www.mcdr.ro / www.cimec.ro

ACTA MUSEI DEVENSIS

S A R G E T I A

SERIES SCIENTIA NATURAE

XIX

DEVA - 2002

www.mcdr.ro / www.cimec.ro

REDACŢIA REDACTION

EDITORIAL BOARD

SILVIA BURNAZ MARCELA BALAZS CORALIA MARIA JIANU CRISTINA CIRCO Tehnoredactare: DORINA DAN

SARGETIA SARGETIA ACTA MUSEI DEVENSIS ACTA MUSEI DEVENSIS SERIES SCIENTIA NATURAE SERIES SCIENTIA NATURAE L'adresse: Adress: Le Musée de la Civilisation Dacique et Romaine. The Museum of Dacian and Roman Civilisation. La section des Sciences Naturelles The Natural Sciences Section Rue 1 Decembre 39- DEVA 39, 1 December Street - DEVA ROUMANIE

E-mail: [email protected] E-mail: [email protected]

Responsabilitatea conţinutului ştiinţific şi a traducerii revine autorilor All the responsability for the scientific content and translation goes to the authors

www.mcdr.ro / www.cimec.ro

CONTENTS - SOMMAIRE

ANGELA D. BUSCALIONI - The European Upper Cretaceous Crocodilian fossil record ………………...… 5 FRANCISCO ORTEGA

JOHN W. JAGT, - Recent Addition to the Late Maastrichtian Mosasaur faunas of Liège Limburg ERIC W. MULDER, (The Netherlands, Belgium) …………………………………………………….. 13 RUDI W. DORTANGS, MARCEL M. M. KUYPERS, HANS H. G. PEETERS, LOUIS VERDING

ANNE S. SCHULP - The effects of tectonic deformation on dinosaur trackway morphology ……… 27

FRANCOIS THERRIEN, - Paleoenvironmental reconstruction of latest Cretaceous dinosaur-bearing CORALIA - MARIA JIANU, formations of Romania: preliminary results ……………………………………. 33 BOGDAN SCARLAT, DAVID B. WEISHAMPEL, JOHN W. KING

MIHAELA SOPINCEAN - L’Est des Montagnes Poiana Ruscă – Arguments écoprotectif …………….…. 61

CRISTINA CIRCO - Macromycetes from the Natural Reserve of Bejan Forest ( County, Romania) ……………………………………………………………………….. 73

CRISTINA CIRCO - Data concerning the Macromycetes from the hillocky region of Veţel locality (, Romania) …………………………………………………. 79

MARCELA BALAZS - Les phytocoenoses arborescentes des Gorges calcareuses de Monts Metallifèri (le département de Hunedoara, Roumanie) ……………………….…………….. 87

MARCELA BALAZS - Des dates concernant la flore de la réserve naturelle “La Forêt de Bejan - Deva” (le département de Hunedoara, Roumanie) ……………………………... 133

DANIELA ILEANA STANCU - The origin of the Calciphile Flora from the Romanian Carpathians ………….. 153 NICOLAE BOŞCAIU

STELIAN RADU - Biodiversité des forêts vierges de Roumanie …………………………………. 161 CORINA COANDĂ

ZOLTAN KOVÁCS - New records of and Prodoxidae (, Incurvarioidea) in the SÁNDOR KOVÁCS fauna of Romania………………………………………………………………. 171

SILVIA BURNAZ - Data concerning the Macrolepidoptera fauna (S.ord. Heterocera, S.ord. Rhopalocera) from the Sebeş Valley (Romania, Alba County) ………………… 177

SILVIA BURNAZ - Data concerning the Macrolepidoptera fauna from the Eastern and North- Eastern part of the Poiana Ruscă Mountains (The Western Carpathians, Romania) ………………………………………………………………………... 233

ATTILA D. SÁNDOR - New bird breeding in Retezat Mountains …………………………….. 249

3

www.mcdr.ro / www.cimec.ro

CUPRINS

ANGELA D. BUSCALIONI - Fosile de crocodilieni din Cretacicul superior European ………………...……. 5 FRANCISCO ORTEGA

JOHN W. M. JAGT, - Adăugiri recente la fauna Maastrichtian târzie de mosazauri din Liège- ERIC. W. A. MULDER, Limburg (Olanda, Belgia) ………………...…………………...……………….. 13 RUDI W. DORTANGS, MARCEL M. M. KUYPERS, HANS H. G. PEETERS, LOUIS VERDING

ANNE S. SCHULP - Efectele deformărilor tectonice asupra morfologiei pistelor de urme de paşi de dinozauri ………………...…………………...…………………...…………….. 27

FRANÇOIS THERRIEN, - Reconstituiri de paleomediu pentru formaţiunile purtătoare de dinosauri din CORALIA - MARIA JIANU, România: rezultate preliminare ………………...…………………...………….. 33 BOGDAN SCARLAT, DAVID B. WEISHAMPEL, JOHN W. KING

MIHAELA SOPINCEAN - Estul Munţilor Poiana Ruscă - Argumente ecoprotective ………………...…… 61

CRISTINA CIRCO - Macromicete din rezervaţia naturală Pădurea Bejan (judeţul Hunedoara, România) ………………...…………………...…………………...…………….. 73

CRISTINA CIRCO - Date privind macromicetele din regiunea deluroasă a localităţii Veţel (judeţul Hunedoara, România) ………………...…………………...…………………….. 79

MARCELA BALAZS - Fitocenoze arborescente ale cheilor calcaroase din Munţii Metaliferi (judeţul Hunedoara, România) ………………...…………………...…………… 87

MARCELA BALAZS - Date privind flora rezervaţiei naturale “Pădurea Bejan-Deva” (judeţul Hunedoara, România) ………………...…………………...…………………..... 133

DANIELA ILEANA STANCU - Originea florei calcifile din Carpaţii româneşti ………………...……………... 153 NICOLAE BOŞCAIU

STELIAN RADU - Biodiversitatea pădurilor virgine din România ………………...……………… 161 CORINA COANDĂ

ZOLTAN KOVÁCS - Noi semnalări de Adelidae şi Prodoxidae (Lepidoptera, Incurvarioidea) în SANDOR KOVÁCS fauna României ………………...…………………...…………………...………. 171

SILVIA BURNAZ - Date privind fauna de macrolepidoptere (S.ord. Heterocera, S.ord. Rhopalocera) din Valea Sebeşului (judeţul Alba, România) ………………...….. 177

SILVIA BURNAZ - Date privind fauna de Macrolepidoptere din partea estică şi nord-estică a Munţilor Poiana Ruscă (Carpaţii Occidentali, România) ………………...……... 233

ATTILA D. SÁNDOR - Noi specii de păsări în Munţii Retezat ………………...…………………...….. 249

4

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 5 - 11

THE EUROPEAN UPPER CRETACEOUS CROCODILIAN FOSSIL RECORD

ANGELA BUSCALIONI FRANCISCO ORTEGA

Rezumat Fosile de crocodilieni din Cretacicul Superior European

Date despre crocodilienii europeni se cunosc încă din 1860, totuşi, până acum nu s-a făcut o sinteză a acestora. Acesta este scopul lucrării noastre, alături de încadrarea crocodilienilor europeni într-un context filogenetic. Studiul asociaţiilor de crocodilieni din Cretacicul superior din Europa este crucial pentru înţelegerea istoriei evolutive a crocodililor moderni, dat fiind că în această perioadă au originea majoritatea membrilor din grupul Eusuchia.

Localities of the crocodilian Upper Cretaceous European assemblage

The knowledge of the European Upper Cretaceous crocodilian fauna has undergone two crucial events. The first one was the discoveries carried out by MATHERON and NOPCSA between 1860 and 1920. The second one is the reactivation of the Upper Cretaceous research as a consequence of the publication on the extraterrestrial hypothesis on the Cretaceous - Tertiary extinction by Alvarez et al in 1980. The synthesis between the old collections and the recent discoveries is unachieved at present. A great amount of work has, nonetheless, been done, comparing small isolated fragments and relating them to more complete material (VASSE, 1993, 1995; BUSCALIONI et al., 1997; BUSCALIONI & ORTEGA in press: BUSCALIONI et al., in prep). Moreover, the final part of this research should contemplate the necessity to place the European Upper Cretaceous crocodiles into a phylogenetic context. The study of the Upper Cretaceous crocodilian assemblage is crucial to understand the evolutionary history of modern crocodiles, since it was in this period that most of the early members of the crown group of the Eusuchia originated. All of the European Upper Cretaceous localities with crocodilian remains are Campanian or Maastrichtian in age, corresponding approximately to an interval of 18 million years. The biostratigraphic correlation of most of these localities needs a more detailed re-examination, and 5

www.mcdr.ro / www.cimec.ro there is currently a renewed interest in this issue (MULDER et al., 1998). Recently, the use of dinosaur eggshells has been suggested for biostratigraphical purposes in the southern France and Catalonia localities (VIANEY-LIAUD et al., 1994; VIANEY-LIAUD & LOPEZ MARTINEZ, 1997: GARCIA, 1998). LE

LOEUFF (1991) listed the main group of localities that are representing sectors of the Campano- Maastrichtian outcrops in the Upper Cretaceous European archipelago. Among them, several areas have yielded crocodilian remains. The Ibero-Armorican area gathers localities from Portugal, Spain, and southern France. The faunal description of the Ibero-Armorican area at a global level has been carried out by BABINOT et al., 1983; BUFFETAUT, 1980, LE LOEUFF, 1992, and VASSE, 1993. Some partial revisions of the faunal Ibero-Armorican assemblages have also been carried out, for instance, references to crocodilian remains in the French localities of Fox- Amphoux by BROIN et al., (1980) and Champ Garimond (Sigé et al., 1997), and of Provence by Garcia (1998). Several revisions have been done for the Spanish localities of Villamitjana (BUSCALIONI et al., 1986), Armuña (BUSCALIONI &

SANZ, 1987; ORTEGA & BUSCALIONI, 1992), Laño (ASTIBIA et al., 1990; BUSCALIONI & ORTEGA, in press) and Quintanilla del Coco (Pol et al., 1992). The Gosau beds at Muthmannsdorf, in Austria, represent the Apulian area (BUFFETAUT, 1979). The Vălioara fossil site mainly represents the Transylvanian area from the Haţeg Basin, in Romania. The Scandinavian area gathers localities from Sweden, Belgium and Netherlands.

The crocodilian Upper Cretaceous genera

A brief updated comment on the taxonomic status and on the phylogenetic position of the European Upper Cretaceous crocodiles is given below, including the distribution of their corresponding geographical areas:

Ischyrochampsa (VASSE, 1995) is known from a mandible and a fragment of premaxillae and maxillae. It is the only known locality of Saint-Estève-Janson (Bouches-du-Rhône, France), although isolated teeth attributed to this genus were found in Capens (Département de l'Ariége) also upholds its presence in southern France. Ischyrochampsa has been proposed as a member of the trematochampsids, although its phylogenetic position is not fully resolved. It is a monospecific genus (I. meridionalis).

Musturzabalsuchus (BUSCALIONI et al., 1997) has been recorded in the Ibero-Armorican and Transylvanian areas. This genus has been proposed as the valid denomination of MATHERON's (1869) Crocodilus affuvelensis. Musturzabalsuchus is known from abundant isolated cranial elements. The mandible and the rest of the skull have never been found associated, except in the specimen housed in the Natural History Museum of Marseilles (figure 4 in BUFFETAUT, 1980). Musturzabalsuchus is regarded as an Alligatoroidea, being probably one of the closest sister taxa of the

6

www.mcdr.ro / www.cimec.ro clade Alligatoridae (BUSCALIONI et al., 1997; BUSCALIONI & ORTEGA, in prep.). Only one species has been proposed (M. buffetautii)

Allodaposuchus (NOPCSA, 1928; BUSCALIONI et al., in prep) has been discovered in and in the Ibero-Armorican area. It is known from abundant isolated cranial fragments and an almost complete skull (although the mandible is unknown) from Spain. Allodaposuchus is a key genus for the understanding of the Eusuchia evolutionary history, since it has been discussed either as the closest sister taxon of the crown-group Crocodylia, or as the sister group of Brevirostres (using the clade denomination proposed by BROCHU, 1998 a and b). It is a monospecific taxon (A. praecedens), and maintains the denomination proposed by Nopcsa.

Acynodon (BUSCALIONI et al., 1997) is based on fragmentary isolated cranial bones, and on a complete skull from a private collection. It has been recorded in the Ibero-Armorican and Transylvanian areas. Acynodon is a member of Alligatoridae, closely related to the North American genera Stangerochampsa and Brachychampsa. Two species have been proposed (A. iberoccitanus and A. lopezii).

Doratodon carcharidens (SEELY, 1881; BUFFETAUT, 1979, 1980) is based on scarce cranial elements. The material has been found in the Apulian and in the Transylvanian areas. It is a neosuchian ziphodont with uncertain phylogenetic relationships (ORTEGA, in prep.). The other three genera of crocodiles from the Upper Cretaceous of Europe are long snouted, aquatic : Aigialosuchus villandensis (PERSSON, 1959) from Scania (Blacksudden, southern Sweden) is based on fragmentary remains of a rostral region and anterior part of lower jaw. The other taxon is Thoracosaurus; its domain being the northeastern European area (Scania,

Netherlands, Belgium and Crimea) (MULDER, 1997; MULDER et al., 1998). Up to now, two species are accepted as valid: T. macrorhynchus and T. neocesariensis. Aigialosuchus does not have a clear phylogenetic position, and was initially referred to the family Crocodylidae. Thoracosaurus may be discussed as the sister taxon of Gavialoidea (BROCHU, 1997) or as a member of the Crocodyloidea. The third form is a long-snouted “mesosuchia”, probably belonging to the dyrosaurids (pers. Obs.), being probably the sole coastal non-eusuchian European crocodile. This undescribed material (a rostrum and several skull bones) was found at the locality of Averio (Portugal).

Isolated elements: teeth and postcranial remains

A number of isolated teeth is the most abundant component of the Upper Cretaceous European crocodilian record. Most of the isolated crowns are not taxonomically discernible, because they possess the common conical shape that is widespread in diverse crocodilian lineage. Particular morphologies such as serrated teeth assessed to Doratodon, have been collected in Transylvania

(Vălioara, BUFFETAUT, 1980 and pers. obs.) and Apulia (Gosau Beds, BUFFETAUT, 1979). The species

A. lopezii, from Quintanilla del Coco (Spain), is based on striking lanceolated to molariform teeth (POL 7

www.mcdr.ro / www.cimec.ro et al., 1992; BUSCALIONI et al., 1997). Many other localities distributed along the Ibero-Armorican,

Apulian and Transylvanian areas also have yielded molariform acynodon-like teeth (BUFFETAUT, 1980; Sigé et al., 1997). No articulate skeletons have been found in the Upper Cretaceous European crocodilian fossil record. The postcranial remains are mostly isolated osteoderms, vertebral centra, and appendicular fragments. Many of the old papers on Upper Cretaceous crocodilian fauna provide a shallow description and figures of postcranial elements (i.e. those coming from the Fuvelian lignites of

Provence in France figured by MATHERON, 1869), and the Vălioara outcropping figured by NOPCSA, 1928). These isolated appendicular and axial elements can be just identified as eusuchian crocodiles.

The importance of the Upper Cretaceous European crocodilian record and the origin of modern crocodiles

The Upper Cretaceous European crocodilian assemblage is characterized by the prevalence of eusuchians crocodiles in comparison with the non-eusuchians. Europe and North America are the only continents characterized by a higher proportion of Eusuchia, their percentage being more then 60% of the total crocodilian fauna during the Upper Cretaceous. In the other continents (Asia, South America and Africa) the non-eusuchians constitute the preponderant faunas, more than 60% of the total crocodilian assemblage (BUSCALIONI & ORTEGA, in prep.). All of the Upper Cretaceous crocodilian fossil record is mainly concentrated in Campano-Maastrichtian localities. This is especially noticeable in the Cenomanian and Santonian record of North America and Europe, where the non-eusuchians are represented by two taxa (Gilchristosuchus and Woodbinesuchus), and the record of Eusuchia is represented by the Senonian-Lower Campanian European localities that have provided remains of the coastal crocodile Thoracosaurus. Therefore, the knowledge of the early history of modern crocodiles is biased, but we may assume that this bias shows the same trend as the entire continental tetrapod fossil record. The early Late Cretaceous record of tetrapods has relatively low values of metric completeness (Turonian: 21.6; Coniacian: 28.6; Santonian: 37.2) with respect to the latest two stages (Campanian: 84.7; Maastrichtian: 95.1) (BENTON, 1987). Europe and North America reflect expansions of Eusuchia earlier than those reflected by Asia, Africa and South America. Modern crocodiles (known as Crocodylia) diversified in an expansive radiation during the Campano-Maastrichtian. This expansive radiation suggests that a global biotic replacement of primitive crocodiles by modern ones took place in Europe and North America, where there was no extinction of the non-eusuchia crocodiles but a drop in their number of genera

(VASSE & HUA, 1998). The Euriamerican expansion was a large-scaled event apparently concentrated in the Uppermost Cretaceous (BUSCALIONI & ORTEGA, in prep.). The early history of modern

8

www.mcdr.ro / www.cimec.ro crocodiles started in the Euriamerica paleocontinent, the subsequent Tertiary history has modeled the recent circumtropical distribution of crocodilians.

REFERENCES

ASTIBIA H., BUFFETAUT E., BUSCALIONI A.D., CAPPETTA H., CORRAL C., ESTES R.,

GARCIA-GARMILLA F., JAEGER J.J., JIMÉNEZ-FUENTES E., LOEUFF I.J., MAZIN J.M., ORUE-

ETXEBARRIA X., PEREDA-SUBERBIOLA J., POWELL J., RAGE J.C., RODRIGUEZ-LAZARO J., SANZ J.L. &

H. TONG (1990): The fossil vertebrates from Laño (Basque Country, Spain); new evidence on the composition and affinities of the Late Cretaceous continental faunas of Europe- Terra Nova, 2: 460- 466.

BABINOT J.F., FREYTET P., AMIOT M., BILOTTE M., BROIN F. DE, COLOMBO F., DURAND

J.P., FEIST M., FLOQUET M., GAYET M., LANGE-BADRÉ B., MASRIERA A., MASSIEUX M., MÉDUS J.,

TAMBAREAU Y. & J. VILLATTE (1983): Le Sennonien supérieur continental de la France méridionale et de l'Espagne septentrionale: état des connaissances biostratigraphiques- Géologie Méditerranéenne, 10 (3-4): 245-268.

BROIN F. DE, BUFFETAUT E., CAPPETA H., KEROURIO P., KOENIGUER J.C., RUSSELL D.,

SECRÉTAN S., SIGOGNEAU-RUSSEL D., TAQUET P. & S. WENZ. (1980): Nouvelles découvertes de vertébrés Maastrichtiens dans le gissement de Fox-Amphoux- Reunion Annuelle des Sciences de la Terre, Marseille, 68.

BROCHU CH. A. (1997): Morphology, fossils, divergence timing, and the phylogenetic relationships of Gavialis- Systematic Zoology, 46(3): 479-522.

BUFFETAUT E. (1979): Revision der Crocodylia (Reptilia) aus den Gosau-Schichten (Ober-Kreide) von Österreich- Beiträge zur Paläontologie von Österreich, 6: 89-105.

BUFFETAUT E. (1980): Détermination de la nature des événements de la transition Crétacé-Tertiaire: la contribution de l'étude des Crocodiliens- Mémoires de la Societé Géologique de France, 139: 47-52.

BUSCALIONI A. D., SANZ J. L., CASANOVAS-CLADELLAS M. L. & J. V. SANTAFÉ (1986): An Eusuchian Crocodile from the Upper Cretaceous of Spain (Vilamitjana, Province of Lerida)- Journal of Vertebrate Paleontology, 6(3): 204-214.

BUSCALIONI A. D., ORTEGA F. & D. VASSE (1997): New crocodiles (Eusuchia, Alligatoroidea) from the Upper Cretaceous of southern Europe- Comptes Rendus de l'Académie des Sciences de Paris, 325: 525-530.

9

www.mcdr.ro / www.cimec.ro BUSCALIONI A. D. & F. ORTEGA (in press): The Upper Cretaceous crocodile assemblage from Laño (Basque Country, Iberian Peninsula). Implications in the knowledge of the finicretaceous European faunas- Revista del Museo de Ciencias Naturales de Alava.

GARCIA G. (1998): Les coquilles d'oeufs de dinosaures du Cretacé supérieur du Sud de la France: diversité, paléobiologie, biochronologie et paléoenvironnements- Thèse Acad. Montpellier, 152 pp.

KOKEN E. (1888): Thoracosaurus macrorhynchus Bl. Aus der Tuffkreide von Maastricht- Zeitschrift der deutchen geologischen Gesellschaft, 40 (4): 754-773.

LE LOEUFF J. (1991): The Campano Maastrichtian Vertebrate faunas from southern Europe and their relationship with other faunas in the world: Paleobiogeographical implications- Cretaceous Research, 12: 93-114.

LE LOEUFF J. (1992): Les vertébrés continentaux du Cretacé supérieur d'Europe: Paléoécologie, Biostratigraphie et Paléobiogeographie.- These de Doctorat de l' Université Paris, 6.

MATHERON P. (1869): Notice sur les reptiles des dépôts fluviolacustres. – Mém. Acad. Imp. Sciences Belles Lettres et Arts de Marseille, 344-379.

MULDER E.W.A. (1998): Thoracosaurine vertebrae (Crocodylia; Crocodylidae) from the Maastrichtian type area- Proc. of the koninklijke Nederlandse Akad. Van Wetenschappen, 100 (1-2): 161-170.

MULDER E. W. A., JAGT W.M., KUYPERS M.M.M., PEETERS H. H. G & P. ROMPEN (1998): Preliminary observations on the stratigraphic distribution of the Late Cretaceous marine and terrestrial reptiles from the Maastrichtian type area (SE Netherlands, NE Belgium)- Oryctos, 1: 55-64.

NOPCSA F. (1928): Paleontological notes on Reptilia. Classification of the Crocodilia- Geologia Hungarica, Ser. Pal., 1: 75-84.

ORTEGA F. & A.D. BUSCALIONI (1992): Crocodilos fósiles de Castilla y León.- In: Jimenez E. (ed.). Vertebrados fósiles de Castilla y León, Pp: 59-70.

PERSSON P.O. (1959): Reptiles from the Senonian (Upper Cretaceous) of Scania (Southern Sweden)- Arkiv. For. Mineralogi och Geologi, 2 (35): 431-478.

POL C., BUSCALIONI A.D., CARBALLEIRA J., FRANCÉS V., LÓPEZ-MARTINEZ N.,

MARANDAT B., MORATALLA J.J., SANZ J.L., SIGÉ B. & J. VILLATE (1992): Reptiles and mammals from the Late Cretaceous new locality Quintanilla del Coco (Burgos Province, Spain).- Neues Jahrbuch für geologie und Paläontologie Abhandlungen, 184 (3): 279-314.

SEELEY H. H. (1881): The reptile fauna of the Gosau Formation preserved in the Geological Museum of the University of Vienna- Quarterly Journal of the Geological Society of London, 37: 620-702.

10

www.mcdr.ro / www.cimec.ro SIGÉ B., BUSCALIONI A. D., DUFFAUD S., GAYET M., ORTH B., RAGE J. C. & J.L. SANZ (1997): Etat des données sur le gissement Crétacé supérieur continental de Camp- Garimond (Gard, Sud de la France)- Münchner Geowissenschaftliche Abhandlungen (A), 34: 111-130.

VASSE D. (1993): Les Crocodiles du Crétacé supérieur et du Paléocène d’Europe. Aspects paléobiogéographique et paléoécologique.- These, Univ. Paris 6, n0 9322: 201 pp.

VASSE D. (1995): Ischyrochampsa meridionalis n.g. n. sp., un crocodillien d’affinité gondwanienne dans le Crétacé supérieur du Sud de la France.- N. Jb. Geol. Paläont. Mh., H. 8: 501- 512.

VASSE D. & S. HUA (1998): Diversité des crocodiliens du Crétacé supérieur et du Paléocène. Influences et limites de la crise Maastrichtien-Paléocène et des “Terminal Eocene events”- Oryctos, 1: 65-77.

VIANEY-LIAUD M., MALLAN P., BUSCAIL O. & MONTGELARD (1994): Review of French dinosaur eggshells: morphology, structure, mineral and organic composition. In: CARPENTER et al. (eds.).- Dinosaur eggs and babies. Pp: 151-183. Cambridge Univ. Press.

VIANEY-LIAUD M. & N. López MARTINEZ (1997): Late Cretaceous dinosaur eggshells from the Tremp basin (southern Pyrenees, Lleida, Spain)- Journal of Paleontology, 71(6): 1157-1171.

Angela Buscalioni Francisco Ortega Universidad Autonoma de Madrid. Unidad de Paleontologia, Depto. De Biologia.

