goldfish are usually associated with warm, slow-flowing lowland rivers or lakes. They are often found in association with aquatic vegetation. Goldfish spawn during summer with fish maturing at 100–150 mm length. Eggs are laid amongst aquatic plants and hatch in about one week. The diet includes small crustaceans, aquatic insect larvae, plant material and detritus. Goldfish in the Canberra region are often heavily infected with the parasitic copepod Lernaea sp. A consignment of Goldfish from Japan to Victoria is believed to be responsible for introducing to Australia the disease ‘Goldfish ulcer’, which also affects salmonid species such as trout. Apart from the introduction of this disease, the species is generally regarded as a ‘benign’ introduction to Australia, with little or no adverse impacts documented. 60 Fish in the Upper Murrumbidgee Catchment: A Review of Current Knowledge SOF text final l/out 12/12/02 12:16 PM Page 61 Distribution, Abundance and Evidence of Change Goldfish are native to eastern Asia and were first introduced into Australia in the 1860s when it was imported as an ornamental fish.
    [Show full text]
  • Bighead Carp US ARMY CORPS of ENGINEERS Building Strong®
    bighead carp US ARMY CORPS OF ENGINEERS Building Strong® Common Name bighead carp Genus & Species Hypophthalmichthys nobilis Family Cyprinidae (minnows and carps) Order Cypriniformes (carps, minnows, loaches, suckers) Class Actinopterygii (ray-finned fishes) Diagnosis: The bighead carp is characterized by a stout body, large head, massive opercles (gill covers), the head and opercles have no scales, snout bluntly rounded, mouth terminal and appears to be upside down, barbels are absent, and the jaws have no teeth. The eyes are small, located far forward below the angle of the jaw and project downward. Scales are small, cycloid, and cover the entire body. The lateral line is complete with 95-120 scales in series. This fish can weigh up to 100-lbs. The bighead carp may be distinguished from the silver carp by having long thread-like gill rakers, wheras silver carp have sponge like gill rakers. The keeled abdomen of the silver carp extends from the anal vent almost to the base of the head, whereas the keel of the bighead carp extends from the anal vent to the base of the pectoral fins. Ecology: This fish tends not to spawn in still water or small streams, but in large flood swollen rivers. Spawning occurs after spring rains have flooded the rivers and when the temperature of the water reaches 77°F. Eggs are fertilized externally and need to float downstream. Regarded as a filter-feeder, consuming mainly zooplankton, this fish is capable of eating between 20 and 120% of its body weight each day. Like all planktivores, they eat from the bottom of the food chain, thusly competing with native planktivores, juvenile fishes and mussels.
    [Show full text]
  • Bighead Carp, Hypophthalmichthys Nobilis
    Invasive Species Fact Sheet Bighead carp, Hypophthalmichthys nobilis General Description Bighead carp are large, freshwater fish belonging to the minnow family. They are deep bodied and laterally compressed, with a large head that is nearly a 1/3 of the size of their body. Their eyes sit low on their head and they have a large, upturned mouth. Bighead carp are gray to silver on their back and sides with numerous grayish-black blotches, and cream Bighead carp colored on their bellies. Bighead carp have long, thin, Photo by South Dakota Department of Game, Fish, and Parks unfused gills that they use to filter feed zooplankton (animal plankton) and large phytoplankton (plant plankton) from the water. Bighead carp can grow over 4 feet in length and weigh up to 88 pounds. Bighead carp closely resemble silver carp, but can be distinguished by their blotchy coloration and unfused gills. Current Distribution Bighead carp are not currently found in California, but were previously introduced in 1989 when 3 ponds in Tehama County were illegally stocked with both bighead and grass carp. The California Department of Fish and Game eradicated all carp from the ponds in 1992. Bighead carp were first introduced to the United States in the 1970s. They have been reported within or along the borders of at least 18 central and southern states, and are established and reproducing in various waterbodies throughout those states, including the lower Mississippi and Missouri Rivers. Bighead carp are native to low gradient Pacific Ocean drainages in eastern Asia, from southern China through the northern edge of North Korea and into far eastern Russia.