Fac. de Ciencias. Cantoblanco 28049, Madrid

11

www.mcdr.ro / www.cimec.ro

Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 13 - 26

RECENT ADDITIONS TO THE LATE MAASTRICHTIAN MOSASAUR FAUNAS OF LIÈGE-LIMBURG (THE NETHERLANDS, BELGIUM)

JOHN W. M. JAGT, ERIC W. A. MULDER, RUDI W. DORTANGS, MARCEL M.M. KUYPERS, HANS H.G. PEETERS, LOUIS VERDING

Rezumat Completări recente la fauna maastrichtiană târzie de mosaszauri din Liege- Limburg (Olanda, Belgia)

Elementele predominante ale faunei de vertebrate marine din stratotipul maastrichtianului sunt reprezentate de mosazauri şi chelonieni, mult mai rari fiind plesiozaurii, crocodilii eusuchieni şi dinozaurii. In ultimul timp au avut loc numeroase descoperiri de resturi de mosazauri, bine documentate stratigrafic, câteva dintre acestea fiind discutate pe scurt în aceasta lucrare.

Cele mai notabile descoperiri reprezintă un fragment de dentar de Leiodon sectorius COPE 1871 găsit “in situ” în Membrul Lanaye din complexul de cariere de la Marnebel (Eben Emael, Belgia), cât şi un individ mare, destul de bine conservat al unui ? mosasaurin în acelasi nivel stratigrafic în cariera ENCI-Maastricht BV (Maastricht, Olanda).

Introduction The predominant elements amongst late Maastrichtian marine vertebrate faunas from the type area of the Maastrichtian Stage (Fig. 1) known to date are mosasaurid lizards and cheloniid turtles. In comparison, representatives of other groups such as plesiosaurs, eusuchian crocodiles and dinosaurs are extremely rare (MULDER 1998; MULDER et al. 1998, 2000; WEISHAMPEL et al. 1999). In recent years, numerous stratigraphically well-documented mosasaur finds have been made, a few of which are briefly discussed in the present paper. The most notable recent additions are in situ finds of a fragmentary dentary of the mosasaurine Leiodon sectorius COPE 1871 in the Lanaye Member at the Marnebel quarry complex (Eben Emael, NE Belgium), and of a fairly well-preserved, large individual of a ?mosasaurine in the same stratigraphic unit at the ENCI-Maastricht BV quarry (Maastricht, the Netherlands).

13

www.mcdr.ro / www.cimec.ro

Recent additions On belemnite evidence (Fig. 2), the Lanaye Member of the Gulpen Formation, as well as all members of the overlying Maastricht Formation are of late/latest Maastrichtian age (Belemnitella junior and Belemnella kazimiroviensis zones; see CHRISTENSEN 1996, 1997a, b). Most of the recent mosasaur finds are either from the Lanaye, Valkenburg or Emael members, and are thus of B. junior Zone age. Selected for illustration and brief discussion here are the most notable of these recent additions. To denote the repository of material referred to in the text, the following abbreviations are used: AMNH - American Museum of Natural History, New York ANSP - Academy of Natural Sciences, Philadelphia NHMM - Natuurhistorisch Museum Maastricht, Maastricht YPM - Yale University/Peabody Museum of Natural History, New Haven

Specimens currently housed in the private collections of two of us (RWD, MMMK) will be transferred to the NHMM in due course.

Leiodon sectorius COPE 1871 Figs. 3, 4

COPE (1871, p. 41) based this taxon on fragments of a maxilla, a dentary, a coronoid and a surangular, as well as a single incomplete vertebra, collected by J.C. Gaskill from marl pits of the Pemberton Marl Company at Birmingham (Burlington Co.), New Jersey (USA). The type material (AMNH 1401) is probably from the Navesink Formation, which on ammonite evidence (KENNEDY et al. 1995) is late Campanian-early Maastrichtian in age. GALLAGHER

(1993, p. 103) noted that RUSSELL's (1967, p. 143) referred specimens ANSP 9669-9670 might be from the Hornerstown Formation of Vincentown (Burlington Co.), New Jersey, which is a younger unit ranging in age from latest Maastrichtian to basal Palaeocene (GALLAGHER 1993).

RUSSELL (1967) noted that some of the fragments which constituted the type material of the present species, were lost. During a recent re-examination by one of us (EWAM), it appeared that of the type material (AMNH 1401) only a small jaw fragment with a single anterior tooth and a tooth socket survives (Fig. 3). The remaining tooth is virtually identical to the anterior teeth in NHMM

004104, and would corroborate LINGHAM-SOLIAR's (1993) assignment of that specimen to L. sectorius.

Having previously been referred by MEIJER (1980) with a query to Liodon [sic] compressidens GAUDRY 1892, Lingham-Soliar (1993) reassigned NHMM 004104, a fragmentary left dentary with ten preserved teeth, to L. sectorius, which thus represented the first specimen of this taxon to be recorded from outside North America. Since this specimen allows anterior and posterior dentary teeth to be described in detail, a number of isolated teeth have subsequently been demonstrated

14

www.mcdr.ro / www.cimec.ro

to be also referable to this taxon (KUYPERS et al., 1998, p. 31, pl. 4, figs 1-9). Data on geographic and stratigraphic provenance of NHMM 004104 are lacking; however, an analysis of the benthic foraminiferal content of small matrix samples suggest it to have come from the basal portion of the Maastricht Formation (benthic foraminiferal zone Mb).

KUYPERS et al. (1998, text-fig. 11) have recently shown L. sectorius to range from the upper Gulpen Formation to the upper Maastricht Formation. The newly collected material (Fig. 4A-G) is from the Lanaye Member at the Marnebel quarry complex (Eben Emael- Bassenge, NE Belgium) and consists of various fragments of a right dentary with six preserved teeth, all remarkably well preserved. There are slight differences between these teeth and those of NHMM 004104, but these are considered to be size related, the new specimen being of a larger size. Both carinae (cutting edges) are well developed, and teeth show faint signs of facetting. Colour banding on all teeth (Fig. 4D-G) corresponds to growth zones, and occurs at variable tooth crown heights along the jaw. A detailed description of this specimen and an analysis of these growth zones will appear elsewhere.

Mosasaurus hoffmanni MANTELL 1829 Figs. 5, 6 This species, the largest mosasaur taxon known to date (Lingham-Soliar, 1995), is undoubtedly the commonest species in the area. Many isolated teeth (crowns) and vertebrae have been collected in recent years, and associated remains have been shown to be comparatively common as well. However, owing to quarrying activities most of these run the risk of being seriously damaged and scattered over the quarry floor prior to discovery. Notable for their state of preservation are a few associated cervical vertebrae of a comparatively small-sized (?subadult) individual of M. hoffmanni (Fig. 5) from the Valkenburg Member (Maastricht Formation) at the CBR-Romontbos quarry (Eben Emael-Bassenge). Although the neural arches are partially broken, the anterior and posterior zygapophyses (Fig. 5A), hypapophyses, synapophyses, zygosphenes and associated peduncles are remarkably well preserved. Of another individual (NHMM 1998140; Fig. 6), from the Emael Member at the same quarry, portions of the vertebral column, numerous associated broken and scattered ribs, and a highly fragmented skull, have been collected. Tooth size shows this to have been a large, fully-grown specimen.

15

www.mcdr.ro / www.cimec.ro

?Mosasaurine (?Globidensini) mosasaur Fig. 7 The most recent find (NHMM 1998141) is from the upper Lanaye Member (flint level 18) at the ENCI-Maastricht BV quarry (Maastricht). Upon discovery in early August 1998, five dorsal vertebrae (Fig. 7), still articulated, were collected. On the basis of these it was decided to first remove the overburden using heavy machinery down to a discontinuous level of flint nodules, and excavate the skeleton by hand from then on. In a number of trenches, the skeleton was subsequently shown to be scattered over an area of at least 20 square metres. Apparently, dorsal vertebrae and ribs were scattered by wave action and/or scavenging, since a number of teeth of the sharks Squalicorax pristodontus (AGASSIZ 1843), 'Palaeohypotodus' bronni (AGASSIZ, 1843) and Plicatoscyllium minutum (FORIR 1887), a few vertebrae and pieces of cartilaginous bone have been collected from directly above the skeleton. Mainly on the basis of the still articulated coracoid/scapula, this specimen was originally thought to be referable to the mosasaurine Mosasaurus hoffmanni, but now this preliminary assignment can no longer be upheld. The skull, situated close to the posterior postcranial skeleton, with the snout pointing backwards, is now revealing all kinds of features that are atypical of M. hoffmanni (e.g. structure of quadrate, frontal and parietal bones). Preparation has not yet been completed; the close association of lower and upper jaws suggests limited post-mortem transport, as does the series of cervical vertebrae still attached to the basioccipital unit. Mandibular and dental teeth lack the U-shaped cross section which characterises teeth of M. hoffmanni, and have no well-developed prisms. Moreover, when well preserved, they show apical enamel striations similar to the ones described for teeth referred to Prognathodon giganteus DOLLO 1904 by BARDET et al. (1997). In many respects, NHMM 1998141 appears to be closely related to the genus

Prognathodon DOLLO 1889, representatives of which are well known from southern Belgium (Lingham-Soliar & Nolf, 1989) and the United States (e.g. Prognathodon overtoni). However, all these species have much smaller skulls; as preserved, the length of the lower jaw of NHMM 1998141 is 123 cm, but some 10-15 cm are missing, having fallen victim to quarrying. Upon completion of preparation, our research is to concentrate on the taxonomic assignment of NHMM 1998141, and on providing a detailed taphonomic picture of this recent find.

Carinodens belgicus (WOODWARD 1891)

KUYPERS et al. (1998, text-fig. 11) assumed this mosasaurine to first appear in the Emael Member (Maastricht Formation), and to have been a representative of a second 'pulse' of mosasaur immigration into the Maastrichtian type area. However, in the course of 1998 two isolated tooth crowns, both contained in private collections, were collected from the base of the Valkenburg

16

www.mcdr.ro / www.cimec.ro

Member. This means that mosasaur distribution and stratigraphic ranges need to be reconsidered (see

JAGT et al. 2000).

Plioplatecarpus marshi DOLLO 1882 Fig. 8

In his brief discussion of Plioplatecarpus depressus (COPE 1869), RUSSELL (1967, p. 160) noted that the type material originally comprised a quadrate, skull fragments and dorsal vertebrae, collected by L.T. Germain in Birmingham (Pemberton; Burlington County), New Jersey, apparently from the Hornerstown Formation. On the basis of referred specimen YPM 312, the type of Mosasaurs copeanus MARSH 1869, RUSSELL (1967, p. 162, text-fig. 88) suggested that P. depressus would most closely resemble P. marshi, except that the former had less medially recurved mandibular teeth, and could thus be distinct. As noted by GALLAGHER (1993, p. 103) the type is missing. Although the original specimen could not be traced, an illustration of the quadrate of P. depressus has recently been compared by MULDER (1999) with quadrates of P. marshi, who suggests these taxa to be synonymous. Thus, it appears advisable to use the name P. marshi for both the North American and European specimens, since that taxon is based on more or less complete skeletons and is thus better characterised. This action obviously calls for an application to the ICZN to suppress P. depressus in favour of P. marshi. Plioplatecarpus marshi is the second commonest mosasaur species in the Maastrichtian type area. In recent years, quite a number of associated finds, such as the ones described in JAGT et al.

(1995, figs 1-4) and KUYPERS et al. (1998, pp. 14-16; text-fig. 6), have been made. Still undescribed material in the Dortangs and Kuypers collections, which includes the associated remains of a very large specimen preserving both quadrates, as well as sets of teeth (Fig. 8A), skull remains, fragmentary ribs and dorsal/pygal vertebrae (Fig. 8B) is assignable to P. marshi and adds considerably to our knowledge of this species. Acknowledgements - We wish to thank Carlo Bomans, Doreen Braun, Eric Croimans, Mart Deckers, Math van Es, Dirk Eysermans, Werner Felder, Robert Frijns, André Hofman, Coralia- Maria Jianu, Paul van Knippenberg, Jac Phillipens, Remmert Schouten, Anne Schulp and Jac Severijns for assistance during fieldwork and/or for making material available for study, and the managements of CBR-Romontbos, ENCI-Maastricht BV and Marnebel-Ankerpoort quarries for allowing access to their grounds and for logistic support.

REFERENCES BARDET N., BARBIN V., LAURAIN M. & JANIN M.-C. 1997. Première décourverte du mosasaure Prognathodon giganteus (Squamata) dans le Campanien (Crétacé supérieur) de Champagne, France. Rev. Paléobiol., 16, pp. 225-230.

17

www.mcdr.ro / www.cimec.ro

CHRISTENSEN W.K. 1996. A review of the Upper Campanian and Maastrichtian belemnite biostratigraphy of Europe. Cret. Res., 17, pp. 751-766.

CHRISTENSEN W.K. 1997 a. The Late Cretaceous belemnite family Belemnitellidae: and evolutionary history. Bull. geol. Soc. Denmark, 44, pp. 59-88.

CHRISTENSEN W.K. 1997b. Palaeobiogeography and migration in the Late Cretaceous belemnite family Belemnitellidae. Acta palaeont. pol., 42, pp. 457-495.

COPE E.D. 1871. Supplement to the 'Synopsis of the extinct Batrachia and Reptilia of North America'. Proc. Am. philos. Soc., 12, pp. 41-52.

GALLAGHER W.B. 1993. The Cretaceous/Tertiary Mass Extinction Event in the Northern Atlantic Coastal Plain. The Mosasaur, 5, pp. 75-154.

JAGT J.W.M., KUYPERS M.M.M. & Peeters, H.H.G. 1995. Mosasauriers in het Natuurhistorisch Museum Maastricht opnieuw onder de loep genomen. Natuurhist. Maandbl., 84, pp. 47-59.

JAGT J.W.M., DORTANGS R.W. & MULDER, E.W.A. 2000. First appearance of the mosasaur Carinodens belgicus (Woodward, 1891) in the type Maastrichtian. In: 5th European Workshop on Vertebrate Palaeontology, Karlsruhe, 27.06-01.07.2000, Program, Abstracts, Excursion guides, p. 37.

KENNEDY W.J., JOHNSON R.O. & COBBAN W.A. 1995. Upper Cretaceous Ammonite Faunas of New Jersey. In: BAKER, J.E.B. (ed.). Proceedings of a symposium, field trips and teacher workshop on the topic Contributions to the Paleontology of New Jersey. Geol. Assoc. New Jersey, 12, pp. 24-55.

KUYPERS M.M.M., JAGT J.W.M., PEETERS H.H.G., DE GRAAF D.T., DORTANGS R.W.,

DECKERS M.J.M., EYSERMANS D., JANSSEN M.J. & ARPOT L. 1998. Laat-kretaceische mosasauriers uit Luik-Limburg: nieuwe vondsten leiden tot nieuwe inzichten. Publ. Natuurhist. Gen. Limburg, 43, pp. 5-47.

LINGHAM-SOLIAR T. 1993. The mosasaur Leiodon bares its teeth. Modern Geol., 18, pp. 443- 458.

LINGHAM-SOLIAR T. 1995. Anatomy and functional morphology of the largest marine Upper Cretaceous reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Maastrichtian of The Netherlands. Phil. Trans. r. Soc. London, B347, pp. 155-180.

LINGHAM-SOLIAR T. and NOLF, D. 1989. The mosasaur Prognathodon (Reptilia, Mosasauridae) from the Upper Cretaceous of Belgium. Bull. Inst. r. Sci. nat. Belg., Sci. Terre, 59, pp. 137-190, pls 1-7.

MEIJER A.W.F. 1980. Voorlopige mededeling over het voorkomen van een kleine mosasaurier met zijdelings afgeplatte tanden in Limburgse Krijtafzettingen. Natuurhist. Maandbl., 69, pp. 157-159.

18

www.mcdr.ro / www.cimec.ro

MULDER E.W.A. 1998. Thoracosaurine vertebrae (Crocodylia; Crocodylidae) from the Maastrichtian type area. Proc. Kon. Ned. Akad. Wet., 100 (1997), pp. 161-170.

MULDER E.W.A. 1999. Transatlantic latest Cretaceous mosasaurs (Reptilia, Lacertilia) from the Maastrichtian type area and New Jersey. In: JAGT J.W.M., LAMBERS P.H., MULDER E.W.A. and

SCHULP A.S. (eds). Proceedings of the Third European Workshop on Vertebrate Palaeontology, Maastricht, 6-9 May 1998. Geol. Mijnbouw, 78, pp. 281-300.

MULDER E.W.A., BARDET N., GODEFROIT P. & JAGT J.W.M., 2000. Elasmosaur remains from the Maastrichtian type area and a review of Maastrichtian plesiosaurs. Bull. Inst. r. Sci. nat. Belg., Sci. Terre (in press).

MULDER E.W.A., JAGT J.W.M., KUYPERS M.M.M., PEETERS H.H.G. & ROMPEN P. 1998. Preliminary observations on the stratigraphic distribution of Late Cretaceous marine and terrestrial reptiles from the Maastrichtian type area (SE Netherlands, NE Belgium). Oryctos, 1, pp. 55-64.

RUSSELL, D.A. 1967. Systematics and Morphology of American Mosasaurs (Reptilia, Sauria). Bull. Peabody Mus. nat. Hist., 23, vii + 241 pp.

WEISHAMPEL D.B., MULDER E.W.A., JAGT J.W.M., JIANU C.-M., DORTANGS R.W., KUYPERS

M.M.M., PEETERS H.H.G. and SCHULP A.S. 1999. Dinosaur remains in the type Maastrichtian: An update. In: JAGT J.W.M., LAMBERS P.H., MULDER, E.W.A. & SCHULP, A.S. (eds). Proceedings of the Third European Workshop on Vertebrate Palaeontology, Maastricht, 6-9 May 1998. Geol. Mijnbouw, 78, pp. 357-365. John W.M. Jagt Hans H.G. Peeters Natuurhistorisch Museum Maastricht P.O. Box 882 NL-6200 AW Maastricht, the Netherlands [[email protected]] Eric W.A. Mulder Museum Natura Docet Oldenzaalsestraat 39 NL-7591 GL Denekamp, the Netherlands Rudi W. Dortangs Hoofdstraat 36 NL-6436 CG Amstenrade, the Netherlands Marcel M.M. Kuypers c/o Raevenstraat 27 NL-6014 BA Ittervoort, the Netherlands Louis Verding Lentestraat 33 B-3590 Diepenbeek, Belgium

19

www.mcdr.ro / www.cimec.ro

Captions

Fig. 1: Southern Limburg (The Netherlands) and contiguous areas, with location of quarries referred to in the text: 1 - ENCI-Maastricht BV; 2 - Marnebel quarry complex; 3 - CBR-Romontbos.

Fig. 2: Lithostratigraphy and belemnite zonation of the uppermost Gulpen Formation (Lanaye Member) and Maastricht Formation.

Fig. 3: A fragmentary jaw with single tooth and tooth socket, AMNH 1401 (ex Cope Collection); the surviving portion of type material of Leiodon sectorius (Cope, 1871), Burlington Co., New Jersey (USA), Maastrichtian, previously illustrated by Russell (1967, text-fig. 82). Scale bar equals 50 mm.

Fig. 4A-G: Leiodon sectorius, fragments of right dentary (A-C: lengths 270 mm and 300 mm, respectively) and isolated teeth (D-G: heights 100 mm and 88 mm, respectively); Marnebel quarry complex, Eben Emael-Bassenge; Gulpen Formation, Lanaye Member (NHMM LV 150).

Fig. 5A, B: Three cervical vertebrae of a subadult (?) individual of Mosasaurus hoffmanni, with associated peduncles (length of largest vertebra 70 mm). Note the pristine state of preservation of anterior and posterior zygapophyses; CBR-Romontbos quarry; Maastricht Formation, Valkenburg Member (Dortangs Collection).

Fig. 6: Two small teeth of Mosasaurus hoffmanni (height of larger specimen 75 mm); CBR- Romontbos quarry; Maastricht Formation, Emael Member (Dortangs Collection).

Fig. 7: (Posterior?) dorsal vertebrae of a ?mosasaurine (?Globidensini) in matrix; ENCI-Maastricht BV quarry; Gulpen Formation, Lanaye Member (NHMM 1998141, leg. R. Dortangs).

Fig. 8A, B: Isolated teeth and dorsal/pygal vertebrae of Plioplatecarpus marshi; height of largest tooth 40 mm, width of largest vertebra 60 mm; CBR-Romontbos quarry; Maastricht Formation, Valkenburg Member (Dortangs Collection).

20

www.mcdr.ro / www.cimec.ro

Fig. 1

Fig. 2

21

www.mcdr.ro / www.cimec.ro

Fig. 3

22

www.mcdr.ro / www.cimec.ro

Fig. 4 A

Fig. 4 B

Fig. 4 C

23

www.mcdr.ro / www.cimec.ro

Fig. 4 D

Fig. 4 E

Fig. 4 F

Fig. 4 G

24

www.mcdr.ro / www.cimec.ro

Fig. 5 A

Fig. 5 B

Fig. 6

25

www.mcdr.ro / www.cimec.ro

Fig. 7

Fig. 8 A

Fig. 8 B

26

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 27 - 32

THE EFFECTS OF TECTONIC DEFORMATION ON DINOSAUR TRACKWAY MORPHOLOGY

ANNE S. SCHULP

Rezumat Efectele deformărilor tectonice asupra morfologiei pistelor de urme de paşi de dinozauri

Pentru geologi, deformările tectonice nu reprezintă un fenomen neobişnuit. Totuşi, până acum, ichnopaleontologii nu au acordat atenţie efectelor deformărilor tectonice asupra morfologiei pistelor de urme de paşi de tetrapode. Deformările tectonice pot avea un impact profund asupra morfologiei pistelor de paşi, afectând toţi parametrii care sunt în general priviţi ca diagnostici în ichnotaxonomie, cum sunt: lungimea pasului, lărgimea urmei, angulaţia, simetria urmei şi mărimea urmei. Este important, prin urmare, să se ia în considerare deformaţiile, ale căror consecinţe trebuie analizate înainte de a descrie o pistă de urme de paşi.

INTRODUCTION Most Mesozoic sediments have been affected to some degree by tectonic deformation. Numerous dinosaur trackways have been described yet, but so far, virtually no attention has been paid to the effects of tectonic deformation. In many cases, deformation only affected the track-bearing surface to a minor degree, but there are numerous descriptions of dinosaur trackways from steeply inclined or even vertical surfaces, e.g. the Barkhausen quarry (Germany, KAEVER &

LAPPARENT, 1974); the Fumanya quarry (Spain, SCHULP & BROKX, in press) and various Swiss sites

(MEYER & HAUSER, 1994). The sheer fact that the track-bearing level has been turned vertically almost certainly implies that also the trackways themselves have been distorted to some degree. Invertebrate paleontology has been familiar with the effects of tectonic deformation for a long time. One of the most famous examples includes the use of deformed Spirifer brachiopods to determine the amount of strain (e.g. WELLMAN, 1962). Examples of tectonic deformation of vertebrate ichnites have been given by STÖSSEL (1995) and SCHULP & BROKX (in press). STÖSSEL described the deformation of Devonian tetrapod trackways, but merely in a qualitative approach without discussing in much detail the general consequences in trackway studies. The Fumanya tracksite in Spain (SCHULP

27

www.mcdr.ro / www.cimec.ro & BROKX, in press) presents another example of tectonically deformed trackways. Here, the tectonic deformation is described: a detailed qualitative approach is in preparation (BROKX et al. in prep). With only two deformed tracksites specifically reported as such, tectonic deformation has been probably ignored or overlooked in many instances. Parataxonomic description of vertebrate tracks are primarily based on trackway morphology and geometry; as such awareness of the effects of tectonic deformation on morphology and geometry is very important. This short contribution theoretically explores some of the effects and consequences of tectonic deformation of some (imaginary) tridactyl bipedal dinosaur tracks, illustrated by three examples: 1). Compression parallel or perpendicular to a trackway and the resulting ornithopod/theropod confusion. 2). Compression oblique to the trackway and the resulting “limping dinosaurs' and 3). The effects of compression in preferred trackway orientation.

1). Ornithopod/theropod confusion Often, it is difficult to distinguish between ornithopod and theropod pes prints.

THULBORN (1990: 219-225) presented an overview summarizing 13 characteristic properties of theropod and ornithopod tracks. Some of these characteristics have only limited validity or apply only to particular preservational or depositional circumstances. Many other characteristics may be fundamentally altered by tectonic deformation, like footprint proportions, digit width, and interdigital angles. A major difference between theropod and ornithopod tracks lies in the length/width ratio. Ornithopods generally have wider tracks with wider toes compared to theropods. THULBORN (1990) listed an average foot width/foot length (FW/FL) ratio of 0,73 ± 0,19 for coelurosaur theropods and 0,77 ± 0,14 for carnosaur theropods. FW/FL in small ornithopods averages 0,91 ± 0,18 and in large ornithopods an almost similar 0,90 ± 0,15. Obviously, there is some overlap already, but a minor compression in walking direction may turn less well-preserved theropod tracks in the realm of convincing ornithopod FW/FL values; compression of ornithopod tracks perpendicular to the walking direction make them appear more theropod-like (Fig. 1). In the same line of reasoning, the interdigital angles, also regarded as a diagnostic feature to distinguish theropods and ornithopods, are increased by anteroposteriorly directed compression. For obvious reasons, confusion is less likely to occur in well- preserved trackways, e.g. trackways with clearly preserved claw-impressions or other specific theropod or ornithopod features.

2). Limping dinosaurs

DANTAS et al. (1994) report 9 examples of asymmetrical dinosaur trackways. There is of course no reason to reject the possibility of limping dinosaurs at first hand; theropods for example, practiced a dangerous life-style, illustrated by the relatively high occurrence of healed bone fractures.

28

www.mcdr.ro / www.cimec.ro Especially if one or both pes prints display some patrological features (broken or missing toes), the evidence becomes very convincing. However, the possibility that the observed trackway asymmetry is caused by tectonic by tectonic deformation should always be considered. If the pace angulation of a bipedal dinosaur is significantly lower than 1800, compression in the direction of, for example an R-L pace may significantly reduce the R-L pace length, while leaving the R-L pace-length less affected. This may lead to thye erroneous conclusion the trackway was made by a limping , leading to an overrepresentation of pathological dinosaurs in the trackway record interpretation.

3). Trackway orientation Trackway direction of larger tracksites with many different individuals are often compiled in rose diagrams. The number of trackways running parallel or perpendicular to the axis of strain remains unchanged after deformation; trackways running oblique to the main axes, tend to “migrate” towards the direction of maximum extension; superimposing a bi-directional “overprint” on the existing trackway orientations. As many paleobiological, ethological and paleoenvironmental inferences are made based on trackway orientation patterns, the effects of tectonic deformation should be taken into account here as well. Reconstructing dinosaur tracks Once aware of the possibility thet trackways may be deformed, one can start using tracways to determine the strain the track-bearing surface was subjected to, in a similar way as

Wellman's Spirifer (WELLMAN, 1962). A data set large enough to provide statistically significant data, consisting of trackways running in more than one direction, can provide not only the total strain, but based on this, the deformed trackways can be projected back to their undeformed state (RAMSAY & HUBER, 1983;

SCHULP & BROKX, in press; BROKX et al., in prep). Using digital image processing software, the original trackway morphology can be restored. Most of the image processing software currently available on the market is capable of such operations.

CONCLUSION Tectonically deformed dinosaur trackways are more common than appears from the literature. As strain fundamentally alters diagnostic properties of the trackways affected, awareness of the possible consequences of tectonic deformation is important. By making a statistical analysis of the trackway morphology, the total amount and direction of strain can be obtained, and using digital image processing software, correction for this strain can be made. An estimate of strain should become normal practice when describing vertebrate tracksites.

29

www.mcdr.ro / www.cimec.ro REFERENCES BROKX W.A., SCHULP A.S. & BIERMANN C. (in prep.): Strain analysis on dinosaur trackways from the Fumanya Quarry, Pyrenees, Spain.

DANTAS P., DOS SANTOS V. F., LOCKELY M. G. & MEYER C. A. (1994): Footprint evidence for limping dinosaurs from the Upper Jurassic of Portugal. In: LOCKLEY M.G., DOS SANTOS

V.F., MEYER C.A. & HUNT A.P. (eds.): Aspects of Sauropod Paleobiology. Gaia, 10: 43-48.

KAEVER M. & LAPPARENT A. F. DE (1974) : Les traces de pas de Dinosaures du Jurassique de Barkhausen (Basse Saxe, Allemagne).- Bulletin de la Societé Géologique de France, Série 7 ş16): 516-525.

MEYER C. A. & HAUSER M. Ş1994): New sauropod and theropod tracksites from the

Upper Jurassic Megatracksite of Northern Switzerland. In: LOCKLEY M.G., DOS SANTOS V.F., MEYER

C.A. & Hunt A.P. (eds.): Aspects of Sauropod Paleobiology. Gaia, 10: 49-55.

RAMSAY J. G., & HUBER M. I. (1983): The techniques of modern structural geology. Volume 1: Strain Analysis. Academic Press, London, 307 p.

SCHULP A. S. & BROKX W. A. (in press): Maastrichtian Sauropod Footprints from the Fumanya site, Bergueda, Spain, Ichnos.

STÖSSEL I. (1995): The discovery of a new Devonian tetrapod tracway in SW Ireland. Journal of the Geological Socitety, London, 152: 407-413.

THULBORN T. (1990): Dinosaur Tracks. Chapman & Hall, London, 410 p.

WELLMAN H. W. (1962): A graphical method for analyzing fossil distortion caused by tectonic deformation., Geological Magazine, 99: 348-352.

Anne S. Schulp Maastricht Museum of Natural History PO Box 882, NL-6200 AW Maastricht, The Netherlands

30

www.mcdr.ro / www.cimec.ro

Fig. 1. A hypothetical compression of a bipedeal tridactyl tracway with an initial undistorted FW/FL ratio of 0,77 (Left). Right the distorted result; the FW/Fl value of trackway running perpendicular to the direction of compression decreases. Note that all other trackway parameters are affected as well.

31

www.mcdr.ro / www.cimec.ro

Fig. 2. Compression of a trackway parallel to one pace direction may create asymmetrical

“limping” tracks. Note that the direction of locomotion is affected as well.

32

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 33 - 59

PALEOENVIRONMENTAL RECONSTRUCTION OF LATEST CRETACEOUS DINOSAUR- BEARING FORMATIONS OF ROMANIA: PRELIMINARY RESULTS

FRANÇOIS THERRIEN, CORALIA - MARIA JIANU, SCARLAT BOGDAN, DAVID B. WEISHAMPEL, JOHN W. KING

Rezumat Reconstituiri de paleomediu pentru formaţiunile purtătoare de dinozauri din Romania: rezultate preliminare

Paleomediile în care dinozaurii şi alte organisme contemporane lor au trăit pot fi reconstituite studiind contextul stratigrafic, sedimentologic şi paleopedologic a trei dintre localităţile Cretacic târzii purtătoare de dinozauri, aparţinând la două formaţiuni distincte: Formaţiunea de Sânpetru (valea Sibişelului şi valea Râului Bărbat) din Bazinul Haţeg şi partea superioară a Stratelor de Bozeş din apropierea localităţii Vinţu de Jos, din Depresiunea Transilvaniei. Echipa formată din cercetători ai celor două instituţii îşi propune de asemenea să determine intervalul de timp reprezentat de aceste depozite cât şi poziţia limitei Cretacic/Terţiar în coloanele stratigrafice, acolo unde există.

Abstract The paleoenvironments in which dinosaurs and other contemporaneous organisms lived can be reconstructed by studying the stratigraphic, sedimentologic, and paleopedologic contexts of three latest Cretaceous dinosaur-bearing localities, pertaining to two distinct formations (Sânpetru Formation in the Haţeg Basin and Vinţu de Jos strata in the Transylvanian Depression). In the Sibişel Valley, the Sânpetru Formation is characterized by relatively thin sandstone-dominated fining-upward sequences, shallow and narrow channel-shaped sandstone bodies, limited variability of paleocurrent direction, and weakly-developed, drab-colored paleosols with an increase in the abundance of redoximorphic features (mottles) up-section. Combined with the concentration of fossil remains in sandy fossiliferous pockets interpreted as abandoned channels, these features suggest deposition in a rapidly changing, aggrading bedload-dominated system, such as braided streams, where the watertable probably reached surface expression for a significant (25-50%) part of the year. However, the occurrence of mottles higher in the section indicates fluctuation in watertable level and a transition to a

33

www.mcdr.ro / www.cimec.ro better-drained floodplain. Along the Bărbat River, fining-upward sequences of the Sânpetru Formation differ in being dominated by red mudstone and fine sandstone. Channel deposits are usually thin and exhibit a moderate variability of paleocurrent direction. Paleosols exhibit well-developed horizons containing carbonate nodules, slickensides, mottles, and fossil remains. These features suggest deposition in a rapidly aggrading and avulsing, mixed- to suspension-load dominated fluvial system, possibly meandering rivers. The paleosols were probably formed under a semi-arid to arid climate as suggested by the carbonate nodules, but the occurrence of mottles and slickensides indicate that wetter conditions did occur, possibly related to seasonal precipitation. The continental deposits exposed near the village of Vinţu de Jos (“Bozeş Strata”) consist in thick fining-upward sequences dominated by pedogenically-modified red mudstones. Carbonate nodules are ubiquitous in these deposits, rarely constrained within a well-defined horizon but occasionally forming well-cemented caliche layers. Paleosols, which appear to have a high smectitic content, also contain rhizocretions, slickensides, and fossil remains; mottles are extremely rare. Laterally extensive sandstone sheets dissect the thick overbank deposits; thick and wide channel-shaped sandstone bodies as well as inclined heterolithic strata, formed by point bar migration, are occasionally present. All these features suggest deposition in a rapidly aggrading, suspension-load dominated system, such as meandering rivers. The paleosols record semi-arid to arid climatic conditions with alternating wet-dry periods and a relatively low watertable that rarely fluctuated on the floodplain. Preliminary paleomagnetic analyses of the Sânpetru Formation (Sibişel Valley) reveal that, if the K/T boundary is located in the upper part of the section, the basal most deposits may be as old as early to middle Maastrichtian.

INTRODUCTION Fossiliferous continental deposits of Late Cretaceous (late Maastrichtian?) age are well known from the Southern Carpathians, Transylvania, southwestern Romania. The Densuş-Ciula and Sânpetru formations, both found in the Haţeg Basin, and the Vintu de Jos strata, from the Transylvanian Depression (Fig. 1), have yielded remains of dinosaurs, pterosaurs, crocodilians, turtles, and multituberculates for over a century (NOPCSA, WEISHAMPEL, GRIGORESCU, and others), thus producing one of the most diverse and best preserved latest Cretaceous dinosaurian fauna of Europe

(WEISHAMPEL et al. 1991; WEISHAMPEL and JIANU, in press). In one of these sequences (the Sânpetru Formation) dinosaur remains, otherwise common, are reportedly absent from the last 200 m of the section, and Paleogene bivalves and gastropods are found above that level, which have led paleontologists to suggest that continuous deposition occurred across the Cretaceous/Tertiary boundary

(LAUFER 1925; WEISHAMPEL et al. 1991; GRIGORESCU 1992). Unfortunately, this possibility has yet to be confirmed by independent methods, such as magnetostratigraphy and geochronology, and no detailed paleoenvironmental study of the deposits has been published in nearly two decades

(GRIGORESCU 1983).

34

www.mcdr.ro / www.cimec.ro Here, we present preliminary results from fieldwork conducted in the Haţeg Basin during the summers of 2000-2001 by the Johns Hopkins University - Muzeul Civilizaţiei Dacice şi Romane (Deva) collaboration team. The goals of this renewed collaboration are to: 1) construct composite stratigraphic sections for the Sânpetru Formation (both along the Sibişel and Bărbat Rivers) and Vinţu de Jos strata; 2) determine the time interval represented by these deposits and establish the position of the K/T boundary (if present) in the sections, and; 3) study the sedimentologic setting and faunal composition of fossil localities and correlate each of them to the composite sections in order to determine the nature of the biodiversity and paleoenvironmental changes that occurred in the latest Cretaceous of Romania. This research is particularly timely because López-Martinez et al. (2001) have recently claimed that the Transylvanian deposits may not be late Maastrichtian in age and, therefore, could not record the latest Cretaceous extinction of dinosaurs. The question as to whether the reported disappearance of dinosaurs (and possibly other taxa) from the Transylvanian deposits, or the decrease in abundance of their remains, can alternatively reflect a preservational bias (possibly due to a change in depositional setting), a regional extinction event (due to local causes) prior to the K/T boundary, or an extinction contemporaneous with the worldwide mass extinction observed at the K/T boundary requires immediate elucidation.

GEOLOGY Four rock formations of Late Cretaceous age are exposed in the Southern Carpathians: 1) the Densuş-Ciula Formation; 2) the Sânpetru Formation; 3) the Rusca Montană Formation, and; 4) strata exposed in proximity of Vintu de Jos (Fig. 1). Both the Densuş-Ciula and the Sânpetru formations are found in the Haţeg Basin, an intramontane post-orogenic basin. These formations are thought to be contemporaneous on lithostratigraphic and paleontological bases (at least to some extent; see ANTONESCU et al. 1983; WEISHAMPEL et al. 1991; GRIGORESCU 1992, and references therein). The Rusca Montană Formation, part of the post-orogenic Rusca Montană Basin, is located west of the Haţeg Basin and is considered in part contemporaneous to it on the basis of pollen, flora, and freshwater gastropods (ANTONESCU et al. 1983). The Vinţu de Jos strata are found approximately 50 km to the NE of the Haţeg region. Some authors have suggested, on the basis of similar dinosaurian fauna and palynology (IANOVICI et al. 1976; ANTONESCU et al. 1983), that these strata may be contemporaneous with the Haţeg Basin formations. The stratigraphy and paleontology of the Densuş-Ciula and Rusca Montană formations have been the subject of extensive studies (e.g. BALTES 1966; DINCA et al. 1972; DUŞA and BARILA

1973; DINCĂ 1977; POP and PETRESCU 1983; STRUTINSKI 1986; GRIGORESCU et al. 1990a,b;

GRIGORESCU 1992, 1993; PĂTRAŞCU et al. 1993; GRIGORESCU et al. 1994; CSIKI and GRIGORESCU 1998, 2000). However, exposures of these formations are limited (often as small outcrops along

35

www.mcdr.ro / www.cimec.ro creeks) and located far from each other, precluding the construction of a reliable composite section. Furthermore, Dr. Dan Grigorescu and collaborators from the University of Bucharest have been conducting fieldwork and documenting the few exquisite outcrops for several years (GRIGORESCU et al. 1990; GRIGORESCU 1992; GRIGORESCU et al. 1994; CSIKI and GRIGORESCU 1998, 2000). For these reasons and to prevent overlapping and repetitive research, the Densuş-Ciula and Rusca Montană formations will not be considered in this project. Instead, the focus will be on the Sânpetru Formation and the Vinţu de Jos strata. The Sânpetru Formation Exposed in the central part of the Haţeg Basin, the Sânpetru Formation is the best exposed and most fossiliferous of the Late Cretaceous Transylvanian formations. About 2,500m thick

(Fig. 2; NOPCSA 1905), the Sânpetru Formation consists of laterally continuous, medium- to fine- grained, red and green terrigenous deposits with lenticular conglomeratic beds. Along the Sibişel River, where the best and stratigraphically highest outcrops of the Sânpetru formation are exposed (Fig. 2), two members are recognized: a lower member in which pyroclastic material is an important matrix component and red clays are common; and an upper member with abundant conglomeratic beds, more common andesitic tuffites, and the red clays are replaced by gray-blackish clays in the section (GRIGORESCU 1983, 1992; WEISHAMPEL et al. 1991). Depositional interpretations of the

Sânpetru Formation have varied from an exclusively lacustrine environment (NOPCSA 1905), to braided streams in a distal alluvial fan setting (GRIGORESCU 1983; Weishampel et al. 1991), to a meandering fluviolacustrine system (GRIGORESCU 1992). The generally coarser upper member is inferred to represent an increase in uplift and erosional rates due to subduction along the Tethyan margin of the continent (BURCHFIEL 1980; GRIGORESCU 1983; WEISHAMPEL et al. 1991;

WILLINGSHOFER 2000). Fossil remains discovered in the Sânpetru Formation along the Sibişel River represent the best-preserved and most diverse Late Cretaceous fauna of Europe (WEISHAMPEL et al. 1991;

WEISHAMPEL and JIANU, in press). Disarticulated remains of chelonians, dinosaurs (theropods, ornithopods, sauropods, and ankylosaurs), pterosaurs, squamates, crocodilians, and multituberculates have been recovered from these deposits and studied for over a century (NOPCSA 1897, 1900, 1902a,b,

1904, 1915, 1923, 1928, 1929; GRIGORESCU and KESSLER 1980; JIANU 1992, 1994; WEISHAMPEL et al.

1993; WEISHAMPEL and JIANU 1996, in press; JIANU and WEISHAMPEL 1997; CSIKI and GRIGORESCU

1998, 2000; BUSCALIONI et al. 2001). GRIGORESCU (1983) proposed an ecosystem model for the Sânpetru fauna, in which specific taxa preferably inhabited distinct habitats, but did not explain how these conclusions were reached. Recently, CSIKI (1995) recognized evidence of habitat partitioning amongst Sânpetru dinosaurians. Sânpetru freshwater gastropods and pollen are similar to those found in the Densuş-Ciula Formation (ANTONESCU et al. 1983) and macrofloral remains, although rare

(fragmentary ferns and palm trees), suggest a subtropical climate (ANTONESCU et al. 1983;

36

www.mcdr.ro / www.cimec.ro GRIGORESCU 1992). It is in the last 200m of Sânpetru Formation exposed along the Sibişel River that dinosaur remains are allegedly absent and Paleocene gastropods found, thus suggesting continuous deposition across the K/T boundary (LAUFER 1925; WEISHAMPEL et al. 1991; GRIGORESCU 1992). About 15km to the southeast of the Sibisel Valley, red sandstones and conglomerates outcropping in the bed of the Bărbat River, near the village of , have been attributed to the lower member of the Sânpetru Formation on the basis of lithological and paleontological similarities (Fig. 2;

NOPCSA 1905; GRIGORESCU et al. 1985). However, direct correlation of strata between the two sites is thus far impossible. Even though exposure is limited, an extremely diverse fauna, including gastropods, fishes, amphibians, turtles, squamates, crocodilians, dinosaurs, and multituberculates, has been recovered from these deposits (NOPCSA, 1905; GRIGORESCU et al. 1985; RĂDULESCO and

SAMSON 1986; GRIGORESCU and HAHN 1987; CSIKI and GRIGORESCU 1998, 2000). Although sedimentologic and taphonomic studies have been conducted for the exposures along the Sibişel River (GRIGORESCU 1983), no stratigraphic nor paleopedologic work has ever been published on the Sibişel outcrops, and a strong geologic framework is still lacking for the Barbat deposits. The main obstacles that have deterred scientists from building composite stratigraphic sections consist of hazardous outcrops, limited exposure (due to vegetation along the Sibişel River and to Quaternary cover along the Bărbat River), and the great thickness of the Sânpetru Formation. However, the preliminary results present here demonstrate that composite sections and detailed sedimentologic and paleopedologic studies of these deposits can be done. The Vinţu de Jos strata Approximately 50 km to the north-east of the Haţeg Basin, south-east of the Trascău Mountains, near the towns of Alba Iulia and Vinţu de Jos, continental red beds of Maastrichtian age are exposed (ANTONESCU 1973; ANTONESCU et al. 1983). Ranging in thickness from several tens of meters to 1,500 m, these deposits are part of the Transylvanian Depression, a structure that was formed by tectonic subsidence due to the Carpathian orogenies. These strata, sometimes referred to as the

“Bozeş Strata” (IANOVICI et al. 1976), consist of red mudstones and tuffaceous sandstones and conglomerates, deposited in a fluviolacustrine setting (GRIGORESCU 1992). Both vertebrate and remains have been recovered from these strata. Remains of gastropods, chelonians, ornithopods, theropods, ankylosaurs, and a possible dinosaur tracksite have been discovered (NOPCSA 1905; GRIGORESCU 1987; JIANU, pers. obs.). Floral diversity, as indicated by microspores, pollen, and macrofossils, was extremely high and included charophytes and palm trees

(ANTONESCU 1973; ANTONESCU et al. 1983; GRIGORESCU 1992). As stated above, the Vinţu de Jos strata have been correlated, on the basis of faunal and floral assemblages, with the continental sequences exposed in the Haţeg and Rusca Montană basins (ANTONESCU 1973; ANTONESCU et al. 1983).

37

www.mcdr.ro / www.cimec.ro Thus far, the stratigraphy and sedimentology of the Vinţu de Jos strata have not been the subject of any detailed investigation. Since they are contemporaneous with the Sânpetru Formation, a study of the paleoenvironments represented by these deposits is essential to gain a better understanding of the latest Cretaceous Transylvanian biotas and any changes that may have occurred near the K/T boundary. A composite stratigraphic section of the outcrops situated near Vinţu de Jos has already been reconstructed (see below) and detailed paleopedologic and sedimentologic studies can now be conducted.

PRELIMINARY RESULTS The stratigraphic complexity of continental deposits always presents a major obstacle to any detailed study of vertebrate faunas, paleoenvironments, and evolutionary trends. It is therefore necessary to: 1) have a strong stratigraphic control over the deposits, through the use of composite stratigraphic sections of the Sânpetru Formation (both along the Sibişel and Bărbat Rivers) and Vinţu de Jos strata; 2) determine the time interval represented by these deposits and establish the position of the K/T boundary in the section, via geochronology and magnetostratigraphy; and, 3) study the sedimentologic setting and faunal composition of fossil localities and correlate each of them to the composite sections, via megascopic, microscopic, and geochemical studies. To attain these objectives, collaboration between the Functional Anatomy and Evolution Program of the Johns Hopkins

University (Baltimore, Maryland, U.S.A.) and Ms. CORALIA-MARIA JIANU of the Muzeul Civilizaţiei Dacice şi Romane, Deva (Romania), has been established. The fieldwork permits required have been obtained from the Romanian Academy of Science (Bucharest) through Ms. JIANU and Dr. SILVIA

BURNAZ. Fieldwork has been conducted during the summers 2000 and 2001 and preliminary results obtained during these two field seasons are presented here. 1. Composite stratigraphic sections A strong stratigraphic control over the fossiliferous localities and paleoenvironmental indicators (paleosols and fluvial sequences) is necessary to recognize any changes (i.e. in fluvial system, hydrology, climate, biodiversity) occurring through space and time; such control can be gained from composite stratigraphic sections of the different formations. To construct the composite sections for the different formations, local stratigraphic sections are measured along the steep slopes and cliff faces of the foothills of the Southern Carpathians, some reaching heights of nearly 70m and slopes in excess of 45o. Local sections are correlated to each other in the field by laterally tracing recognizable beds; when the marker beds can no longer be recognized, at a distance ranging usually from a few tens to hundreds of meters, a second section is then measured. This method ensures a precise and accurate way of correlating each measured section in order to reconstruct the composite section (see THERRIEN et al. 2000).

38

www.mcdr.ro / www.cimec.ro As part of the preliminary work, complete composite sections for the Sânpetru Formation, as exposed along the Bărbat River near Pui, and the Vinţu de Jos strata have been constructed. A composite section for the exposures along the Sibişel River, also pertaining to the Sânpetru Formation, is under way but, due to the extreme thickness of these deposits, is not yet complete. Sânpetru Formation – Sibişel River The Sânpetru Formation is moderately well exposed along the Sibişel River (45o32.62’N 22o54.57’E), which flows north through the tall Southern Carpathian foothills. Although vegetation cover is abundant, it is possible to physically trace laterally continuous beds from one location to another. It may be that the great thickness of exposed strata (possibly close to 1000 m), the numerous covered intervals, and the steepness of the hills previously hindered detailed stratigraphic work in the area. Nevertheless, a composite stratigraphic section is necessary to document any paleoenvironmental and/or biodiversity changes, especially since it is toward the top of the formation that the K/T boundary is thought to be located (Fig. 2), and one of us (F.T.) has so far constructed such a composite section for the basal most 175 m of outcrop (Figs. 2 and 3). The section was measured with a Jacob staff and by taking under consideration the strike and dip of the strata, approximately 23oN and 36o to the northwest respectively. Sânpetru Formation – Bărbat River. Exposures of the Sânpetru Formation near Pui are limited to the Bărbat River bed and to abandoned channels where the river has eroded through the superficial Quaternary deposits (45o30.70’N 23o05.69’E). Consequently, detailed study of the stratigraphy and sedimentology (at the cm scale) can only be achieved when the water level is low, which is probably one of the reasons why no composite stratigraphic section of this area has been compiled until now.

Previously estimated at a thickness of 200 m (GRIGORESCU et al. 1985), the present composite section reveals that the total thickness of the deposits exposed along the Bărbat River is approximately 102 m (Fig. 4). The current thickness was obtained by measuring units using a Jacob staff and by taking under consideration the strike and dip of the strata, approximately 090oN and 14o to the south respectively. Vinţu de Jos strata These strata are exposed in the hills on the north shore of the Mureş River. Due to limited exposures and the distance between outcrops, no composite section of the entire formation has ever been measured. Although only representing the uppermost part of the sequence, we present here a composite stratigraphic section for the visible outcrops (i.e. not covered by vegetation) near the village of Vinţu de Jos (Fig. 5). Outcrops can be seen on two hills (eastern and western) at the base of the Metaliferi Mountains, approximately 1 km distant from one another. For this reason, two composite sections, one for each hill (easternmost 46o01.78’N 23o30.02’E, westernmost 46o00.63’N 23o28.53’E), have been

39

www.mcdr.ro / www.cimec.ro measured using a Jacob staff and by taking under consideration the strike and dip of strata, approximately 350oN and 25o to the east respectively. 2. Determination of the age of the strata Two means of determining the age and time interval represented by the strata will be used: magnetostratigraphy and radiometric dating. Magnetostratigraphy Paleomagnetic analyses have been conducted in the past on Haţeg and Rusca Montană deposits (PĂTRAŞCU and PANAIOTU 1990; PĂTRAŞCU et al. 1993), but solely for the purpose of determining the paleogeographic position of the Haţeg Basin. No attempt was made to use magnetostratigraphy as a dating method, which may be primarily related to the lack of stratigraphic control over the deposits. By constructing composite stratigraphic sections of the Sânpetru Formation, it will be possible to follow a tight sampling method (one sample every five meters of section) and establish the magnetostratigraphy of these deposits. When possible, samples will be drilled as oriented one-inch cores. However, for poorly-cemented sediments we will take oriented hand samples. Paleomagnetic samples will be analyzed using either AF or thermal demagnetization to obtain directional results for magnetostratigraphic interpretation. Magnetic susceptibility, ARM, IRM, and hysteresis properties will be measured to determine the magnetic mineralogy and demagnetization behavior of the various facies. Magnetization components will be assessed using Zijderveld plots.