    [Show full text]
  • Resolving Cypriniformes Relationships Using an Anchored Enrichment Approach Carla C
    Stout et al. BMC Evolutionary Biology (2016) 16:244 DOI 10.1186/s12862-016-0819-5 RESEARCH ARTICLE Open Access Resolving Cypriniformes relationships using an anchored enrichment approach Carla C. Stout1*†, Milton Tan1†, Alan R. Lemmon2, Emily Moriarty Lemmon3 and Jonathan W. Armbruster1 Abstract Background: Cypriniformes (minnows, carps, loaches, and suckers) is the largest group of freshwater fishes in the world (~4300 described species). Despite much attention, previous attempts to elucidate relationships using molecular and morphological characters have been incongruent. In this study we present the first phylogenomic analysis using anchored hybrid enrichment for 172 taxa to represent the order (plus three out-group taxa), which is the largest dataset for the order to date (219 loci, 315,288 bp, average locus length of 1011 bp). Results: Concatenation analysis establishes a robust tree with 97 % of nodes at 100 % bootstrap support. Species tree analysis was highly congruent with the concatenation analysis with only two major differences: monophyly of Cobitoidei and placement of Danionidae. Conclusions: Most major clades obtained in prior molecular studies were validated as monophyletic, and we provide robust resolution for the relationships among these clades for the first time. These relationships can be used as a framework for addressing a variety of evolutionary questions (e.g. phylogeography, polyploidization, diversification, trait evolution, comparative genomics) for which Cypriniformes is ideally suited. Keywords: Fish, High-throughput
    [Show full text]
  • Feeding Habits of Tinfoil Barb, Barbonymus Schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia by Eri Yusni
    Feeding habits of Tinfoil barb, Barbonymus schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia by Eri Yusni Submission date: 21-Apr-2021 10:07AM (UTC+0700) Submission ID: 1565275453 File name: Feeding_habits_of_Tinfoil_barb,_Barbonymus_schwenenfeldii_in.pdf (622.06K) Word count: 3752 Character count: 19292 1 10 12 18 14 1 24 7 7 1 25 16 11 4 2 14 15 6 13 22 8 13 2 20 3 21 19 9 23 5 16 17 Feeding habits of Tinfoil barb, Barbonymus schwenenfeldii in the Tasik River, South Labuhanbatu, North Sumatra, Indonesia ORIGINALITY REPORT 13% 9% 9% 6% SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS PRIMARY SOURCES 1 Submitted to Institut Pertanian Bogor Student Paper 1% 2 onlinelibrary.wiley.com Internet Source 1% 3 academicjournals.org Internet Source 1% Muhammad Azfar-Ismail, Mohd Salleh 4 % Kamarudin, Fadhil Syukri, Kamil Latif. "Larval 1 development of a new hybrid Malaysian mahseer (Barbonymus gonionotus ♀ × Tor tambroides ♂)", Aquaculture Reports, 2020 Publication 5 Submitted to Udayana University Student Paper 1% 6 www.scialert.net Internet Source 1% Mohammad Mustakim, Sutrisno Anggoro, 7 % Frida Purwanti, Haeruddin. " Food habits and 1 trophic level of in floodplain lake, Lake Semayang, East Kalimantan ", E3S Web of Conferences, 2020 Publication 8 link.springer.com Internet Source 1% A Muhtadi, R Leidonald, Desrita. "Habitat 9 % characteristics and water quality status in the 1 Batangtoru Watershed, North Sumatra Province, Indonesia", IOP Conference Series: Earth and Environmental Science, 2020 Publication 10 boptnlantai4msp.blogspot.com Internet Source 1% 11 ejournal-balitbang.kkp.go.id Internet Source 1% 12 www.coursehero.com Internet Source 1% Desrita, I S Tamba, A Muhtadi, J Ariyanti, R 13 % Leidonald.
    [Show full text]