Dr. JOHN KING from the Graduate School of Oceanography – University of Rhode Island (Narragansett, Rode Island, U.S.A.) has agreed to analyze the samples collected. For preliminary study, 29 oriented samples were collected at 5-meter intervals from the Sânpetru Formation (Sibişel Valley, Fig. 3) and analyzed for paleomagnetic properties. These preliminary results demonstrate that a reliable magnetostratigraphy can be obtained. Twenty oriented hand-samples were AF demagnetized at 5.0 mT steps between 0 - 100 mT. Stable results were obtained from 17 of the 20 samples. A preliminary magnetostratigraphy from the Sânpetru Formation is shown in Figure 2b. All paleomagnetic studies were done on an automated 2G-755R U-channel system. Thermal demagnetization was done with a Schonstedt thermal demagnetizer. When considered in their stratigraphic context, they provide a means to establish the time interval spanned by the deposits. If the K/T boundary is really located in the uppermost part (around the 800m-level) of the Sibişel outcrops, then the preliminary results suggest that the basalmost 175m-interval of the section might be early-to-middle Maastrichtian. Radiometric dating Even though deposits from the Sânpetru Formation have been known to be derived, at least in part, from volcanic material for nearly a century (NOPCSA 1905; GRIGORESCU 1983, 1992;

WEISHAMPEL et al. 1991), no radiometric analysis has ever been done to establish their absolute age. Even in the case of the Densuş-Ciula Formation, which contains lava flows, ash falls, and reworked

40

www.mcdr.ro / www.cimec.ro volcanic material, relative age of the deposits has always been determined by biostratigraphy, mostly on the basis of palynology and similarity of the faunal assemblage with other European faunas. The presence of dispersed alleged volcanic material in the matrix of sandstone offers the possibility of obtaining primary volcanic minerals for radiometric dating purposes. In the Sânpetru Formation (Sibişel River outcrops) and the Vinţu de Jos strata, sandstone and mudstone layers with a good potential for preserving such minerals were sampled for preliminary analysis. Macroscopically, these layers are characterized by being rich in muscovite and by containing angular feldspar grains and, occasionally, small mudclasts. As preliminary research, four layers from the Sânpetru Formation (Sibişel Valley, Fig.

3) were sampled. Dr. ROLAND MUNDIL from the Berkeley Geochronology Center (Berkeley, California, U.S.A.) has agreed to analyze the samples collected. Unfortunately, none of the samples turned out primary volcanic minerals in sufficient quantity for radiometric dating, but future work is planned to assess to feasibility of sampling appropriate strata (R. MUNDIL, pers. comm., 2001). Geochronology can have a significant impact on this project as when the dated sandstones will be reported in their respective position in the composite sections, a strong temporal control over those sections will be established.

3. Paleoenvironments and faunal assemblages Once a strong spatial and temporal control has been established over the continental deposits (goals 1 and 2), it will be possible to investigate the nature of the biodiversity and paleoenvironmental changes that occurred during the Late Cretaceous, and especially in the last 200m of the Sânpetru Formation. By studying the sedimentology and stratigraphy of the formation, we will be able to identify changes in depositional and fluvial settings which, when considered in their temporal context, might be correlated to Carpathian tectonics or climatic events (e.g. BURCHFIEL 1980;

WILLINGSHOFER 2000). Furthermore, insights into the prevailing paleoclimatic, paleoenvironmental, and paleohydrologic conditions in which vertebrates lived can be gained through a detailed study of paleosol micromorphology and geochemistry (e.g. BOWN and KRAUS 1981a,b; RETALLACK 1983;

FASTOVSKY and MCSWEENEY 1987; FEAKES and RETALLACK 1988; MCCARTHY et al. 1998; THERRIEN and FASTOVSKY 2000). Paleosol micromorphology (i.e. clay coatings, redoximorphic features, carbonate nodules, matrix birefringence, slickensides) and geochemistry (i.e. oxides and trace elements content, clay-mineral composition) can reveal which pedogenic processes (i.e. eluviation, illuviation, gleyization) were active in these ancient soils and help in the identification of paleosol horizons (or paleosol sequences). Since pedogenic processes are dependent on the prevailing climatic conditions, they are useful paleoenvironmental indicators (FASTOVSKY and MCSWEENEY 1987). By comparing paleosol sequences at similar correlated stratigraphic levels, it will be possible to interpret and

41

www.mcdr.ro / www.cimec.ro document local variations as differences in habitat (e.g., THERRIEN and FASTOVSKY 2000). Global pedogenic differences occurring across various stratigraphic levels may also represent a paleoenvironmental trend through time preserved in the geologic record. Comparison of paleosols from the two continental sequences under study will reveal similarities and differences in the habitats frequented by dinosaurs and other taxa, which is relevant to the cause(s) of dinosaur disappearance in the last 200m of section in the Sânpetru Formation. Although the latest Cretaceous faunas of Romania have been extensively studied for their systematic (taxonomic), paleoecological, and paleobiogeographic implications, relatively little has been done in terms of biodiversity changes. In fact, the only comparisons of faunal composition at distinct stratigraphic levels were done at a crude level only (base of the formation versus higher in the formation; e.g., GRIGORESCU 1983). No detailed study of biodiversity trends has ever been published in spite of the quantity of material recovered. This can potentially be due to the lack of stratigraphic control over some of the fossiliferous localities, whether it be the exact stratigraphic position of the localities or their position relative to one another, and the lack of appropriate record of the faunal assemblages discovered (some date back to the late 19th and early 20th century). Hence, this situation prevents any detailed study biodiversity change through time and space. In order to establish a baseline for the study of patterns of faunal change through the sections, known fossiliferous localities for which faunal assemblages have been documented, as well as new discoveries that will be made while constructing the composite sections, will be compiled and integrated in the composite section of their respective formation. This will be done by physically correlating each locality in the field, by laterally tracing marker units (for example, sandstone beds), to the closest measured section used to construct the composite stratigraphic sections, thus conferring an accurate stratigraphic position of the locality as well as a time constraint on its age, provided by the absolute ages of the underlying and overlying volcanic layers and magnetostratigraphy. Information on the vertebrate assemblages (taphonomy and composition) discovered at each fossil locality and on the paleoenvironmental setting in which the bones are preserved (sedimentology and paleopedology) will be gathered in the field and from the literature when possible. By comparing fossil assemblages at similar correlated stratigraphic levels, it will be possible to study faunal variability across the latest Cretaceous landscape and, possibly, interpret the differences in terms of taphonomy and habitats (CSIKI 1995). The stratigraphic succession of fossiliferous localities within the formations will also reveal whether patterns of change in biodiversity can be observed. In turn, it might be possible to determine if these changes in biodiversity coincided with paleoenvironmental changes and, with the aid of the dating methods described above, if these changes were rapid or gradual, synchronous or diachronous across Romania, and if the disappearance of dinosaurians in the uppermost 200m of the Sânpetru Formation coincide with their worldwide extinction at the K/T boundary.

42

www.mcdr.ro / www.cimec.ro As preliminary work, a macroscopic study of the sedimentology, stratigraphy and paleopedologic features has been conducted and the results are presented below. Samples for petrological and micromorphological (thin-sectioning), and geochemical analyses (X-ray fluorescence spectrometry [XRF] and X-ray diffraction [XRD]) have also been collected and analyses are underway

(THERRIEN, in prep.). Sânpetru Formation – Sibişel River This section consists of stacked “cyclothems” (sensu GRIGORESCU 1983) – repetitive fining-upward sequences defined as a basal greenish conglomeratic sandstone overlain by green-gray or reddish brown sandy siltstone and mudstone (Fig. 3). These cyclothems are generally 1m thick, but thickness varies widely (from 0.5m to 5m). The sandstone beds are laterally extensive and shallow and narrow channel-shaped scours are preserved locally. Although generally hard to see, large-scale trough and tabular cross-stratifications with gravel imbrication are present. Coal fragments are common in the sandstones. Paleocurrent indicators exhibit very limited amount of variability, generally between 25oN and 50oN. Channel deposits constitute a significant part of these cyclothems, often as thick or thicker than the fine material portion. The latter only rarely preserve relict sedimentary structures in the form of parallel laminations. In the lower quarter of the composite section, the siltstones and mudstones are predominantly green and weakly bioturbated, rarely exhibiting root traces and burrows. When present, the roots are often preserved as coal filaments of various sizes. Carbonate nodules are rare to absent in this part of the section. These deposits represent hydromorphic (gleyed) paleosols, depleted in iron, and suggest impeded drainage and reducing condition due to prolonged water saturation periods (25-

50% of the year; DANIELS et al. 1971). Red coloration gradually appears up section, due to the appearance of redoximorphic features (iron mottles) in the gleyed matrix. The fine material passes from green to predominantly red through the section, with local occurrence of green mudstones and color zonation appearing in the red deposits. Carbonate concretions are commonly found in these deposits, although some may have a diagenetic origin as they are found in channel deposits preserving sedimentary structures. The mudstones exhibit few root traces, burrows, mottles, and, farther up- section, color zonation, all suggesting pedogenic alteration. Gleyed matrices and redoximorphic features (mottles) are associated with poorly drained paleosols with a high, but fluctuating water table, as mottles are formed under the associated alternation in oxidizing and reducing conditions (e.g.,

VEPRASKAS 1992).

The redder mudstones, a color due to the abundance of iron oxides (MCBRIDE 1974), represent better-drained and oxidizing conditions. The color zonations represent horizon differentiation within paleosols, probably representing a greater degree of maturity (e.g., BOWN and KRAUS 1981a). Furthermore, since each paleosol sequence is relatively thin, the profile may reflect the alteration of very few stacked flood deposits (contra thick composite paleosols; see BIRKELAND 1974; RETALLACK

43

www.mcdr.ro / www.cimec.ro 1983; KRAUS and BOWN 1986) and provide an unbiased record of the changes in the paleoenvironments of the Sânpetru deposits. Fragmentary, isolated vertebrate remains are commonly found in the overbank deposits but high concentration of dissociated remains occur, although less frequently, in shallow sandstone lenses. These have been termed “fossiliferous pockets” by GRIGORESCU (1983), which are typical for high-energy, rapidly shifting fluvial systems where fossil remains are preferentially accumulated in abandonned channels (see BEHRENSMEYER and HOOK 1992). The combination of sedimentologic features – shallow, narrow channel-shaped scours; predominance of large-scale trough cross-stratification in sandstones; limited amount of variability in paleocurrent direction; low proportion of overbank deposits relative to channel deposits; preservation of sedimentary structures and the sandy nature of overbank deposits; the weak development of pedogenic features – suggests deposition in a rapidly changing, aggrading bedload-dominated system, such as braided streams (SCHUMM 1968; CANT 1978; COLLINSON 1978; ETHRIDGE and SCHUMM 1978;

JACKSON 1978; BRIDGE 1985), conclusion in agreement with GRIGORESCU’s (1983) interpretation. Within the basal most 150m of section, a clear paleoenvironmental trend from wet habitats to better-drained, drier habitats is also indicated. Sânpetru Formation – Bărbat River The stratigraphy and sedimentology of the deposits exposed near Pui differ markedly from even the basalmost Sânpetru strata exposed along the Sibişel River (contra NOPCSA 1905 and

GRIGORESCU et al. 1985). The section consists of fining-upward sequences dominated (usually a few meters thick) by red mudstones and very fine sandstones occasionally dissected by relatively thin (1m or less) brown to light green conglomeratic sandstone units (Fig. 4). The latter, interpreted as channel deposits, are generally structureless, but occasionally exhibit trough cross-stratifications and gravel imbrication with high variability in paleocurrent direction (from 35oN, through 0oN, to 335oN). The fine material often exhibits bioturbation, root traces, mottling, carbonate nodules, slickensides, and color zonation, which are interpreted as evidence of pedogenic alteration of overbank deposits. The matrix of the paleosols is consistently red and red-to-purple mottles are occasionally present. Although the red color indicates predominant oxidizing conditions (MCBRIDE 1974), the rare occurrence of mottles suggest that alternating reducing-oxidizing conditions did occur due to fluctuation of the groundwater levels. Carbonate nodules occur in discrete horizons within the stratigraphic section and occasionally well-cemented horizons, interpreted as illuvial calcic (Bk) horizons and caliche layers. These pedogenic features are known to form when pluvial water transporting carbonates in solution evaporates before reaching the water table, such as in highly seasonal or semi-arid climates (GOUDIE 1973, 1983; REEVES 1976; BLODGETT 1988). This interpretation is supported by the occurrence of slickensides in the deposits, indicating seasonal wetting and drying and associated shrinking and swelling of clays (e.g. DUDAL and ESWARAN 1988;

44

www.mcdr.ro / www.cimec.ro WILDING and TESSIER 1988). Other evidence for paleosol differentiation includes the dark red horizons that occur throughout the section. Usually possessing a gradational inferior border, these dark red horizons are highly bioturbated, contain slickensides, and consistently occur at the top of paleosol profiles. Furthermore, abundant vertebrate fossil remains occasionally occur in those red horizons (see below). Although geochemical analyses and micromorphological investigation are necessary to interpret the nature of these red horizons, macroscopic features suggest that they may be illuvial B horizons or, potentially, well-preserved A horizons. At least two microvertebrate localities have been discovered near Pui, one by the University of Bucharest and the second by the Babeş-Bolyai University of Cluj Napoca. In addition, dissociated vertebrate elements have also been recently discovered (a perfectly preserved sauropod vertebra, C.M. JIANU, pers. obs. 2000). All of these remains come from overbank deposits and, at least for the sauropod vertebra and other abundant unidentified remains, are preserved in dark red paleosol horizons. Even though large-scale sedimentary structures (i.e. inclined heterolithic strata, IHS) were not observed, the variability in paleocurrent direction, the predominance of overbank deposits over channel deposits, and the repetitive nature of those sequences suggest sedimentation in a rapidly aggrading and avulsing, mixed to suspension-load dominated fluvial system, possibly meandering rivers (COLLINSON 1978; JACKSON 1978; BRIDGE 1985). The associated floodplain environment was relatively dry but underwent seasonal water table level fluctuations under a semi-arid to seasonal climate. Consequently, this detailed sedimentological study casts doubt on the validity of previous claims

(NOPCSA, GRIGORESCU, see above) that these outcrops can be correlated to the basal member of the Sânpetru Formation exposed along the Sibişel River solely on the basis of lithological similarity (in this case, color). Although they are contemporaneous, the Bărbat deposits represented here probably reflect distal environments to those of the Sibişel Valley outcrops, although to which precise member of the latter cannot be determined at present. Vinţu de Jos strata The stratigraphy and sedimentology of the Vinţu de Jos strata is reminiscent of the outcrops exposed along the Bărbat River. The sections consist of thick fining-upward sequences dominated by red and brown mudstones with laterally extensive brown and light green sandstone sheets (Fig. 5). In places, deep channel-shaped sandstone bodies are preserved and trough cross- stratification is the dominant sedimentary structure in these deposits. Sedimentary structures indicate extremely variable paleocurrent directions, ranging from 45oN, through 0oN, to 184oN. At least two occurrences of IHS, one in each section, are observed in the Vinţu de Jos strata: one of which consists of fining-upward conglomerate-sandstone couplets and the other fining-upward sandstone-mudstone couplets. Although IHS are known from a variety of depositional environments, the orthogonal

45

www.mcdr.ro / www.cimec.ro orientation of paleocurrent indicators (gravel imbrication and small-scale trough cross-stratification) relative to the dip of the IHS suggests that they represent lateral accretion surfaces of a migrating point bar (ALLEN 1965; JACKSON 1978; COLLINSON 1978; BRIDGE 1985; THOMAS et al. 1987). The mudstone exposures in the field have a shrink-and-swell texture, suggesting a significant smectitic content. They are generally structureless and exhibit bioturbation, carbonate nodules, rhizocretions (carbonate crust accumulating around roots in semi-arid to arid environments;

RETALLACK 1990), slickensides, and color zonation, all indicating pedogenic alteration; however, only rarely do these paleosols contain mottles. The paleosol sequences are often very thick and characterized by horizons with gradational boundaries and carbonate nodules not constrained within well-defined horizons. These lines of evidence suggest that episodic deposition of material occurred concurrently with pedogenesis, thus contributing to the formation of thick paleosol profiles (composite paleosols and compound pedogenesis; see BIRKELAND 1974; RETALLACK 1983; KRAUS and BOWN 1986). The occurrence of calcic horizons and rhizocretions suggests that evaporation was important, such as in a semi-arid to arid climate. Both the abundance of slickensides and the potentially high smectitic content reflect alternating wet and dry periods. However, the paucity of mottles in the paleosol profiles indicates that the water table rarely reached high levels on the floodplain. Fossil remains are preferentially preserved in overbank deposits: disarticulated theropod and turtle remains, and petrified wood have been discovered in dark red horizons interpreted as a paleosol (see below) while an associated ankylosaur skeleton has been retrieved from a mudstone overlying a sandstone sheet by a team from the Babeş-Bolyai University of Cluj Napoca (C.M. JIANU, pers. com. 2000). The great thickness of overbank deposits relative to channel deposits, the presence of IHS, and the great variability of paleocurrent suggest that the Vinţu de Jos strata were deposited primarily in a rapidly aggrading, suspension-load dominated system, most assuredly by meandering rivers (ALLEN 1965; JACKSON 1978; COLLINSON 1978; BRIDGE 1985; THOMAS et al. 1987). The paleosols indicate that a semi-arid climate with seasonal precipitation prevailed and that the water table level generally remained low.

SIGNIFICANCE AND CONCLUSION The ongoing research has great potential to document paleoenvironmental and biodiversity changes in the latest Cretaceous of Romania. The three study areas have been shown to represent different paleoenvironments and give a view as to how contemporaneous faunas adapted to these differences (see also CSIKI 1995). Furthermore, paleoenvironments have been shown to change through the Sânpetru Formation section, which offer the potential to study the ways in which the fauna reacted to the shifting conditions.

46

www.mcdr.ro / www.cimec.ro Only with the strong spatial and temporal control over the stratigraphic sequences imparted by the composite sections, geochronological dates, and magnetostratigraphy will it be possible to make strong claims about the biodiversity and paleoenvironmental changes that occurred in the Late Cretaceous of Romania. Once all the known fossil localities are correlated to the closest section used to build the composite stratigraphic sections, it will be possible to determine not only how the faunal assemblages changed through time, but also whether these changes coincided with paleoenvironmental shifts, and what their nature might be. Even though the study areas are thought to be contemporaneous on palynological and paleontological grounds, the time interval represented by each is still unclear. The degree of temporal overlap between each stratigraphic section so far is unknown and may, in fact, be very limited. Determining the time span represented by each stratigraphic sequence will give insight on the temporal range of the Romanian faunas and on the synchronicity of biodiversity changes. Finally, the absolute and relative ages of these deposits will reveal whether the K/T boundary is preserved in the continental sequences of Romania and point toward its location. If the continental deposits are not of latest Maastrichtian age, then we will have documented the earlier disappearance of dinosaurians in Romania (prior to the K/T boundary), or at least the decrease in abundance of their remains, in such a way that sheds light on biotic and paleoenvironmental events that took place at the end of the Mesozoic in a tectonically very active and highly complex peri- Tethyan region of central Laurasia. However, if the K/T boundary is present and can be located, it will represent one of the very few terrestrial sections that preserve this time interval in the world. As a consequence, it will be possible to compare the recorded paleoenvironmental and biodiversity changes with those observed in the only other well-documented, contemporaneous continental sequence in the world, the Hell Creek Formation of western North America The biodiversity trend could reveal whether the dinosaurian extinction pattern in eastern

Europe was sudden or gradual (e.g., SHEEHAN et al., 1991, 2000; SHEEHAN and FASTOVSKY, 1992;

ARCHIBALD 1996, 2000), while paleoenvironmental reconstructions, made on the basis of paleosols and fluvial deposits, could indicate if dramatic environmental changes (such as hydrologic and fluvial system changes), similar to those observed in North America (e.g., FASTOVSKY and MCSWEENEY, 1987) occurred at the end of the Cretaceous. This would finally provide the essential information required to compare the tempo and mode of extinction and recovery following a major mass extinction event on a global scale.

ACKNOWLEDGMENTS We wish to thank people at the Muzeul Civilizatiei Dacice şi Romane Deva, particularly Dr. Adriana Pescaru and Dr. Silvia Burnaz, for their help and support during this research. We also

47

www.mcdr.ro / www.cimec.ro wish to thank Zoltan Csiki for many fruitful discussions. We are grateful for the patience and generosity shown by the local authorities and villagers during fieldwork. This research is partly funded by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC-CRSNG) and Fonds pour la Formation de Chercheurs et l’aide à la Recherche du Québec (Fonds FCAR) to F. Therrien.

REFERENCES CITED ANTONESCU, E., 1973. Asociaţii palinologice caracteristice unor formaţiuni cretacice din Munţii Metaliferi. Dări de Seamă ale Şedinţelor, v. 59, pp. 115-169.

ANTONESCU, E. LUPU, D., and LUPU, M., 1983. Corrélation palynologique du Crétacé terminal du Sud-Est des Monts Metaliferi et des Dépressions de Haţeg et de Rusca Montană. Anuarul Institutului de Geolofie şi Geofizică, Stratigrafie şi Paleontologie, v. 59, pp. 71-77.

ARCHIBALD, J.D., 1996. Dinosaur Extinction and the End of an Era: What the Fossils Say. Columbia University Press, New York, 237p.

ARCHIBALD, J.D., 2000. Dinosaur abundance was not declining in a “3m gap” at the top of the Hell Creek Formation, Montana and North Dakota: Comment. Geology, 28(12), p. 1150.

BALTES, N., 1966. Remarques sur la microflore de certains dépôts charbonneux du bassin de Rusca Montană, Roumanie. Pollen et Spores, v. 8 (1), pp. 213-221.

BEHRENSMEYER, A.K., and HOOK, R.W., 1992. Paleoenvironmental contexts and taphonomic modes, pp. 15-136. In A.K. BEHRENSMEYER, J.D. DAMUTH, W.A. DIMICHELE, R. POTTS,

H.-D. SUES, and S.L. WING, (eds.), Terrestrial Ecosystems Through Time – Evolutionary Paleoecology of Terrestrial and Animals, University of Chicago Press, Chicago, 568p.

BIRKELAND, P.W., 1974. Pedology, Weathering, and Geomorphological Research. Oxford University Press, New York, 285p.

BLODGETT, R.H., 1988. Calcareous paleosols in the Triassic Dolores Formation, southwestern Colorado, pp. 103-121. In J. REINHARDT, and W.R. SIGLEO, (eds.), Paleosols and Weathering Through Geologic Time: Principles and Applications. Geological Society of America Special Paper 216, 181p.

BOWN, T.M., and KRAUS, M.J., 1981a. Lower Eocene alluvial paleosols (Willwood Formation, northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34, pp. 1-30.

BOWN, T.M., and KRAUS, M.J., 1981b. Vertebrate fossil-bearing paleosol units (Willwood Formation, Lower Eocene, northwest Wyoming, U.S.A.): Implications for taphonomy, biostratigraphy, and assemblage analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 34, pp. 31-56.

48

www.mcdr.ro / www.cimec.ro BRIDGE, J.S., 1985. Paleochannel patterns inferred from alluvial deposits: a critical evaluation. Journal of Sedimentary Petrology 57(4), pp. 587-601.

BURCHFIEL, B.C., 1980. Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics. Tectonophysics, 63, pp. pp. 31-61.

BUSCALIONI, A. D, ORTEGA, F., JIANU, C.-M., and WEISHAMPEL, D. B. 2001. Allodaposuchus precedens, a basal eusuchian crocodylomorph from the Late Cretaceous of Romania. Journal of Vertebrate Paleontology, v. 21, pp. 74-86.

CANT, D.J., 1978. Development of a facies model for sandy braided river sedimentation: comparison of the South Saskatchewan River and the Battery Point Formation, pp. 627-639. In A.D.

MIALL (ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, Calgary, 859p.

COLLINSON, J.D., 1978. Vertical sequence and sand body shape in alluvial sequences, pp. 577-587. In A.D. MIALL (ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, Calgary, 859p.

CSIKI, Z., 1995. Studiul paleontologic şi tafonomic al faunai Maastrichtian superioare din depozitele continentale ale Bazinului Haţeg (Formatiunile de Densuş-Ciula şi de Sânpetru): implicaţii paleoecologice. Unpublished thesis, University of Bucharest, 97p.

CSIKI, Z. & GRIGORESCU, D., 1998. Small theropods from the Late Cretaceous of the Haţeg Basin (Western Romania) – An unexpected diversity at the top of the food chain. Oryctos, v. 1, pp. 87-104.

CSIKI, Z., & GRIGORESCU, D., 2000. Teeth of multituberculate mammals from the Late Cretaceous of Romania. Acta Palaeontologica Polonica 45 (1), pp. 85-90.

DINCA, A., 1977. Geologia bazinului Rusca Montană. Partea de Vest. Anuarul Institutului de Geologie şi Geofizică, v. 52, pp.101-172.

DINCA, A., TOCORJESCU, M., and STILLA, A., 1972. Despre vârsta depozitelor continentale cu dinozaurieni din bazinele Haţeg şi Rusca Montană. Dări de Seamă ale Şedintelor, v. 58, pp. 83-94.

DUDAL, R., and ESWARAN, H., 1988. Distribution, properties and classification of Vertisols, pp. 1-22. In L.P. Wilding and R. Puentes, (eds.), Vertisols: Their Distribution, Properties, Classification and Management. Texas A&M University Printing Center, Texas, 192p.

DUŞA, A, and BARILA, M., 1973. Aspecte petrografice şi paleobotanice ale cărbunilor din Bazinul Rusca Montană. Studia Univ. Babeş-Bolyai. Geologia-Mineralogia. 18 (1), pp. 31-38.

ETHRIDGE, F.G., and SCHUMM, S.A., 1978. Reconstructing paleochannel morphologic and flow characteristics: methodology, limitations, and assessment, pp. 703-721. In A.D. Miall (ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, Calgary, 859p.

49

www.mcdr.ro / www.cimec.ro FASTOVSKY, D.E., and MCSWEENEY, K., 1987. Paleosols spanning the Cretaceous- Paleogene transition, eastern Montana and western North Dakota. Geological Society of America Bulletin 99, pp. 66-77.

FEAKES, C.R., and RETALLACK, G.J., 1988. Recognition and chemical characterization of fossil soils developed on alluvium; A Late Ordivician example, pp.. 65-48. In J. REINHARDT, and

W.R. SIGLEO, (eds.), Paleosols and Weathering Through Geologic Time: Principles and Applications. Geological Society of America Special Paper 216, 181p.

GOUDIE, A.S., 1973. Duricrusts in tropical and subtropical landscapes. Oxford Clarendon Press, 174p.

GOUDIE, A.S., 1983. Calcrete, pp. 93-131. In A.S. GOUDIE, and K.PYE, (eds.), Chemical Sediments and Geomorphology – Precipitates and Residua in the Near-Surface Environment. Academic Press, Inc., Orlando, 439p.

GRIGORESCU, D., 1983. A stratigraphic, taphonomic and paleoecologic approach to a “forgotten land”: the dinosaur-bearing deposits from the Hateg Basin (Transylvania – Romania). Acta Palaeontologica Polonica 28 (1-2), pp. 103-121.

GRIGORESCU, D., 1987. Considerations of the age of the “red beds” continental formations in SW Transylvanian depression. The Eocene from the Transylvanian basins, Cluj-Napoca University Press, pp. 189-196.

GRIGORESCU, D., 1992. Nonmarine Cretaceous formations of Romania, pp. 142-164. In N. Mateer, and C.Pen-Ji, (eds.), Aspects of Nonmarine Cretaceous Geology, China Ocean Press, 304p.

GRIGORESCU, D., 1993. The latest Cretaceous dinosaur eggs and embryos from the Haţeg Basin – Romania. Revue de Paléobiologie, no. 7, pp. 95-99.

GRIGORESCU, D., and KESSLER, E., 1980. A new specimen of Elopteryx nopcsai Andrews from the dinosaurian beds of Haţeg basin. Rev. Roumaine de Géol., Géophys. et Géogr., Série de Géologie, v. 24, pp. 171-175.

GRIGORESCU, D., HARTENBERGER, J.L., RADULESCU, C., SAMSON, P., and SUDRE, J., 1985. Découverte de mammifères et de dinosaures dans le Crétacé Supérieur de Pui (Roumanie). Compte-Rendu des Séances de l’Académie des Sciences, v. 301, Série 2, pp. 1365-1368.

GRIGORESCU, D., and HAHN, G., 1987. The first multituberculate teeth from the Upper Cretaceous of Europe (Romania). Geologica and Paleontologica, v. 21, pp. 237-243.

GRIGORESCU, D., AVRAM, E., POP, G., LUPU, M., ANASTASIU, N., and RADAN, S., 1990a. Guide to excursions. International Symposium I.G.C.P. Projects 245 and 262. Institute of Geology and Geophysics, Bucharest.

GRIGORESCU, D., SECLAMAN, M., NORMAN, D.B., and WEISHAMPEL, D.B., 1990b. Dinosaur eggs from Romania. Nature 346, p. 417.

50

www.mcdr.ro / www.cimec.ro GRIGORESCU, D., WEISHAMPEL, D.B., NORMAN, D.B., SECLAMAN, M., RUSU, M.,

BALTRES, A., and TEODORESCU, V., 1994. Late Maastrichtian dinosaur eggs from the Hateg Basin

(Romania). In K. CARPENTER, K.F. HIRSCH, and J. HORNER, (eds.), Dinosaur Eggs and Babies. Cambridge University Press, New York.

IANOVICI, V., BORCOS, M., BLEAHU, D., PATRULIUS, D., LUPU, R., DIMITRESCU, R., and

SAVU, H., 1976. Geologia Munţilor Apuseni. Editura Acad. R. S. Romania, Bucureşti.

JACKSON, R.G., II, 1978. Preliminary evaluation of lithofacies models for meandering alluvial streams, pp. 543-576. In A.D. MIALL (ed.), Fluvial Sedimentology. Canadian Society of Petroleum Geologists, Memoir 5, Calgary, 859p.

JIANU, C.-M. 1992. Un fragment de dentar de hadrosaurian (Reptilia, Ornithischia) din Cretacicul superior din Bazinul Hateg (Sânpetru, jud. Hunedoara). Sargetia XIV- XV, Deva, pp. 385- 396.

JIANU, C.-M. 1994. A right dentary of Rhabdodon priscus Matheron, 1896 (Reptilia, Ornithischia) from the Maastrichtian of Hateg Basin (Romania). Sargetia XVI, Deva, pp. 29-35.

JIANU, C.-M. and WEISHAMPEL, D. B. 1997. A new theropod dinosaur material from the Hateg Basin (Late Cretaceous, western Romania) - a preliminary study. Sargetia XVII, pp. 11-27.

KRAUS, M.J., and BOWN, T.M., 1986. Paleosols and time resolution in alluvial stratigraphy, pp. 180-207. In V.P. WRIGHT, (ed.), Paleosols – Their Recognition and Interpretation. Princeton University Press, New Jersey, 315p.

LAUFER, F., 1925. Contribuţiuni la studiul geologic al împrejurimilor oraşului Haţeg. An. Inst. Geol. Rom., v. 10, pp. 301-333 (in German, pp. 335-370).

LÓPEZ-MARTINEZ, N., CANUDO, J.I., ARDÈVOL, L., SUBERBIOLA, X.P., ORUE-

ETXEBARRIA, X., CUENCA-BESCÓS, G., RUIZ-OMEÑACA, J.I., MURELAGA, X., and FEIST, M., 2001. New dinosaur sites correlated with Upper Maastrichtian pelagic deposits in the Spanish Pyrenees: implications for the dinosaur extinction pattern in Europe. Cretaceous Research 22, pp. 41-61.

MCBRIDE, E.F., 1974. Significance of color in red, green, purple, olive, brown, and gray beds of Difunta Group, northeastern Mexico. Journal of Sedimentary Petrology 44, pp. 760-773.

MCCARTHY, P.J., MARTINI, I.P., and LECKIE, D.A., 1998. Use of micromorphology for paleoenvironmental interpretation of complex alluvial palaeosols: an example from the Mill Creek Formation (Albian), southwestern Alberta, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 143, pp. 87-110.

NOPCSA, F., 1897. Vorläufiger bericht über das Auftreten von oberer Kreide im Hatzeger Tal in Siebenbürgen. Verhandlungen der Kaiserlich-Königlichen Akademie der Wissenschaften, pp. 273-274.

51

www.mcdr.ro / www.cimec.ro NOPCSA, F., 1900. Dinosaurierreste aus Siebenbürgen (Schädel von Limnosaurus transsylvanicus nov. gen. et spec.). Denkschr. d. math.- naturw. Cl. D. k. Akad. D. Wiss., Wien, 68, pp. 555-591.

NOPCSA, F., 1902 a. Ueber das Vorkommen der Dinosaurier bei Szentpéterfalva. Zeitschrift der Deutschen Geologischen Gesellschaft 1902, pp. 34-39.

NOPCSA, F., 1902 b. Dinosaurierreste aus Siebenbürgen II. (Schädelreste von Mochlodon). Denkschr. D. math.-naturw. Cl. D. k. Akad. D. Wiss., Wien, 72, pp. 149-175.

NOPCSA, F., 1904. Dinosaurierreste aus Siebenbürgen III. Weitere Schädelreste von Mochlodon. Denkschr. D. math.-naturw. Cl. D. k. Akad. D. Wiss., Wien, 74, pp. 229-263.

NOPCSA, F., 1905. Zur Geologie der Gegend zwishen Gyulafehérvar, Deva, Ruszkabánya und der Rumänischen Landesgrenze. Wittieilungen aus dem Jahrbuche der Koniglichen- Ungarischen Geologischen Anstalt, v. 14, pp. 91-279.

NOPCSA, F., 1915. Die Dinosaurier der Siebenbürgischen Landesteile Ungarns. Mitteilungen aus dem Jahrbuch der Ungarischen Geologischen Reichsanstalt, Budapest 23, pp. 3-24.

NOPCSA, F., 1923. On the geological importance of the primitive reptilian fauna in the uppermost Cretaceous of Hungary; with a description of a new tortoise (Kallokibotium). Quarterly Journal of the Geological Society of London 79, pp. 100-116.

NOPCSA, F., 1928. Dinosaurierreste aus Siebenbürgen. IV. Die Wirbelsäure von Rhabdodon und Orthomerus. Palaeontologia Hungarica 1, pp. 273-304.

NOPCSA, F., 1929. Sexual differences in ornithopodous dinosaurs. Palaeobiologica 2, pp. 187-200.

PĂTRAŞCU, St., and PANAIOTU, C., 1990. The structure of the natural remnant magnetization of Upper Cretaceous deposits from Hateg Basin and Rusca Montană Basin (Romania). Anal. Univ. Bucureşti, Fizică, v. 38, pp. 23-33.

PĂTRAŞCU, St., SECLAMAN, M., and PANAIOTU, C., 1993. Tectonic implications of paleomagnetism in Upper Cretaceous deposits in the Haţeg and Rusca Montană basins (South Carpathians, Romania). Cretaceous Research, v. 14, pp. 255-264.

POP, G., and PETRESCU, I., 1983. Consideraţii paleoclimatice asupra vegetaţiei din Cretacicul Superior de la Rusca Montană. Studia Univ. Babeş-Bolyai, Geol.-Geogr., v. 28, pp. 49-54.

RADULESCO, C., and SAMSON, P., 1986. Précisions sur les affinités des Multituberculés (Mammalia) du Crétacé Supérieur de Roumanie. Compte-Rendu des Séances de l’Académie des Sciences, v. 303, Série 2, pp. 1825-1830.

REEVES, C.C., Jr., 1976. Caliche; Origin, Classification, Morphology, and Uses. Estacado Books, Lubbock, Texas, 233p.

RETALLACK, G.J., 1983. Late Eocene and Oligocene paleosols from Badlands National Park, South Dakota. Geological Society of America, Special Paper 193, 82p.

52

www.mcdr.ro / www.cimec.ro RETALLACK, G.J., 1990. Soils of the Past: An Introduction to Paleopedology. Unwin Hyman, Boston, 520p.

SCHUMM, S.A., 1968. River adjustment to altered hydrologic regimen – Murrumbidgee River and paleochannels, Australia. U.S. Geological Survey Professional Paper 598, 65p.

SHEEHAN, P.M., FASTOVSKY, D.E., HOFFMANN, R.G., BERGHAUS, C.B., and GABRIEL, D.L., 1991. Sudden extinction of the dinosaurs: latest Cretaceous, Upper Great Plains, U.S.A. Science, 254, pp. 835-839.

SHEEHAN, P.M., and FASTOVSKY, D.E., 1992. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana. Geology, 20, pp. 556-560.

SHEEHAN, P.M., FASTOVSKY, D.E., BARRETO, C., HOFFMANN, R.G., 2000. Dinosaur abundance was not declining in a "3 m gap" at the top of the Hell Creek Formation, Montana and North Dakota. Geology, 28(6), pp. 523-526.

STRUTINSKI, C., 1986. Upper Cretaceous formations south of Ruschiţa; paleotectonic significance. Dări de Seamă ale Şedinţelor, Inst. Geol. şi Geofiz., Tect. şi Geol. Reg., v. 70-71, no. 5, pp. 247-254.

THERRIEN, F., and FASTOVSKY, D.E., 2000. Paleoenvironments of early theropods in the Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. PALAIOS, v. 15, no. 3, pp. 194-211.

THERRIEN, F., JONES, M.M., HERRICK, A.S., HOKE, G.D., and FASTOVSKY, D.E., 2000. The oldest Triassic strata exposed in the Petrified Forest National Park revisited. In V.L. Santucci, (ed.), National Park Service Paleontological Research, National Park Servive Technical Report, v. 4, pp. 101-108.

THOMAS, R.G., SMITH, D.G., WOOD, J.M., VISSER, J, CALVERLEY-RANGE, E.A., and

KOSTER, E.H., 1987. Inclined heterolithic stratification – terminology, description, interpretation and significance. Sedimentary Geology 53, pp. 123-179.

WEISHAMPEL, D.B., GRIGORESCU, D., and NORMAN, D.B., 1991. The dinosaurs of Transylvania. National Geographic Research & Exploration 7(2), pp. 196-215.

WEISHAMPEL, D. B., NORMAN, D. B., and GRIGORESCU, D. 1993. Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: the most basal hadrosaurid. Palaeontology 36, pp. 361-385.

WEISHAMPEL, D. B. and JIANU, C.-M., 1996. New theropod dinosaur material from the Hateg Basin (Late Cretaceous, western Romania). N. Jb. Geol. Paläont. Abh. 200, pp. 387-404.

WEISHAMPEL, D.B., and JIANU, C.-M., in press. The Dinosaurs of Transylvania in the Land of Contingency. Harvard University Press, Cambridge.

53

www.mcdr.ro / www.cimec.ro WILDING, L.P., and TESSIER, D., 1988. Genesis of Vertisols: Shrink-swell phenomena, pp. 55-81. In L.P. Wilding and R. Puentes, (eds.), Vertisols: Their Distribution, Properties, Classification and Management. Texas A&M University Printing Center, Texas, 192p. Willingshofer, E., 2000. Extension in Collisional Orogenic Belts: the Late Cretaceous Evolution of the Alps and Carpathians. Netherlands Research School of Sedimentary Geology (NSG), Amsterdam, Netherlands, 146p.

Francois Therrien Functional Anatomy and Evolution Program, Johns Hopkins University – School of Medicine, Baltimore, Maryland, U.S.A.

Coralia-Maria Jianu Muzeul Civilizatiei Dacice şi Romane Deva, Hunedoara, Romania

Scarlat Bogdan

David. B. Weishampel Functional Anatomy and Evolution Program, Johns Hopkins University – School of Medicine, Baltimore, Maryland, U.S.A.

John W. King Graduate School of Oceanography, University of Rhode Island, Rhode Island, U.S.A.

54

www.mcdr.ro / www.cimec.ro FIGURE CAPTIONS

Fig. 1. Map of Romania with major tectonic “provinces.” Haţeg Basin is shown in greater detail. Modified from Grigorescu (1992) and Weishampel and Jianu (in press).

55

www.mcdr.ro / www.cimec.ro

Fig. 2. Schematic stratigraphic section of the Sânpetru Formation with relative position of studied interval (A). Preliminary results of paleomagnetic analyses conducted in measured composite section of the Sânpetru Formation along the Sibişel River (B; see Figure 3). Unstable samples are labelled NG.

56

www.mcdr.ro / www.cimec.ro

Fig. 3. Composite section of the Sânpetru Formation as exposed along the Sibişel River, near Sânpetru. Stratigraphic position of samples collected for magnetostratigraphy, possible volcanic ash layers, and fossil sites is indicated on section.

57

www.mcdr.ro / www.cimec.ro

Fig. 4. Composite section of the Sânpetru Formation as exposed along the Bărbat River, near Pui.

58

www.mcdr.ro / www.cimec.ro

Fig. 5. Composite sections of the Vinţu de Jos strata.

59

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 61 – 71

L'EST DES MONTAGNES POIANA RUSCĂ – ARGUMENTS ECOPROTECTIFS

MIHAELA SOPINCEAN

Rezumat Estul Munţilor Poiana Ruscă - Argumente ecoprotective

Studiul de faţă vizează partea de est a Munţilor Poiana Ruscă şi zona depresionară de la periferia lor, ce se suprapun bazinului hidrografic al râului , afluent de stânga al Mureşului. La fel ca întreg judeţul, teritoriul analizat prezintă un remarcabil potenţial de habitat, caracterizat printr-o complexitate naturală deosebită. Datorită creşterii gradului de utilizare a resurselor naturale în diferite contexte social-istorice, degradarea mediului în această zonă ridică probleme deosebite. Analiza peisajului pe subsisteme teritoriale, din punct de vedere al elementelor componente, ne indică gradul de dezechilibru al sistemului. Oferirea câtorva soluţii pentru o valorificare durabilă a mediului în bazinul hidrografic al Cernei indică o direcţie de relansare economică a zonei, având în vedere exploatarea raţională a cadrului natural. Aplicarea soluţiilor propuse presupune schimbarea opticii autorităţilor şi a populaţiei locale asupra a ceea ce înseamnă mediul rural şi regiune industrială.

Les problèmes de l'environnement dans notre pays ne visent seulement la pollution, mais aussi la conservation et la protection des éléments d'une réele valeur scientifique et la valorisation durable du patrimoine naturel et culturel. Un segment déficitaire du management de l'environnement chez nous est celui de l'éducation ècologique. L'argumentation de la nécessité de la protection de l'environnement de l'Est des Montagnes Poiana Ruscă est basée sur la richesse du patrimoine naturel et culturel et sur la dégradation accentuée des sites, dégradation due à un ancien peuplement de la région et à une exploitation intense des ressources forestières et du sous-sol.

61

www.mcdr.ro / www.cimec.ro 1. Présentation générale.

La partie Est des Montagnes Poiana Ruscă se superpose, en grande partie, au bassin hydrographique de la rivière Cerna, affluent de gauche de la rivière Mureş. Le bassin a une superficie de 738 kmp, dont 30% environ appartient à la région montagneuse et 70% à celle de la côte. L'altitude maximale du bassin est de 1356,1 m au sommet Rusca. La rivière Cerna prend sa source au dessous de ce sommet, à plus de 1200 m altitude et se jette en Mureş, près de Săuleşti. La forme du bassin hydrographique, visiblement asymétrique est due à l'expansion des formes de relief. Par conséquent, les affluents principaux sont reçus par la gauche (Govăjdia, Zlaşti, Peştiş, Cristur, Valea Ursului). La rivière ne reçoit pas des affluents de la depression et, par conséquent, on peut la considérer un collecteur montagneux et sous-montagneux du versant Est de Poiana Ruscă. La diversité du paysage de cette partie des montagnes et de la région de dépression de l'Est, est le résultat de l'action de plusieurs facteurs: couche géologique profonde très variée qui se reflète dans les particularités du relief; influences climatiques de type sous-méditéranéen qui impriment des traits particuliers aux régimes pluvial, thermique et au régime du glissement, mais aussi à la végétation et à la faune; l'ancienneté de l'habitat de la région; variété des ressources naturelles et l'ancienneté des exploitations (minières, forestières); emplacements hydrotechniques etc.

2. Eléments particuliers du cadre naturel dans le bassin hydrographique Cerna, les montagnes Poiana Ruscă

Du point de vue de l'analyse systémique, les structures fonctionelles du paysage initial sont celles abiotiques et biotiques. Le développement de la composante anthropique est secondaire, elle constituant l'effet de l'activité humaine et ayant un support physique et biologique aux capacités d'évolution propres.

2.1. Les composantes naturelles

2.1.1. La roche et les ressources minérales utiles. Le degré d'affectation du sous-sol Les formations géologiques des montagnes appartiennent au "cristalin de Poiana Ruscă", une ensemble de depôts paléozoïques carbonatiques et magmatogènes, métamorphosés dans le cadre de l'orogénèse hercynienne. Il y a, généralement, des schistes, intercalés de calcaires et de dolomites, qui ont parfois de grandes épaisseurs et qui forment, par ailleurs, des massifs carbonatiques tels: Nandru, Groş, Hunedoara, Runcu-, Luncani. Les formations sédimentaires mézozoïques, néozoïques et quaternaires sont spécifiques à la périphérie du massif et aux bassinets de dépression intérieurs. Elles sont représentées par des roches bien consolidées (calcaires, grès, marnes, conglomérats) et par des

62

www.mcdr.ro / www.cimec.ro roches faiblement consolidées (marnes, grès, pierres à plâtre, sables, graviers). Le Quaternaire, peu développé dans la région de côte et de montagne, mais bien développé en aval de Hunedoara, est représenté par des alluvions (graviers et sables, dans des cônes de déjection et des terrasses). Montagnes d'origine tectono-magmatique, formées d'une mozaïque pétrographique, Poiana Ruscă constituent un depôt de substances minérales utiles: talc, marbre, dolomite, calcaire, minérais de fer associés au plomb, au zinc, au cuivre, au manganèse et à l'arsenic. Les gisements de minérais de fer ont à leur basse sidérite et ankérite à Teliuc, limonite, hématite et sidérite à Ghelar, sidérite, ankérite et magnétite à Vadu Dobrii. Les exploitations des ressources utiles dans le souterrain ont mené à l'apparition de vides imenses. La cote des horizons inferieurs d'exploitation est de 1000 m. environ à la mine de Ghelar et de 350 m. environ à celle de Teliuc. Les galéries de cette dernière arrivent, par-dessous le cours de Cerna, dans le versant gauche de la rivière. Ces changements ont affecté le niveau hydrostatique des nappes phréatiques et captives et, entre la surface topographique et la région exploitée il y a des massifs de roche en mouvement.

2.1.2. Le relief. Modelage naturel et anthropique a) Le relief majeur. La morphogénèse de cette région montagneuse a été précédée par des événements tectoniques hercyniens et baïkaliens. La position morphotectonique du Massif Poiana Ruscă au contact avec des régions étendues de horsts et de grabens d'une part et la dynamique accentuée du géosynclinal carpatique d'autre part expliquent, en grande partie, pourquoi l'expansion horizontale de cette région est plus grande que celle verticale. La caractéristique de modelage sous- aérien par étapes, a imposé un paysage polycyclique, concretisé dans des surfaces de nivellement b) Le relief mineur présente des particularités en fonction du type de roche. La caractéristique du paysage est donnée par les interfleuves larges ayant un aspect de pont et s'ouvrant en évantail de la partie centrale du massif vers l'Est et vers le Nord. Leur continuité est interrompue par des vallées profondes et étroites à l'aspect de gorges: sur la Cerna (entre Hăşdău et Lunca Cernii, en amont de Hunedoara), sur le Runcu, Sohodol. L'érosion différentielle a agit avec puissance sur les contacts litologiques, en sculptant des aires de dépression intramontagneuses sur les vallées de Cerna (Lunca Cernii-Negoiu, Dăbâca-Hăşdău), de Runcu, de Zlaşti. c) Le relief modelé. Sur les schistes cristalins des versants rocheux des gorges de Cerna, on rencontre souvent un microrelief de dégradation(roches, torrents, éboulis), comme résultat des processus de desagrégation et de dégradation. Dans le secteur à une fréquence plus grande des processus crionivals (Vadu Dobrii-Poiana Răchiţelii) apparaît un relief de cimes, de sommets pointus. Sur les calcaires et les dolomites s'est formé un relief exocarstique et endocarstique spécifique, mais peu developpé grâce à sa métamorphose.

63

www.mcdr.ro / www.cimec.ro Les terrasses et les lits modelés en grès, marnes, argiles, sables et graviers ont un degré réduit de stabilité, dû à la faible résistance des roches, aux fréquents glissements de terrain, aux éboulements, à l'érosion de surface et concetrée. Les méandres sont peu fréquentes dans l'espace montagneux et de côte, leur formation étant empêchée par la litologie. En révanche, dans la vallée commune de Cerna et de Mureş, les méandres les méandres de Cerna sont beaucoup plus prononcées. Le microrelief anthropique comprend: des formes négatives - carrières de calcaires et de dolomites (Zlaşti, Teliuc, Govajdia, Hunedoara), carrières de talc (Cerişor et Lelese), de marbre (Alun) et de minérais ferreux et non ferreux (Muncelu Mic, Teliuc, Ghelar, Vadu Dobrii, Lelese); des formes positives - haldes à l'aspect de cimes ou de terrasses anthropiques (générées par le dépôt des matériaux de construction, scories, stéril de mine, déchets ménagers), étangs de décantage. Comme les formes de relief récemment crées sont peu couvertes de végétation et emplacées sur un terrain instable, à couche profonde argileuse ou marneuse, il est naturel qu'il y ait une dynamique accentuée pendant les périodes pluvieuses, aux tremblements de terre et aux chocs en général. Par conséquent, les exploitations minières souterraines faites avec une technologie importune, ont provoqué une puissante déformation de la surface topographique, sur la superficie de la commune Ghelar (tassement, glissement, éboulement). La profondeur maximale de la déformation était, en 1996 de 2,5m. en comparaison avec le niveau initial de la surface topographique. Le relief a été modifié aussi par les constructions hydrotechniques: le barrage de Cinciş-Teliuc sur la rivière Cerna, l'adduction Râul Bărbat, prises de rives et de fond sur les rivières Cerna,şti Zla dans le but de l'alimentation avec de l'eau industrielle.

2.1.3. L'air A cause de la position occupée par le bassin hydrographique dans le massif montagneux, on observe l'existence d'un climat diverssifié, influencé par la massivité des Méridionaux au Sud, par le climat de la vallée de Mures au Nord et par les nuances sous - méditéranéennes. Cette situation et les différences d'altitude déterminent une distribution zonale des principaux éléments climatiques.

Parmi ceux - ci, plus importants sont: la circulation générale des masses d'air, déterminée par les vents de l'Ouest et la circulation au sol, imposée par l'orientation des vallées et des cimes montagneuses, qui déterminent la stagnation de la pollution dans des microdépressions ou la dispersion des étéments polluants. Les principaux polluants sont les poussières en suspension et sédimentées et les gaz résiduels (SO2, CO2). Même si, pour le moment la pollution est bien réduite par rapport à la période précédant les années 1990 et 1997, les maladies chroniques de l'appareil respirateur sont fréquentes.

64

www.mcdr.ro / www.cimec.ro 2.1.4. L'eau Constituant un sous - système bien représenté quantitativement, elle présente aussi une dynamique complexe. Les eaux souterraines n'ont pas une distribution uniforme, à cause du type de la roche et à cause de la forme du relief. La décharge des eaux souterraines de la région du massif vers l'Est, vers les vallées de Cerna et de Strei, favorisée par la forte fissuration des dépôts de roches, a permis la minéralisation de celles-ci. Ainsi, dans la région Ocoliş - Strei, au Sud du gisement de minérais de fer de Teliuc, a-t-on mis en évidence un gisement de CO2 en état libre, aux débits et aux pressions élevés. Les variations de l'écoulement de surface sont le résultat de l'évolution des facteurs climatiques qui influencent les sources d'alimentation. La régularisation des débits sur la rivière Cerna est assurée par le lac d'accumulation Cinciş - Cerna. Par la réalisation de l'accumulation hydrotechnique on a visé l'alimentation avec de l'eau industrielle du Combinat Sydérurgique de Hunedoara et de l'Usine de Préparation des Minérais de Teliuc, l'atténuation de la crue des eaux de Cerna pour protéger la plate - forme industrielle et le minicipe de Hunedoara. À cela se rattachent d'autres fonctions, le lac et ses environs constituant, depuis queques années, une région touristique et d'agrément estival, mais aussi une résidence secondaire. Pour le cours supérieur et moyen de la rivière, les caractéristiques chimiques, le régime des substances biogènes et organiques, les caractéristiques saprobiologiques sont normales. Le changement de ces paramètres sur le cours inférieur de la rivière est le résultat des déversements de l'eau industrielle et menagère. Le bilan de l'utilisation de l'eau dans le bassin hydrographique Cerna indique des transferts importants de débits de l'extérieur vers l'intérieur, par l'adduction Râul Bărbat ou du souterrain dans les eaux de surface, par les sources de captage. Généralement, les eaux souterraines captées ne correspondent, au point de vue qualitatif, qu'à l'usage industriel.

2.1.5. La végétation et la faune La zonalité altitudinale est déterminée par les conditions du climat, de la pétrographie , du sol. Fréquents sont les éléments de flore et de faune européennes, d'influence sous - méditéranéenne, de taïga, asiatiques. Les formations végétales naturelles se constituent dans des parcelles étroites de prés alpines, des forêts de hêtre et de resineux, de hêtres, de chêne-rouvre avec du hêtre et des quercynées. Dans l'ensemble, la végétation a été bien modifiée à cause de l'utilisation des terrains: la réduction des surfaces couvertes de forêts, comme suite à l'emplacement des villages et de la pratique de

65

www.mcdr.ro / www.cimec.ro l'agriculture sur les interfleuves larges de la région montagneuse, la dégradation des prés, la transformation des régions basses en steppe, comme suite à l'expansion des terrains arables. L'intervention directe et indirecte de l'homme dans le paysage a entraîné la restrainte de quelques éléments de faune (ours, lynx) et même la disparition de certaines espèces. La restrainte des surfaces couvertes de forêts a des effets complexes, immédiats et de durée, qui se réflètent sur toutes les géosphéres: la réduction de la biodiversité, la modification du circuit de l'eau dans la nature (surtout dans le sol et le sous-sol), le renforcement de l'érosion aréolaire, la baisse de la productivité des sols, etc. Les éléments naturels protégés par la loi sont nombreux, mais les mesures prises sont insuffisantes, par rapport au degré élevé d'artificiel de l'environnement.

2.1.6. Les sols La grande diversité des sols s'explique par la variation, dans le temps et dans l'espace, des facteurs pédoclimatiques (végétation, climat, roche, relief). Prédominants sont les sols bruns acides, riches en humus à CaCO3 du type de la rendsine, les sols bruns à une couche de humus brut ou même tourbeuse-marécageuse, sols bruns acides à une couche de humus de type mull. Dans les des régions des exploitations minières (Teliuc, Ghelar, Vadu Dobrii, Cerişor-Lelese, , Alun, Govăjdia etc.) il y a, sous la forme de haldes ou de dépôts nivelés,des matériaux de stéril, resultés de découvertes ou des transformations primaires, sans stratification, en formant un protosol anthropique, néproductif. L'élimination de certaines surfaces de sol du circuit agricol est le résultat de l'expansion de l'écosystème humain. La pollution des sols enregistre de différents degrés d'affectation, en fonction de l'intensité des exploitations et des exigeances manifestées par les autorités locales et nationales à l'égard du traitement et du stockage de certains résidus solides. La pollution du sol est due, en principal, au traitement des terrains arables avec des substances chimiques, à la décharge, sur le sol, des résidus industriels, ménagers, des boues provenues de l'épuration des eaux dégradées (ex: sur la vallée de Cerna, les haldes de scorie en aval de Teliuc et de Hunedoara). La nocivité de ces résidus est donnée surtout par leur composition organique qui entre en putréfaction, par les germes pathogènes, les virus, les parasites intestinaux.

2.2. La composante anthropique La population constitue la principale composante de l'écosystème humain. Les résultats de son imtervention dans le paysage sont liés à ses besoins physiologiques (consommation de l'eau et des aliments, production des déchets ménagers) et besoins matériaux et socio-culturels (consomation de la

66

www.mcdr.ro / www.cimec.ro matière première et de l'énergie dans les activités industrielles, agricoles, de transport et fluxes informationnels, etc.). Du point de vue du développement territorial et de l'intensité des fluxes d'énergie, l'écosystème humain se subdivise en écosystème des agglomérations rurales (développé horizontalement) et écosystème des agglomérations urbaines (développé verticalement). Région d'ancien et intense habitat, la partie centrale et occidentale du bassin Cerna, c'est-à-dire la région montagneuse, se superpose au pays des Pădureni. Les premières preuves de l'activité humaine sur ces endroits, trouvées, dans des cavernes ou sur des terrasses, datent depuis le Paléolithique (Valea Nandrului). La preuve de la continuité de l'habitat dans cet espace est donnée par les vestiges hunains datant du Néolitique (Nandru), par les découvertes archéologiques datant de l'époque du fer et, ensuite, de l'occupation romane. Les exploitations minières de Teliuc et de Sarmizegetusa, pour l'armée dace et pour celle romane. Actuellement, l'Est des Montagne Poiana Ruscă ou le pays des Pădureni, représente une "île ethnographique” qui a conservé la culture populaire archaïque, très originale et différente en rappot avec celle des régions avoisinées, par: le port et le dyalecte, spécifiques aux régions emplacées sur les cimes; les cultures agricoles et les côtes terrassés; ce qui manque de cette région c'est l'art de la poterie. En contraste avec la région rurale, la région industrielle de Hunedoara s'est développée dans l'espace de dépresssion, aux confins du massif, industrie basée sur l'extraction et la transformation des minérais de fer. À la richesse naturelle et historique de la région se rattachent les monuments architecturaux: le château des Corvineşti, les églises, les maisons paysannes, les localités et la zone ethnographique des Pădureni, le lac d'accumulation Cinciş-Cerna, les plus anciens hauts - fournaux de l'Europe pour la production de la fonte, à Topliţa (de 1787) et Govăjdia (de 1806).

3. Eléments particuliers de la dynamique de l'environnemet dans le bassin hydrographique Cerna, les Montagnes Poiana Ruscă.

L'état de déséquilibre total du système est le résultat de la dégradation des éléments composants de l'environnement, dégradation provoquée par la pollution, mais aussi par le transfert de substance et d'énergie à l'intérieur ou à l'extérieur du système. Les matériaux excavés et façonés dans le cadre de l'industrie minière et sydérurgique donnent naissance à un relief anthropique positif et négatif, avec une morphodynamique accentuée. Même si les activités des unités industrielles emplacées dans le secteur moyen et mineur du bassin hydrographique se sont beaucoup réduites, la dégradation prononcée des composantes primaires

67

www.mcdr.ro / www.cimec.ro de l'environemment (l'eau, l'air, le sous-sol, le sol) ne permet pas l'autoréglage du système, par voie naturelle. De plus, la perturbation du fluxe économique comme suite à la baisse des entrées dans le système (matière première) mène à la baisse quantitative et qualitative des sorties du système (produits finis), tout en affectant la composante humaine.

Le degré d'affectation des composantes du système en conformité avec sa fonctionnalité. Représentation pour l'environnement de la dépression et pour l'environnement des hautes collines

ENTRÉES PRODUCTION SORTIES

Ressources naturelles Le Bassin hydrogra- Substances utiles = matières premières. phique Cerna Produits finis Exploitation Préparation Conséquences Conséquences Conséquences * Carrières *Polluants gazeux et * Stéril, déchets ménagers = solides haldes -dépressions anthropiques -la transformation de la -dépôts hydrogéologiques de -bassins de collectage des eaux composition de l'air, de terrase pluviales et d'infiltration - la l'eau, du sol -processus géomorfologiques destruction de l'équilibre du - le métabolisme des d'actualité, risquants pour les versant plantes constructions et pour la - la transformation de l'albédo - la réduction de la population -le maque de la végétation, du biodiversité -agit sur le paysage sol - la qualité de l'habitat * Dépeuplement en général et -la découverte du sol humain sourtout dans la région rurale -la transformation de l'albédo - le changement de l'état montagneuse provoqué par: * Galeries de santé des habitants - le progrès naturel négatif -vides souterrains - la baisse de la (haut degré de la mortalité) -infiltrations et accumulations productivité, due à la - l'accroissement des migra- d'eaux dans le souterrain baisse de la capacité des tions négatives (émigrations -accumulation de gaz ouvrier de se concentrer et internes et internationales, -tassement, éboulements d'être cointéreddés déplacements temporaires (microrelief spécifique) pour le travail) Travaux hydrotechniques -processus morfojénétiques spé- cifiques -transformations bio - pedo - génétiques -developpement du turisme *Le progrès naturel négatif -natalité diminue -assistance médicale déficitaire

68

www.mcdr.ro / www.cimec.ro 4. Types d'environnements géographiques (paysages)

On a utilisé deux façons pour classifier les types d'environnements géographiques: en fonction des éléments naturels de l'environnement et en fonction de la composante humaine et du résultat de son activité. Dans les deux cas, on a visé les effets de l'interaction homme-environnement. On va présenter, syntétiquement, les types de paysages d'après leur expansion dans l'espace, d'après l'état des éléments composants et d'après la dynamique du système (tab1, tab2).

Tab. 1 - Hiérarchisation qualitative des environnements dans le bassin hydrographique Cerna, les Montagnes Poiana Ruscă, sur les résultats de l'analyse des composantes naturelles du paysage Types Limites Type du Composantes Evolution d'environnement deséquili- affectées bre Montagneux -le sommet - partial - la roche - régénération des Rusca, - le sol composantes naturelles l'alignement - la composante - dépeuplement Hăşdău- humaine Ghelar- Govăjdia

De haute côte - entre - relatif, - toutes les - la modification de la Hăşdău- variable composantes du surface topographique avec Ghelar- dans paysage des environs l'affectation des Govăjdia et l'espace et du lac d'accumulation composantes naturelles Cinciş- dans le Cinciş-Cerna et des primaires et dérivées Teliuc- temps comunes Ghelar, - l'affaiblissement de la Nandru Teliuc, Zlaşti, résistance des éléments Govăjdia, Nandru, Boz d'infrastructure (galeries de - la composante mine, voies de communi- humaine cation, réseau d'eau potable et ménagère, réseau électrique etc.), constructions civiles - la baisse du niveau de vie, due à la décadence industrielle locale - le développement de l'agriculture, en affectant les surfaces couvertes de forêts

De dépression -en aval de - accentué - toutes les - l'état de collapsus intramontagneuse Cinciş- composantes naturelles avec vallée et Teliuc- - la composante terrasses bien Nandru humaine précisées jusqu'à la confluence avec le Mureş

69

www.mcdr.ro / www.cimec.ro Tab. 2 - Hiérarchisation qualitative des environnements dans le bassin hydrographique Cerna, les Montagnes Poiana Ruscă, sur les résultats de l'analyse des composantes anthropiques du paysage

Type de paysage Fonction Caractéristiques actuelles Evolution Rural -mixte, -dégradation des terrains -la degradation des terrains, due à la réduction agricole et affectés par le exploitations des surfaces forrestièrés et la politique d'une industrielle minières et par la pratique agriculture rudimentaire sur des surfaces (industrie d'une agriculture rudimentaire facilement périssables extractive et -dépeuplement -le dépeuplement de la région montagneuse légère) haute -le développement d'intérêt pour la production agrozootechnique, artiyanale et pour le touris- me locale ayont pour base l'exploitation des ressources naturelles végétales, des traditions et des coutumes locaux -l'agrandissement de la mobilité de la population du milieu rural vers le milieu urbain et inversement -le developpement d'un habitat dispersé par la croissance en nombre des résidences secon- daires et des moyens touristiques dans le sec- teur de la colline haute et de la montagne basse.

Urbain -Spécialisée -la transformation de -la baisse de la dynamique de l'écosystème industrielle composantes naturelles de urbain due à la baisse de la production et du (sydérurgi- l'environnement en compo- niveau de vie que et légère) santes artificielles -dépeuplement par l'augmentation des -typiques aux villes ouvrières migrations internes et internationnales, socialistes: temporaires et définitives -quartiers résidentiels, sans - la baisse de la qualité de vie des membres, espaces vertes, déficitaires concrétisée par l'augmentation du stress, par la au point de vue du repos et dégration de l'état de santé colective, par des loisirs l'augmentation du chômage, de la délinquance -continuité entre la région etc. industrielle et celle résiden- tielle, sans barrières de vé- gétation, au rôle de philtre naturel

5. Solutions pour une valorisation durable de l'environnement dans le bassin hydrogrphique Cerna, les Montagnes Poiana Ruscă

Les solutions ponctuées ci-dessous sont basées sur la réorganisation du système et sur la modification de sa fonctionnalité, en poursuivant l'integration harmonieuse de la composante humaine dans son milieu de vie.

70

www.mcdr.ro / www.cimec.ro La réactualisation des activités traditionnelles, la valorisation préférentielle des produits obtenus par des techniques agricoles non - polluantes et manufacturières traditionnelles. Le reboisement des terrains inclinés et des terrains dégradés, l'aménagenet des forêts - parcs. L'aménagement des maisons - musées spécifiques à cette région. L'aménagement des points d'information locaux La réalisation d'un itinéraire touristique complet, qui puisse comprendre les objectifs majeurs de la région, pour une utilisation durable dans le cadre du tourisme organisé. L' aménagement des itinéraires pour le tourisme pédestre, tenant compte des difficultés imposées par le parallélisme des vallées et des cimes, en vue de la réalisation des voies de communication orientées du Nord vers le Sud, sur le versant Est du massif. La diversité des moyens touristiques et d'agrément. La réalisation d'emplois nouveaux au caractére temporaire ou permanent.

Bibliographie

GRUESCU I. S., GRUMĂZESCU CORNELIA - Judeţul Hunedoara, Col. "Judeţele patriei", Edit. Academiei R.S.R., Bucureşti, 1970

ILINCA N. - Masivul Poiana Ruscă (potenţial fizico-geografic), Col. "Carpaţii României", Edit. Vinea, Buc., 1994

KRAUTNER H. G. - Poiana Ruscă, Col. "Munţii noştrii", Edit. Sport-Turism, Buc. 1984

MÎRZA I., STOICAN P., ÖTEF Z., VALEA M., VULCU B. - Hunedoara, Monografie, Col. "Judeţele patriei", Edit. Sport-Turism, Buc. 1980

Mihaela Sopincean Liceul „Iancu de Hunedoara” Rue Victoriei 12, Hunedoara, Roumanie

71

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 73 – 78

MACROMYCETES FROM THE NATURAL RESERVE OF BEJAN FOREST (HUNEDOARA COUNTY, ROMANIA)

CRISTINA CIRCO

Rezumat Macromicete din rezervaţia naturală Pădurea Bejan (judeţul Hunedoara, România)

Lucrarea reprezintă o contribuţie la cunoaşterea speciilor de macromicete din Pădurea Bejan - Deva (judeţul Hunedoara), necercetată până în prezent din punct de vedere micologic. Pe baza colectărilor şi observaţiilor personale efectuate în perioada iulie- septembrie 1997-1999, în cadrul rezervaţiei naturale Pădurea Bejan - Deva au fost identificate 25 de specii de macromicete aparţinând la 9 familii. Majoritatea speciilor sunt comune pentru Micobionta României. Frecvente în zona cercetată sunt: Russula emetica, Russula lepida şi Russula virescens.

INTRODUCTION

Mushrooms are fungi that grow and fruit almost everywhere. The importance of mushrooms in biocoenosis is obvious. Many of our forests could not exist without the mushrooms that grow among their roots; this association being called symbiosis. Fungus partners in the relationship are called mycorrhizae. Equally important is the role of mushrooms in nutrient recycling, because they make food available for many organisms. By decaying wood, forest trash, and divers kinds of plant and animal wastes, fungi release minerals and nutrient for use of a great variety of other organisms

(McKNIGHT & VERA McKNIGHT, 1987). The hills nearby the town of Deva have never been studied from the macromycology point of view. This is the first systematic analyze, trying to establish the composition of mushrooms synusia. The Bejan Forest, spreading on 103 ha, wich 42 ha are protected area, is located in the neighborhood of the town of Deva. It is known since 19th century as a unique biotope for presence of numerous oak-trees and their hybrids (STĂNESCU, ŞOFLETEA & STANCIU, 1997).

73

www.mcdr.ro / www.cimec.ro The tree oak species that grow in the Bejan Forest are: Quercus petraea, Quercus dalechampii, Quercus polycarpa, Quercus robur, Quercus frainetto, Quercus cerris, Quercus pubescens, Quercus virgilliana. An interesting phenomena of natural hybridization it is happening between these species. The most important natural hybrids are: x Quercus tabajdiana, x Q. tufae, x Q. dacica, x Q. haynaldiana, x Q. kerneri, x Q. budensis, x Q. rosacea, x. Q pseudodalechampii. Other tree species from the Bejan Forest are cited: Carpinus betulus, Tilia cordata, Fraxinus ornus, Acer campestre, Pinus nigra, Pinus sylvestris, Larix decidua. Subarboretum consists on: Crataegus monogyna, Ligustrum vulgare, Euonymus verrucosus, Rosa gallica, Viburnum lantana, Prunus spinosa (SCHREIBER, 1970).

The geological substratum consists on metamorphic rocks, especially andesites (IANOVICI et al., 1976). These rocks lead to the apparition of forest brown soils. The clime is temperate-continental, with warm summers and moderate humidity. The winters are not very cold. The annual average temperature is 9-100 C. The annual average of precipitations is 683 mm (SZÁSZ & TUDORICĂ, 1972).

MATERIAL AND METHODS

Mycological material has been collected in the period May - October of the years 1997- 1999. For identifying the macromycetes species collected, it was used the scientific nomenclature and the classification proposed by ELIADE EUGENIA & TOMA, 1977, SĂLĂGEANU &

ANIŞOARA SĂLĂGEANU, 1985, BONTEA VERA 1986 and MCKNIGHT & VERA MCKNIGHT, 1987. Drying and then injecting them with Sodium silicate has preserved the material collected in the field.

RESULTS AND DISCUSSION

25 species belonging to 9 families of Macromycetes were identified in the Bejan Forest Reserve. The systematic list and some data about the ecological exigencies and phenological aspects are given. All the species collected are common for the Romanian Mycobionta. The most frequent species are: Russula emetica, Russula lepida and Russula virescens. The seasonal dynamics of the Macromyceta species exhibits a more intense activity in may and july-september.

74

www.mcdr.ro / www.cimec.ro The systematic list of the Macromyceta species identified in the Bejan Forest-Deva ASCOMYCETES Ord. Xylariales Fam. Xylariaceae Xylaria polymorpha (Scop.) Grev. Epx; I-XII It grows single or clumped, on buried wood, on the border of the forest.

BASIDIOMYCETES Ord. Aphyllophorales Fam. Clavariaceae Ramaria crispula (Fr.) Quel. Epx.; V-XII Found on soil, in the forest. Ramaria flava (Schff. ex Fr.) Gs; VII-X Found in small groups, on soil, in the forest. Ramaria aurea (Schff. ex Fr.) Quel. Gs; VIII-X Found on soil in the forest. Ganoderma lucidum (Leyss ex Fr.) Karst. Ex-Epx; I-XII Found on roots of Quercus robur

Ord. Agaricales Fam. Tricholomataceae Marasmius rotula (Fr. ex Scop.) Fr. Epx-Gs; V-X It clustered on decaying wood of Quercus sp. Mucidula radicata (Rehl. ex Fr.) Bours. Gp; VI-X Found on soil, among dead leaves, with stalk deeply rooted in soil. Fam. Amanitaceae Amanita caesarea (Scop. ex Fr.) Pers. ex Schw. Gm; Summer to early autumn. It grows solitary or in small clumps, often in fairy rings, on soil.

75

www.mcdr.ro / www.cimec.ro Amanita pantherina (DC ex Fr.) Secr. Gm; VII-X Found in small groups on soil. Fam. Cortinariaceae Cortinarius elatior Fr. Gm; IX-XI; It grows on soil in the forest. Fam. Boletaceae Boletus purpureus Fr. Gm; VII-IX It grows solitary to scattered on soil, in the forest. Boletus impolitus Fr. Gm; VII-X Found in the grass nearby the forest. Boletus aereus Bull. ex Fr. Gm; VII-X It grows solitary, at the border of the forest, in grassland. Fam. Russulaceae Lactarius piperatus (L. ex Fr.) S.F. Gray Gm; VII-XI Found on the lawn, nearby the forest. Lactarius vellereus (Fr.) Fr. Gm; VIII-XI On ground, in wood, grouped to scattered. Russula atropurpurea (Krbh.) Britz. Gm; VI-X On ground, in forest. Russula emetica Fr. Gm; VII-X Found on moisture soil, at the border of the forest. Russula lepida Fr. Gm; VII-X Found on soil, solitary to grouped; spreading through out the wood. Russula virescens (Schff. ex Zant) Fr. Gm; VII-X Grows solitary to grouped, among dead leaves, in the forest.

76

www.mcdr.ro / www.cimec.ro Russula vesca Fr. Gm; VII-X On ground, in forest.

Ord. Gasteromycetales Fam. Lycoperdaceae Lycoperdon perlatum Pers. Gs; VI-XI Grows solitary to densely clustered, on soil or humus in forest, in open areas, along roads. Lycoperdon mammaefoeme Pers. Gs; VIII-X On soil, in wood. Fam. Nidulariaceae Cyathus striatus (Huds. ex Pers.) Epx-Gs; VIII-XI Found on dead wood and other vegetable debris.

Abbreviations: Epx = mycetoepixilophyta; Ex = mycetoendoxilophyta; Gm = mycetogeophyta mycorrhiza; Gp = mycetogeophyta parasitica; Gs = mycetogeophyta saprophytica

CONCLUSIONS For the first time, a systematic list of Macromyceta species identified in the Natural Reserve Bejan Forest of Deva is present. This is a preliminary study concerning the Macromyceta species of this area. The following studies will point out the diversity of the Mycobionta in this protected area.

REFERENCES

BEREŞ MARTA (1995); Contribuţii la cunoaşterea macromicetelor din rezervaţia biosferei “Pietrosul Rodnei”.- Naturalia, St.Cerc., Piteşti, 1: 55-62.

BIELLI E. (1999): Cunoaşterea, recunoaşterea şi căutarea celor mai cunoscute specii de ciuperci.- Ghid complet All. Edit. All Educational, Bucureşti. 320 p.

BONTEA VERA (1986): Ciuperci parazite şi saprofite din România.- Edit. Acad. Române, Bucureşti.

77

www.mcdr.ro / www.cimec.ro ELIADE EUGENIA & M. TOMA (1977): Ciuperci. Mic atlas.- Edit. Didactică şi Pedagogică Bucureşti.

IANOVICI V., BORCOŞ M., BLEAHU M., PATRULIUS D., LUPU M., DIMITRESCU R. & H. SAVU

(1976): Geologia Munţilor Apuseni.- Edit. Acad. Române, Bucureşti.

McKNIGHT KENT H. & VERA B. McKNIGHT (1987): A field guide to Mushrooms- Houghton Mifflin Company, Boston, New York.

POP ADRIANA & F. LÖRINCZI (1992): Structura comunităţilor de ciuperci (Mycophita).- In: Parcul Naţional Retezat. Studii ecologice. Edit. West-Side, Braşov, 148-165.

SĂLĂGEANU G. & ANIŞOARA SĂLĂGEANU (1985): Determinator pentru recunoaşterea ciupercilor comestibile, necomestibile şi otrăvitoare din România.- Edit. Ceres, Bucureşti.

SCHREIBER ST. (1970): Notă asupra quercineelor din Pădurea Bejan.- Sargetia, Acta Mus. Dev., Ser. Sci.Nat., Deva, 8:303-305.

STĂNESCU V., ŞOFLETEA N. & A. STANCIU (1997): Oak tree hybrids in the Bejan Forest Deva, Reactualisation and genetic prospections.- Sargetia, Acta Mus. Dev., Ser. Sci.Nat., Deva, 17: 29-37.

SZÁSZ E. & A. TUDORICĂ (1972): Cercetări micofloristice în împrejurimile oraşului Deva.- Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 9: 9-23.

Cristina Circo The Museum of Dacian and Roman Civilisation 39, 1 Decembrie Street, Deva, Romania

78

www.mcdr.ro / www.cimec.ro

Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 79 - 85

DATA CONCERNING THE MACROMYCETES FROM THE HILLOCKY REGION OF VEŢEL LOCALITY (HUNEDOARA COUNTY, ROMANIA)

CRISTINA CIRCO

Rezumat Date privind macromicetele din regiunea deluroasă a localităţii Veţel (judeţul Hunedoara, România)

Lucrarea de faţă, reprezintă o contribuţie la cunoaşterea macromicetelor din zona localităţii Veţel din judeţul Hunedoara, zonă necercetată din punct de vedere micologic, până acum. Lista sistematică alcatuită pe baza colectărilor făcute în septembrie- noiembrie, 1996, cuprinde 36 de specii, aparţinând la 9 familii, comune pentru Micobionta României, dintre care Clavariadelphus pistillaris este citată în puţine staţiuni din ţară.

INTRODUCTION

Veţel is a village located in the Mureş River Valley, at 12 km from Deva. Geographical territory is placed on the high -level terrace (100 -110 m), on the hills that make the northeastern ramifications of Poiana Ruscă Mountains. The climate in this area is temperate-continental, with warm summers, moderate humidity and not very cold winters. The annual average temperature is among 10° C.

The annual average precipitation is 683 mm (SZASZ & TUDORICĂ). Veţel village territory is integrated in the level of deciduous forests. The following associations constitute the fitocoenosys: Lathyro-Hallersteinii-Carpinetum Coldea 1975 and Querco petraea-Fagetum Răsmeriţă 1974. Dominant species are Quercus petraea, Carpinus betulus and Fagus sylvatica. In the grassland Cardamine bulbiflora, Helleborus purpurascens, Festuca drymeia, 79

www.mcdr.ro / www.cimec.ro are the species with high frequency. On the secondary hillocks, the lawn includes Festuca rupicola, Agrostis capillaris, and Festuca rubra. Shrub layer contains species as Crataegus monogyna, Ligustrum vulgare, Rosa canina, Cornus sanguinea. Cenosys have developed on brown luvic soils and pseudogleic soils on terraces.

MATERIAL AND METHODS

We collected biological material in September-November 1996, watching the autumnal aspect of Micobionta in the area. Based on this material we elaborated the systematic list of the species found and identified. For identifying the material collected, we used scientific nomenclature and classification proposed by ELIADE EUGENIA & TOMA 1977; SĂLĂGEANU & ANIŞOARA SĂLĂGEANU

1985; VERA BONTEA 1986.

RESULTS AND DISCUSSION

There have been collected 155 mushroom specimens from 36 species. All the species we have collected are common for the Romanian Micobionta, but Clavariadelphus pistillaris is cited only in a few places in our country (BEREŞ & KALMAN, 1980). Drying and injecting with sodium silicate has preserved mushrooms collected in the field. The systematic list of species collected in the hillock area around Veţel village and some data about habitat and time of collecting are given:

BASIDIOMYCETES Ord. Aphyllophorales Fam. Clavariaceae Clavariadelphus pistillaris Fr. Gs; VIII-XI. Found in grassland, at the border of the forest. 17 X 1996. Pterula subulata Fr. Gs; VIII-X. Found on the soil, among dead leaves, in forest. 5 X 1996.

80

www.mcdr.ro / www.cimec.ro Fam. Polyporaceae Coriolus versicolor (L.: Fr.) Quel. EPx; I-XII. Collected from drying branches in the wood. 17 X 1996. Coriolus pubescens (Schumm.: Fr.) Quel. Ex-EPx; I-XII. Collected from a wood fence, near the forest. 2 XI 1996. Fomes fomentarius (L.: Fr.) Gill. Ex; I-XII. On bouth living and dead wood of Fagus sylvatica. 20 X 1996. Laetiporus sulphureus (Bull.: Fr.) Bond. Ex; IV-X. Found on living wood of Quercus robur 20 X 1996. Lenzites betulina (L.: Fr.) Fr. EPx; IX-XII. Found on drying branches. 17 X 1996.

Ord. Agaricales Fam. Pleurotaceae Pleurotus ostreatus (Jacq : Fr.) Kummer, var. pulmonarius (Fr.) Ex-EPx; IX-XII. Clustered on decaying roots of Fagus sylvatica. 2 XI 1996. Fam. Tricholomataceae Marasmius oreades (Bolt.: Fr.) Fr. Gp; V-XI. Found in grassland. 28 IX 1996 Laccaria amethystina (Bolt.: Hooker) Murr. Gs; V-XI. Found in the grass, at the border of the forest. 28 XI 1996 Pseudoclitocybe cyathiformis (Bolt : Hooker) Murr. Gs-EPx: V-XI. Solitary or in groups or small clumps, sometime in fairy rings. 2 VI 1996

81

www.mcdr.ro / www.cimec.ro Armillaria mellea (Vahl. in Fl. Dan:Fr.) Karst. Ex-EPx; VIII-XII. Densely clustered or in groups; around bases of leaving or dead trees.2 VI 1996. Lepista nuda (Bull.: Fr.) Cook. Gs; IX-XI. On the soil, in the forest. 28 IX 1996.

Clitopilus prunulus (Scop.: Fr.) Kumm. Gs; VI-X. Grows on hillock, in the grass, with high frequency, sometime in fairy rings. 28 IX 1996. Mucidula radicata (Rehl.:Fr.) Bours. Gp; VI-X. Found in forest, among dead leaves, with the stalk deep rooted in the soil. 5 V 1996. Fam. Amanitaceae Amanita pantherina (D. C.: Fr.) Secr. Gm; VII-X. On soil, in forest. 5 X 1996. Amanita citrina (Schff.) S. F. Gray Gm; VIII-XI. Solitary or clustered. Common and often abundant in forests. 5 X 1996. Fam. Agaricaceae Agaricus campestris (L.) Fr. Gs; V-X. Solitary or groped, often in fairy rings; on grassy soil in lawn. 8 IX 1996. Agaricus arvensis Schff.: Fr. Gs; V-X. Solitary, in open wood and grassy or shrubby places. 5 X 1996. Leucoagaricus pudicus (Bull.) Mos. Gs; IX-XI. Frequent on lawns, on grassy soil. 5 X 1996

82

www.mcdr.ro / www.cimec.ro Macrolepiota procera (Scop.: Fr.) Sing. Gs; VII-X. Single or scattered; in lawns, pastures, or grassy areas in open woods. 28 IX 1996. Macrolepiota rachodes (Vitt.) Sing. Gs; VII-X. On soil in grassy places and open woods. 28 IX 1996. Lepiota cristata (A. et S.: Fr.) Kumm. Gs; VII-X On the meadow, in grassland. 28 IX 1996. Fam. Boletaceae Boletus purpureus Fr. Gm; VII-IX. On soil, in mossy places, in forest. 28 IX 1996. Boletus aereus Bull.: Fr. Gm; VII-X. In the grass, at the border of the forest. 28 IX 1996. Boletus reticulatus Schff.: Boud. Gm; V- IX. At the border of the forest, in grassland. 28 IX 1996. Fam. Russulaceae Lactarius vellereus (Fr.) Fr. Gm; VIII- XI. On soil , in forest. 17 X 1996. Lactarius piperatus (L.: Fr.) S. F. Gray Gm; VII- XI Many specimens, at the border of the forest. 28 IX 1996. Russula alutacea (Pers.: Fr.) em. Meltz. et Zv. Gm; VI-IX. In forest, on ground. 28 IX 1996. Russula cyanoxanta (Schff.: Schw.) Fr. Gm; VII-X. 83

www.mcdr.ro / www.cimec.ro In grassland, nearby the forest. 17 X 1996. Russula emetica Fr. Gm; VII-X. Scattered to grouped, on soil and moss beds. 17 X 1996. Russula nigricans (Bull.) Fr. Gm; VII-XI. On soil in forest, among dead leafes. 17 X 1996. Russula lepida Fr. Gm; VII-X. Found in forest, on soil. 5 X 1996. Rusula vesca Fr. Gm; VII-X. Among dead leafes, in wood. 2 XI 1996. Russula virescens (Schff.: Zant.) Fr. Gm; VII-IX. On soil, in forest.

Ord. Gasteromycetales Fam. Lycoperdaceae Lycoperdon perlatum Pers.: Pers. Gs; VI-XI. Common on sandy soil. 28 IX 1996. Abbreviations: Epx = mycetoepixilophyta; Ex = mycetoendoxilophyta; Gm = mycetogeophyta mycorriza; Gp = mycetogeophyta parasitica; Gs = mycetogeophyta saprophytica

REFERENCES

BEREŞ MARTA, KALMAN L. (1980): Contribuţii la cunoaşterea macromicetelor din Depresiunea Maramureşului şi împrejurimi- Marmaţia, Ser. Şt. Nat., Baia-Mare, 5-6:120-137.

BIELLI E. (1999): Ciuperci. Cunoaşterea, recunoaşterea şi căutarea celor mai cunoscute specii de ciuperci.- Ghid complet All. Ed. All Educational, Bucureşti, 320 p.

BONTEA VERA (1986): Ciuperci parazite şi saprofite din România, Ed. Acad., Bucureşti. 84

www.mcdr.ro / www.cimec.ro 469 p.

DONIŢĂ N., IVAN DOINA, COLDEA GH., SANDA V., POPESCU A., CHIFU TH., PAUCĂ-

COMĂNESCU MIHAELA, MITITELU D & N. BOŞCAIU (1992): Vegetaţia României. - Ed. Tehnică Agricolă, Bucureşti, 407 p.

ELIADE EUGENIA & M. TOMA (1977): Ciuperci. Mic atlas.- Ed. Didactică şi Pedagogică., Bucureşti, 358 p.

MAUBLANC A. (1926): Les Champignons de France, Tom I, Ed. Paul Lechévalier, Paris, 116 p.

MCKNIGHT K., H. & Vera B. MCKNIGHT (1987): A Field Guide to mushrooms. The Peterson field guide series; 34, Boston, New York, 429 p.

OANCEA D., VELCEA VALERIA, CALOIANU N., DRAGOMIRESCU S., DRAGU GH., MIHAI

ELENA, NICULESCU GH., SENCU V. & I. VELCEA (1987): Geografia României. Carpaţii Româneşti şi Depresiunea Transilvaniei., Ed. Acad. Române, Vol. III: 426-430.

SĂLĂGEANU GH. & ANIŞOARA SĂLĂGEANU (1985): Determinator pentru recunoaşterea ciupercilor comestibile, necomestibile şi otrăvitoare din România. - Ed. Ceres, Bucureşti.

SZASZ A & A. TUDORICĂ (1972): Cercetări micofloristice în împrejurimile Devei.- Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 9: 9-22.

Cristina Circo The Museum of Dacian and Roman Civilisation 39, 1 Decembrie Street Deva (Romania)

85

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 87 - 132

LES PHYTOCOENOSES ARBORESCENTES DES GORGES CALCAREUSES DE MONTS METALLIFÈRES (LE DÉPARTEMENT DE HUNEDOARA, ROUMANIE)

MARCELA BALAZS

Rezumat Fitocenoze arborescente ale cheilor calcaroase din Munţii Metaliferi (judeţul Hunedoara, România)

În acest articol se analizeazä 6 asociaţii vegetale cu o subasociaţie, grupate în 5 alianţe, 3 ordine şi 2 clase. Asociaţiile sunt analizate şi caracterizate din punct de vedere ecologic, corologic şi sub aspectul compoziţiei floristice. Releveele au fost grupate în tabele fitocenologice.

Pour l’étude de la végétation de ce territoire on a utilisé comme unité taxonomique essentielle l’association végétale définie par L’école phytocoenologique central–européene. Les rélevements, les appreciations qualitatives et quantitatives ont étè effectuées aprés les recommandations des auteurs Al. Borza et N. Boşcaiu (1965). Les associations ont étè identifiées avec l’aide des espèces de reconnaissance, des espèces dominantes et differentielles. Pour la dénomination des associations ont étè utilisées les indications de sintaxonomie des Notions fondamentales de phytocoenologie (Jean-Marie Géhu, Salvador Rivas-Martinez, 1981) et le Code de nomenclature phytosociologique (Barkman, Moravec, Rauschert, 1976). Pour la classification des unités coenotiques (coenologiques) ont été utilisées les recommandations sistématiques élaborées par le Centre de phytosociologie Bailleul (J. M. Géhu, 1992) et Camerino (F. Pedrotti, 1994). Dans cet article on analise 6 associations végétales avec 1 sousassociation, groupeés en 5 alliances, 3 orders et 2 classes. Les associations sont analisées et characterisées du point de vue écologique, chorologique, sous l’aspect de la composition floristique. Les relèvements efectués ont étè groupés dans les tableaux phytocoenologiques. Les surfaces de preuve ont eu des extensions qui ont coincidés avec les aires minimes qui sont en rapport de conformité aux types de phytocoenoses etudiées, l’étendue étant differente, de 25 - 400 m2. Pour chaque relèvement, a étè notée l’abondance- dominance après l’échelle Braun-Blanquet, tout à coup avec l’enregistrement des taxons. Les tableaux synthétiques (synoptiques) des associations ont étè composées après la méthodologie preconisées de Braun–Blanquet et developpée par Ellenberg. Dans les tableaux on a étè indiqué le numéro du chaque relèvement, l’altitude, l’exposition, l’inclination, la surface analisée, le recouvrement de la végétation.

87 www.mcdr.ro / www.cimec.ro Les coenoses de Lathyo hallersteinii-Carpinetum Coldea 1975 occupent particulièrement les versants avec une exposition sudique, à l’altitude de 480-650 m (Tab.1). L’association a comme espèces codominantes Fagus sylvatica et Carpinus betulus et dans la strate arbustive les espèces Crataegus monogyna, Corylus avellana, Cornus mas, Rhamnus catharticus. Le groupement de hêtre et de charme exercite une influence sur la présence de quelques éléments caractéristiques pour un climat chaud, parmi lesquels on mentionne Fraxinus ornus, Tamus communis, Piptatherum virescens, Waldsteinia geoides, Vitis silvestris. L’analyse phytocoenotique des associations après les principaux indices écologiques (fig.1) releve la prédominance des espèces mésophytes (63,46%), xéromésophytes (25%), mésothermes (70,19%) et faible acide-neutrophyls (37,5%).

70

60

50

40 U

% T 30 R

20

10

0 1 2 3 4 5 0

Fig.1- Les indices écologiques

Les bioformes (fig.2) qui participement à l’édification des phytocoenoses appartienent aux hémicryptophytes (43,26 %), phanérophytes (27,88 %), géophytes (14,42 %) et therophytes (9,61%). L’indice altitudinal a la valeur de 21,27.

88 www.mcdr.ro / www.cimec.ro 50 43.26 45 40 35 30 27.88

% 25 20 14.42 15 8.61 10 2.88 5 1.92 0 MHG H G Th Ch

Fig.2. Les bioformes de l’association Parmi les éléments floristiques (fig. 3) on mentionne les espèces euroasiatiques (30,76 %), européennes (23,07 %), central-européennes (12,5 %), à coté de lesquels on rencontre des espèces méditerranéennes (7,69 %), carpato-balkaniques (3,84 %) et atlanto-méditerranéennes (3,84 %).

35 30.76 30

25 23.07

20 % 15 12.05

10 7.69 5.76 5 3.84 2.88 3.84 2.88

0 Eua E Ec Atl Md Md BD Carp B Circ P Md

Fig.3. Les géoéléments de l’association Dans le spectre caryologique participe des espèces diploïdes (50,95 %), polyploïdes (40,38 %) et pour 5 % des espèces nous n’avons pas des informations caryologiques. L’indice de diploïdie a la valeur de 1,26 .

Lathyro halersteinii – Carpinetum Coldea 1975 quercetosum cerris Coldea 1975 Dans les Gorges Crăciuneşti les forêts de hêtre avec de charme sont moins répandues comme les rouvraies. Elles se rencontrent surtout sur la selle d’entre Ghergheleu et Măgura Băiţei (La colline de Băiţa), et occupent le versants ouestiques et sudiques, à l’altitude de 570-580 m. Dans la partie supérieure, cette association, a comme des associations limitrophes les rouvraies et des prés de Festucetum valesiacae. Á la limite inférieure elle est voisine d’une vallée.

89 www.mcdr.ro / www.cimec.ro La strate arborescente est dominée par Fagus sylvatica et Carpinus betulus. Sporadiquement on rencontre Quercus petraea ssp. dalechampii et Quercus cerris. La hauteur des arbres est de 19–21 m et la consistence de 0,8. Le diamètre des arbres, à la hauteur de 1 m, différe entre 20 et 40 m. La strate arbustive est formée de Acer campestre, Cornus sanguinea, Crataegus monogyna, Corylus avellana, Pyrus pyraster ssp. achras, Populus tremula et Rosa canina. La strate herbacée est d’habitude moin developpée et couvre le sol dans une proportion reduite (5–7 %). (Tab. 2) Dans les strates arborescentes et arbustives de cette coenose dominent les phanérophytes (31,57 %) et dans la strate herbacée les hémicryptophytes (47,36 %) près de quelles on rencontre les géophytes (13,15 %) et chamaephytes (5,26 %). (fig. 4)

50 47.36 45 40 35 31.57 30

% 25 20 15 13.15 10 5.26 5 2.63 0 M H G H G Ch

Fig.4. Les bioformes de l’association

L’analise du spectre floristique (fig.5) releve la dominance des espèces européenes (36,84 %) et euroasiatiques (31,57 %). L’influence d’un microclimat plus chaud s’exercite aussi dans cette association par de nombreuses plantes d’origine sudique (15,70 %), parmi lesquelles on mentionne Quercus petraea, Quercus cerris, Aristolochia pallida et Fritillaria orientalis.

90 www.mcdr.ro / www.cimec.ro 40 36.84 35 31.57 30 25

% 20 15 13.15 10 7.81 5.26 5 2.63 2.63 0 Eua E Ec Md Carp B Carp Cm end

Fig.5. Les géoéléments de l’association

En ce qui concerne l’exigence pour l’humidité, les espèces mésophytes réalisent 68,42 % de l’association, elle etant suivies par les espèces xéromésophytes (23,68 %) et mésohygrophytes (7,89 %). Du point de vue des conditions de la temperature on releve la prédominance des espèces micro-mesothermes (73,68 %). Les autre espèces réalisent une proportion reduite, les microthermes (13,15 %), eurythermes (7,89 %) et moderé thermophyles (5,26 %). En ce qui concerne l’exigence pour la reaction du sol (pH), on mentionne la dominance des espèces acide-neutrophiles (34,21 %) et faible acide-neutrophiles (21,05 %). Les espéces acidophiles et neutrophiles réalisent chaqun d’entre elles 5,26 %. (fig. 6).

80 70 60

50 U

% 40 T 30 R 20 10 0 1 2 3 4 5 0

Fig.6. Les indices écologiques Aegopidium – Alnetum J.Karpati et Jurko 1961 Autrefois, les aunaies formaient des coenoses caillées, mais aujourd’hui elles se recontrent seulement comme des groupes isolées sur la vallée des ruisseaux des Gorges Ribicioara, Uibăreşti, Bulzeşti. Dans la strate herbacée on constate en plus des éléments caractéristiques pour la forêt de hêtre et de charme, des espèces ruderales et d’érossion (Tussilago farfara) qui réfléchissent, en

91 www.mcdr.ro / www.cimec.ro partie, l’influence anthropogène. Les coenoses de cette association sont repandues entre 500 –550 m altitude. (Tab. 3). Dans le spectre écologique (fig.7) on remarque une vaste participation des espèces mésophytes (48,52 %), mésohygrophytes (29,41 %) et xéromésophytes (13,23 %). En ce qui concerne l’exigence pour la temperature, les espèces sont micromésothermes (73,52 %). L’exigence pour la reaction du sol releve la prédominance des espèces faible acide-neutrophiles (33,82 %), acide- neutrophiles (29,41 %). Les espèces indiferentes forment 29,41 % du total des espèces.

80

70

60

50 U

% 40 T R 30

20

10

0 1 2 3 4 5 0

Fig. 7. Les indices écologiques

Les bioformes (fig.8) qui édifient cette association sont hémicryptophytes (54,41 %) suivies par les phanérophytes (23,52 %).

60 54,41 50 40

% 30 23,52 20 8,82 7,35 10 2,94 2,94 0 H Th MG Ch H G

Fig.8. Les bioformes de l’association La majorité de cettes espèces est representée par des éléments floristiques euroasiatiques (51,47 %) et européenes (23,52 %). (fig. 9). L’indice altitudinal a la valeur de 17,64 %.

92 www.mcdr.ro / www.cimec.ro 60 51.47 50

40

% 30 23.52 20 7.35 8.82 10 4.41 2.94 1.47 0 Eua E Ec Md Adv Circ Cm (bor)

Fig.9. Les géoéléments de l’association

L’indice de diploïdie qui exprime le raport d’entre les espèces diploïdes (44,11%) et polyploïdes (47,05%) a la valeur de 1,06.

Quercetum pubescentis–cerris Soó ap.Pop et Hodişan 1958 Les phytocoenoses de Quercus dalechampii avec Genista tinctoria occupent les versants estiques, sud-estiques, sudiques et nord–ouestiques de la colline de Ghergheleu et Măgura Băiţei, avec le sol brun plus ou moin podsolique developpé sur le substrat calcareux. La strate arborescente est dominée par Quercus dalechampii, succedée par Quercus cerris. Sporadiquement on rencontre Quercus petraea, Quercus frainetto, Fagus sylvatica, Carpinus betulus, Fraxinus ornus. La consistance de l’arboretum est de 0,7 et 0,8 et la hauteur des arbres varie entre 8 et 15 m. La strate des arbustes est formée par Acer campestre, Cerasus avium, Corylus avellana, Crataegus monogyna, Euonymus verrucosus, Ligustrum vulgare, Pyrus pyraster ssp.achras, Rhamnus catharticus, Sorbus aucuparia, Sorbus torminalis et Rosa canina. La densité des arbustes est de 20–30/ 400 m2. La strate herbacée couvre le sol en proportion de 20–40 %. Parmi les espèces herbacées on mentionne Genista tinctoria, Lathyrus niger, Lathyrus vernus, Trifolium medium, Symphytum tuberosum, Cardamine bulbifera, Asperula odorata, Melica nutans, Melica uniflora et Festuca heterophylla. Le caractère thermophil des phytocoenoses de Quercus dalechampii avec Genista tinctoria est relevé par les espèces balkaniques et méditerranéenes qui édifient l’association près de quelles végétent Quercus frainetto, Fraxinus ornus, Euonymus verrocusus et comme espèces herbacées Aristolochia pallida, Genista tinctoria, Lathyrus hallersteinii, Melampyrum bihariense et Verbascum glabratum. (Tab. 4). Les phanérophytes (25,45 %) sont prédominantes dans la strate arborescente et les hémicryptophytes (49,09 %) dans la strate herbacée. Les géophytes ont aussi un role important (10 %) pendant que les chamaephytes (4,63 %) et therophytes (9,09 %) sont moin representées (fig.10).

93 www.mcdr.ro / www.cimec.ro 60 49.09 50

40

% 30 25.45

20 10 9.09 10 4.63 2.72 0 MHG Th Ch H G

Fig.10. Les bioformes de l’association Le spectre floristique (fig.11) de l’association releve la prédominance des espèces euroasiatiques (39,09 %), européennes (28,18 %) pendant que les éléments sudiques réalisent 12,96%

45 39.09 40 35 28.18 30 25 % 20 11.81 15 9.08 10 3.63 4.54 5 0.9 1.81 0

E Ec Eua Md DB Atl Md Carp end Circ (bor)

Fig.11. Les géoéléments de l’association

En ce qui concerne l’exigence pour l’humidité, l’association est dominée par les espèces xéromésophytes (49,09 %) et mésophytes (43,63 %), pendant que les mésohygrophytes et xerophytes réalisent 2,72 % et 3,63 % du total des espèces. L’analyse des exigences pour la temperature releve la prédominance des espèces micro-mésothermes (66,36 %), secondées par les moderé-thermophiles (17,27 %) et les eurythermes (7,27 %). En ce qui concerne la réaction du sol, les espèces sont acide–neutrophile et réalisent 32,81 %, les espèces faible acide-neutrophile 35,45 %, les indiferentes 18,18 % et les neutrobasiphile 9,09 %. (fig.12). L’indice altitudinal a la valeur de 17,24 et l’indice de diploïdie a la valeur de 1,38.

94 www.mcdr.ro / www.cimec.ro 70 60 50 U 40 % T 30 20 R 10 0 1 2 3 4 5 0

Fig.12. Les indices écologiques

Corno – Fraxinetum orni Pop et Hodişan 1964 Fraxinus ornus est un relict tertiaire méditerranéen qui se developpe en Roumanie dans les zones calcarifères de Transsylvanie, Banat, Oltenie et Dobroudja. Sur les terrains calcarifères des Monts Apuseni, Fraxinus ornus végéte dans les forêts des rouvres et charmes (As. Querceto petraeae- Carpinetum), les forêts de rouvres (As. Genisto tinctoriae-Quercetum dalechampii), les forêts de hêtre et charme (As. Fageto-Carpinetum), les forêts de hêtre (As. Fagetum sylvaticae transsilvanicum) etc. En Banat, Fraxinus ornus se rencontre dans les forêts de hêtre avec Tilia argentea et des autres éléments thermophiles aussi comme dans l’association Acantho longifoliae-Quercetum pubescentis. En Oltenie et Dobroudja, Fraxinus ornus se développe dans l’association Quercetum policarpiae- Tilietum, Achilleo-Quercetum pubescentis et quelque fois s’associe avec Quercus dalechampii et Quercus pubescens. Des petites forêts de frêne fleuri (Fraxinus ornus) ont été identifiées sur les terrains calcarifères des Gorges Mada et des Gorges Ardeu, ou cette espèce se developpe près de Cornus sanguinea, Cornus mas, Tilia argentea, Crataegus monogyna etc. Les versants sudiques et ouestiques des collines Ogrăzii, Cioroiul, Gorgan sont couvertes par des forêts de frêne fleuri qui occupent une surface de 5 km à l’altitude de 450–640 m. Cettes forêts, par leur structure spécifique, sont différentes de toutes les autres forêts connues jusqu’à présent dans la literature de spécialité. Elles occupent presque en totalité les versants chaudes des collines, en etant interrompues, dans les lieus ombragés, par des petites forêts de Fageto-Carpinetum. Les cotés des collines occupées par Fraxinus ornus sont accidentées et parfois abruptes, avec une inclinaison de 30-800. Les region rocheuses d’une étendue variable sont sont partialcouvertes avec un couche mince de sol brun riche en humus. Les forêts de Fraxinus ornus sont moins accesibles à cause du terrain accidenté et d’un grand nombre d’arbustes. Dans les forêts recherchées, l’espèce Fraxinus ornus avait une hauteur qui variait entre 8 et 10 m, avec de nombreux rameaux qui forment une couronne éparpillée. Les strates arborescente et arbustive sont dominées par Fraxinus ornus, accompagné partout par Cornus sanguinea, dont les

95 www.mcdr.ro / www.cimec.ro exigences biologiques correspondent avec les conditions écologiques existents, en supportant aussi les lieus ombragés que la sécheresse. La strate herbacée couvre le sol dans une proportion qui varie entre 15 et 60 % en fonction du degrée de la luminosité des forêts. Dans les forêts rares, la strate herbacée est faible developpée à cause du developpement de la sécheresse et de la chaleur, surtout pendant l’été. Dans les forêts plus compactes, la strate herbacée est aussi bien développée. Dans la composition des forêts etudiées ont été identifiées 80 espèces d’entre quelles 49 espèces sont frequentes et 31 espèces sont plus rares. Parmi les espèces arborescentes, à coté de Fraxinus ornus et Cornus sanguinea on rencontre Crataegus monogyna, Rosa canina et Euonymus verrucosus. Parmi les espèces herbacées avec un important rol phytocenotique on mentionne Asplenium trichomanes, Asplenium scolopendrium, Polypodium vulgare, Fallopia convolvulus, Arabis turrita, Cardaminopsis arenosa, Sedum telephium ssp.maximum, Lathyrus venetus et Geranium robertianum. (Tab. 5). L’analyse du spectre floristique (fig.13) releve q’aucune élément floristique n’est pas prédominant, comme dans le cas de la végétation calcarifère herbacée. Les éléments euroasiatiques, européenes et mediteranéenes disputent leur primauté entre les valeurs de 36,25 % et 23,75 %. En général, les éléments d’origine sudique sont bien representés (13,25 %) en imprimant un prononcé caractère thermophile.

40 36.25 35 30 23.75 25

% 20 13.25 15 11.25 10 6.25 5 2.5 1.25 0 Eua E Ec Md Atl Md Alp B Circ (bor)

Fig.13. Les géoéléments de l’association

En ce qui concerne l’exigence pour l’humidité, l’association est dominée par les espèces mésophytes (47,5 %) et xéromésophytes (41,25 %), pendant que les mésohygrophytes et xerophytes réalisent 5 % et 2,5 % du total des espèces. L’analyse des exigences pour la temperature releve la prédominance des espèces micro-mésothermes (77,5 %), secondées par moderé-thermophiles (6,25 %) et eurythermes (6,25 %).

96 www.mcdr.ro / www.cimec.ro En ce qui concerne la réaction du sol, les espèces sont acide–neutrophile réalisent 31,25 %, les espèces faible acide–neutrophile 41,25 %,les indiférentes 21,25 % et neutro- basiphile 5 %. (fig.14)

90 80 70 60 U 50

% T 40 R 30 20 10 0 1 2 3 4 5 0

Fig.14. Les indices écologiques

L’indice altitudinal a la valeur de 29,41 et l’indice de diploïdie, qui exprime le raport d’entre les espèces diploïdes (45%) et polyploïdes (46,25%), a la valeur de 0,97 . Les phanérophytes (28,75 %) sont prédominantes dans la strate arborescente et les hémicryptophytes (40 %) dans la strate herbacée. Les géophytes ont aussi un role important (11,25%) pendant que les chamaephytes (2,5 %) et therophytes (12,5 %) sont moin representées (fig.15).

45 40 40 35 28.75 30 25 % 20 15 11.25 12.5 10 5 5 2.5 0 MHG HG Th Ch

Fig.15. Les bioformes de l’association

Syringo – Fraxinetum orni Borza 1958 L’association Syringo - Fraxinetum orni Borza 1958 em Resmeriţă 1972 a été identifiée par Borza et Schrott dans la réserve naturelle de Beiuşniţa, par V. Roman, dans le sud du Plateau de Mehedinţi et par Elena Măgălie dans la zone Ponoare-Mehedinţi. Des populations de Syringa vulgaris

97 www.mcdr.ro / www.cimec.ro sont signalées aussi dans le secteur ouestique et nord–ouestique des Monts Apuseni par Pop et Hodişan. L’actuel areal reconsideré critique par Grebenscikov renferme aussi la region ouestique de la Roumanie. Dans la synthèse elaborée par Grebenscikov, en ce qui concerne la repandue et les coenoses constituées avec la présence de cette espèce, on mentionne aussi que les peuplements caillés sont rares, même dans les limites du climate optimal de son actuel areal. Dans le territoire recherché on trouve frequent des coenoses de Syringa vulgaris et Fraxinus ornus sur les regions rocheuses des versants situées en amont et en aval de la réserve naturelle “Podul de la Grohot“. Des buissons mieux compacts du point de vue coenotique, dans lesquels les deux espèces sont codominantes, ont été identifies sur la colline Bulbuci, Vârtop et à la base de la forêt Smogea. Le degré le plus complexe de l’épaississement des coenoses se réalise sur la colline Bulbuci, une zone calcarifère dont les versants se caractérisent par des masives blocs et des terrains pierreux de calcaire moin accesibles. Les espèces édificatrices, codominantes, forment ici des buissons compactes de taille courte, bien visibles pendant la fleuraison. Dans la strate dominante, plus haute, formée par Syringa vulgaris et Fraxinus ornus, rarement diseminée, on peut voir des exemplaires de Quercus petraea, Carpinus betulus et Sorbus torminalis. Une strate arbustive plus compacte et avec de nombreuses espèces se develope sous la strate dominante, en etant constituée par Corylus avellana, Cornus mas, Viburnum lantana, Euonymus verrucosus, Crataegus monogyna. La strate herbacée très riche en espèces, est peuplée avec des éléments sudiques–thermophiles Aristolochia pallida, Petrorhagia prolifera, Arabis turrita, Sedum hispanicum, Teucrium montanum, Cephalaria laevigata, Primula veris ssp. columnae. (Tab. 6) La persistance de cettes enclaves de Syringa vulgaris et Fraxinus ornus à la limite nordique de l’areal caractéristique nous attribuons aux particularités conservatives du substratum calcarifère et au climat submontagneux plus douce qui caractérise cette region. Les phanérophytes (21,32 %) sont prédominantes dans la strate arborescente et les hémicryptophytes (45,58 %) dans la strate herbacée. Les géophytes ont aussi un role important (10,29 %) pendant que les chamaephytes (5,88 %) et therophytes (16,91 %) sont moin representées (fig.16).

98 www.mcdr.ro / www.cimec.ro 50 45.58 45 40 35 30

% 25 21.32 20 16.91 15 10.29 10 5.88 5 0 HM Th G Ch

Fig.16. Les bioformes de l’association

Le spectre floristique (fig.17) de l’association releve la predominance des espèces euroasiatiques (40,44 %) et européennes (19,85 %) pendant que les éléments sudiques réalisent 15,43%.

45 40,44 40 35 30 25 19,85 % 20 15,43 15 9,55 7,35 10 4,41 5 0,73 0 Eua E Ec Md DB Atl Md Circ (bor)

Fig.17. Les géoéléments de l’association

En ce qui concerne l’exigence pour l’humidité, l’association est dominée par les espèces xéromésophytes (49,26 %) et mésophytes (25 %), pendant que les mésohygrophytes et xérophytes réalisent 3,67 % et 19,85 % du total des espèces. L’analyse des exigences pour la temperature releve la prédominance des espèces micro- mésothermes (60,29 %), secondées par moderé-thermophiles (21,32 %) et eurithermes (7,35 %). En ce qui concerne la réaction du sol, les espèces sont acide-neutrophile et réalisent 21,32 %, les espèces faible acide-neutrophile- 47,05 %, les indiferentes- 13,97 % et les neutrobasiphile -16,91 %. (fig.18). L’indice altitudinal a la valeur de 32,85. L’indice de diploïdie a la valeur de 1,15.

99 www.mcdr.ro / www.cimec.ro 70 60 50 U 40

% T 30 R 20 10 0 1 2 3 4 5 0

Fig.18. Les indices écologiques

Phyllitidi – Fagetum Vida (1959) 1963

Les coenoses developpées dans les régions calcarifère, connues par les habitants de la zone comme “păduri de surduc”, se rencontrent sur le substrat calcarifère des versants ombreux des Gorges Bulzeşti. Elles préferent les lieux avec une grande humidité et avec des litosoils rendziniques. Les coenoses sont mésophylles (89,47 %), micro-mésothermes (81,57 %), acide- neutrophilles (34,21 %) vers faible acide-neutrophile ( 44,73 %) (fig.19).

100 90 80 70 60 U

% 50 T 40 R 30 20 10 0 1 2 3 4 5 0

Fig.19. Les indices écologiques

Dans le spectre de bioformes, prédominantes sont les hémicriptophytes (47,36 %), suivies par les géophytes ( 26,31 %), phanérophytes ( 10,52 %) et thérophytes (2,63 %) (fig. 20).

100 www.mcdr.ro / www.cimec.ro 50 47.36 45 40 35 30 26.31

% 25 20 15 10.32 10.52 10 5 2.63 2.63 0 HG HG M Th Ch

Fig.20. Les bioformes de l’association Le spectre des géoéléments est representé par les éléments euroasiatiques (39,47 %), sur lesquelles se sont superposés, dans les diverses périodes phytohystoriques les éléments européennes (26,31 %), center-européennes ( 21,05%) et circumpolaires (7,89 %) (fig. 21).

45 39.47 40 35 30 26.31 25 21.05 % 20 15 7.89 10 5 2.63 2.63 0 Eua E Ec Atl Md Circ Cm (bor)

Fig.21. Les géoéléments de l’association Le substrat calcarifère thermophile determine un accentué caractère conservatif des coenoses evidencié par la proportion élévée des espèces diploïdes (65,8%) à l’égard des espèces polyploïdes (21,57 %), avec un indice de diploïdie de 2,08. L’indice altitudinal a la valeur de 5,26.

101 www.mcdr.ro / www.cimec.ro Tableau 1 No.releves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 L' altitude m 600 650 650 500 550 450 500 650 500 500 600 550 550 500 520 480 550 L' exposition S NV NE N N N NE E Ne N E E NE NE E N NV L' inclination 25 20 25 20 30 45 25 25 25 30 30 20 30 45 25 25 25 Cyt Le recouvrement 0,7 0,8 0,9 0,8 0,8 0,9 0,8 0,9 0,7 0,8 0,8 0,7 0,7 0,7 0,6 0,7 0,7 La sourface analisee m2 400 400 400 400 400 400 400 400 200 200 200 300 300 400 400 400 400 MM-M E D Fagus sylvatica 3 3 3.4 3.4 3 4 3.4 3 3 3.4 3 3 3 2.3 3 3.4 4 Carpinus MM-M E P + 1.2 + - 1 + 1.2 2 2 1.2 1 2 3 1.2 + + - betulus MM Carp B P Juglans regia – – – – + + – – – + + – – – – – + Sorbus MM E (Md) D – – – – + + – – – – – – – – – – + torminalis E D Prunus avium – – – – – – + + – + – + + – – + + M MM Md D Fraxinus ornus – – + – + – – – – – – – – + – – – MM M E D Acer campestre + + + – + + + – – + – + – + + + – Corylus M E D + – + – + + – – + + + + 1 + 1 1 – – – avellana Crataegus M E D + + – + – – + + + + + + 1 + + – – – monogyna Ligustrum M E (Md) D + – + – – – – – – – + – – + – – – vulgare Euonymus M E ... + – + – – – + – – + – + + + – – – verrucosus Viburnum M Md–Ec D + – – – – – + – – – – + + + – – – lantana N E P Rubus hirtus – – + + – – + – – – – – – + + + + N–E Atl–Md P Hedera helix – + + – + + – – – – + – + + – – – M B–Anat D Syringa vulgaris – – – – – + + – – – + – + – + – – H E D Melica uniflora – + – +.1 + – + + – – + + + + + – + Piptatherum H Md D – + – – + – – – – + – – – + – + – virescens H Eua P Poa nemoralis + – – + + + + – – – – – – + – – – 102

www.mcdr.ro / www.cimec.ro

Asarum H–G Eua P + + + – + + 1.2 + + + + + – + – + – europaeum Anemone G E P + + – + – – – + + + – + + + – + + nemorosa G E D Hepatica nobilis + + + – + + + – – + + – + + + – – Aristolichia H Md ... – + – – + – + – – + – + – + + – – pallida Euphorbia Ch E (Md) D – – – – – – – + + + – + – – – – – amygdaloides Mercurialis H–G E D + – + – + – + – + – + + – +.1 + + – perennis Moehringia H Ec D + – + – + + – – – + – + – – – – + muscosa Stellaria H Ec D – – – + + – – – + – + – – + – – + nemorum Eua Cardamine Th D – – + – + + – – – – + – – +.1 + – – (Md) impatiens Cardamine G Ec P – – + + – + – +.1 – – – – – +.1 – + + bulbifera Geranium Th Cm P + – – + + – – – – + – – – 1 + – – robertianum Galium G Eua P + – – + + + 1.2 + + – + – + + – – – odoratum H Eua D Cruciata levipes – – – + – – – + – – – – – – – – – Sanicula H Atl– Md D – – – – – – + + + + – + – – – – – europaea Viola H Eua D – – – + – – – + + + + – + – + – – reichenbachiana Pulmonaria H E D + + – + + + + – + + + + – + – + – officinalis Symphytum H–G Carp–B DP – – – – + + + – – – – – – – – – – cordatum Lamiastrum H–Ch Ec D + – + + + + + + – + – + – + – + – galeobdolon 103

www.mcdr.ro / www.cimec.ro Glechoma H–Ch P–Md D – + – – – + + + + – – + – + + + – hirsuta Melittis H Ec–Md D – – – – – + – + + + + – + – + – + melissophyllum Stachys H Eua P – – – – – + + – – + – + + – – + – sylvatica Primula veris H Md … – – + – + + – – + – + – – – – – – ssp.columnae Eua H P Geum urbanum – + + – – – – – – + – + – + – + – (Md) Eua H D Mycelis muralis + – + – + + – – – + + – – + + + – (Md) Lathraea G Eua P – + – – + – – + – – – – – – – – – squamaria Erythronium G Eua P + – + – + – – – + + – + – – + – – dens canis Circ Asplenium ruta H P + – – – + – – – + + + – – + – + – (bor) – muraria Asplenium H Cm D 1 + + – – + – – – – – – – + – – – trichomanes Cystopteris H Cm P – – + – + – + – – + – + – + – + – fragilis Dryopteris H Cm P – – – + + + + + – – – – – + + + – filix–mas Circ Asplenium G D – – + – + + + – – – – – – 1 – – – (bor) scolopendrium Circ Polypodium G P – – – – + + + – + – + – – + – + – (bor) vulgare Acer MM Ec P – – – – + – – – – – – – – + + – – pseudoplatanus Tilia MM Ec D – – – – – + – – – – – – – – – – – platyphyllos MM–M E D Quercus petraea – – – + – – – – + – +.1 – + – – + –

M P–Md Cornus mas – – – – – + + – + + + + +.1 + – – – DP 104

www.mcdr.ro / www.cimec.ro Sambucus M Eua P – + – – – – – – – – – – + + + – – racemosa H E P Carex silvatica – – – + – – – – – – – – – + – – – H Eua D Lathyrus vernus – – + – – – – – + + + + – – – – – Isopyrum G Ec D + – – – + – – – – + – – – – – – – thalictroides Chelidonium H Eua D – – – – – + – – + – + – + + – + – majus HG Cm P Urtica dioica – – + – – – – – – + – + + + – – +

TH–H P Arabis hirsute – – – – + – – – – – – + – + – – – Circ(bor) Carp Cardamine G P – – – – – 4 – + – – – – – + – + + (end) glanduligera Lysimachia Ch E D + – – – – – – – – – – – – – – – – nummularia H Eua D Salvia glutinosa – – – – + – – – – – – – + + – + – Doronicum H Alp–B P – – – – + – – – – – – – – + – – – columnae Eua Platanthera G P – – – + – – – – – – – – + + – – – (Md) bifolia MM Eua P Ulmus minor – – – – – – – – – – + + – + – – – Fraxinus MM E D – – – – – – – – – – + + – + – – – excelsior Eua H (N) P Rubus caesius – – – – – – – – – – + + + – + – – (Md) Eua Brachypodium H D – – – – – – – – + – + – – + – – – (Md) silvaticum Hypericum H Eua – – – – – – – – – + – + – + – – – DP perforatum H Eua D Fragaria vesca – – – – – – – – + – + – + + + – + Gentiana H Ec P – – – – – – – – – + + – + – + – – asclepiadea H–Ch E P Ajuga reptans – – – – – – – – + + – + – – – – – Myosotis H Eua D – – – – – – – – – + + – + – + – + silvatica 105

www.mcdr.ro / www.cimec.ro

Melampyrum Th D–P … – – – – – – – – – + + + – – – – – bihariense Galium G Ec P – – – – – – – – + + – + – – – – – schultesii H Eua P Cruciata glabra – – – – – – – – – + + + – – – – – Eua Campanula H D – – – – – – – – – + + – + + – + – (Md) persicifolia Hieracium H Md–Ec P – – – – – – – – + – + – – – – – – racemosum Polygonatum G Eua–Md – – – – – – – – + + + – – + – + – DP odoratum Cornus M Ec D – – – – – – – – – + – – – + – – + sanguinea Euonymus M Ec P – – – – – – – – – – – – – + – – – europaeus Rhamnus M Eua P – – – – – – – – – – – – + + – – – catharticus N–E Ec (Md) D Clematis vitalba – – – – – – – – – – – + + – – – – H Eua D Clematis alpina – – – – – – – – – – – – – + – – – Circ Dryopteris H P – – – – – – – – + – + – – + – + – (bor) carthusiana Pteridium G Cm P – – – – – – – – – – – – – – + + + aquilinum Th–TH Carp–B … Silene heuffelii – – – – – – – – – – – – – + – + – Moehringia TH Eua D – – – – – – – – – – – – – + + – – trinervia TH Md D Arabis turrita – – – – – – – – – – – – – – + – – Lathyrus H P–Md D – – – – – – – – – – – – – 1 + – + venetus H Ec D Astrantia major – – – – – – – – – – – – – + + – – Primula H Atl–Md D – – – – – – – – + – + – – + – + – vulgaris Digitalis H E P – – – – – – – – – + – + – + + – – grandiflora 106

www.mcdr.ro / www.cimec.ro

Tamus G Atl–Md P – – – – – – – – – – + – – + + + – communis Hordelymus H E P – – – – – – – – – – – – + +.1 – – – europaeus Fallopia Th Eua P – – – – – – – – – – – – – + – – – convolvulus Eua Alliaria Th–TH P – – – – – – – – – + – – + – + – + (Md) petiolata Sedum Eua H(G) P telephium – – – – – – – – – – + – – + – + – (Md) ssp.maximum H Ec D Aposeris foetida – – – – – – – – – – – – – + – – – MM–M Md D Quercus cerris – – – – – – – – – – – – – + – + – Circ Juniperus H D – – – – – – – – + – – – + – + – + (bor) communis Hieracium H B–Carp D – – – – – – – – – – – – – + – + – rotundatum

107

www.mcdr.ro / www.cimec.ro

Tableau 2 No.releves 1 2 3 4 5 6 L' altitude m 570 570 580 580 550 550 L' exposition V V NV N NV N Cyt L' inclination 25 35 20 25 30 25 Le recouvrement 0,7 0,8 0,7 0,6 0,6 0,6 La sourface analisee m2 400 400 400 400 400 400 MM–M E D Fagus sylvatica 4 4 3 3 4 4 MM–M E P Carpinus betulus 1 1 2 3 2 1 Quercus petraea MM Md D + + – + + – ssp.dalechampii MM–M Md D Quercus cerris 1 2 1 + + + MM–M E D Acer campestre + – + + + – M Ec D Cornus sanguinea + + 1 1 + + M E D Crataegus monogyna – + +.1 + + + M E D Corylus avellana + +.1 + + + + M–MM E D Pyrus pyraster ssp.achras + – + + – – MM–M Eua ... Populus tremula + + – + – – N E P Rosa canina – + + – + – H Eua P Poa nemoralis + + – – + + G E P Anemone nemorosa + – + + + – G Md ... Aristolochia pallida + – + + + – H Eua (Md) D Campanula persicifolia – + + + – – H E D Mycelis muralis + + – – + + G Ec P Cardamine bulbifera + + – + – + G Carp end P Cardamine glanduligera + + + + – – H E P Digitalis grandiflora – + + + + – H Eua D Fragaria vesca – + + + + – G B–Cauc D Fritillaria orientalis + – + + – – H Ec D Lamiastrum galeobdolon + + – – + – H Eua D Cruciata levipes + – + + – – Ch–H Eua D Glechoma hirsuta + – + – + + H B–Carp D Hieracium rotundatum + – + + – – H Eua DP Hypericum maculatum – + + + – – G Ec D Isopyrum thalictroides + – + – + + H Eua D Lathyrus vernus + – + + + + Melittis melisophyllus H Ec–Md D + + – + + – var.grandiflora H–G E D Mercurialis perennis + – + + – – H E D Pulmonaria officinalis + + – + + – H E (Ct) P Ranunculus cassubicus + – + + – – N E P Rubus hirtus + – + – + + H–Ch Eua P Veronica chamaedrys + – + + – – Ch Eua DP Veronica officinalis + + – – + – H Eua D Viola mirabilis + – + + – – H Eua D Viola reichenbachiana + – + + – – H Cm P Dryopteris filix–mas + + – + + –

108

www.mcdr.ro / www.cimec.ro

Tableau 3 No.releves 1 2 3 4 5 6 7 8 9 10 L' altitude m 500 500 550 500 500 550 500 500 500 500 L' exposition NE NE N NE N NE V N NE NE L' inclination 15 20 20 20 20 25 20 20 20 20 Cyt Le recouvrement 0,6 0,6 0,7 0,8 0,8 0,6 0,6 0,6 0,7 0,6 La sourface analisee m2 25 25 25 25 25 25 25 25 25 25 MM– Alnus Eua(Md) P 4.5 3.4 3.4 3 3 3.4 3 4 3.4 4 M glutinosa Fraxinus MM E D + – + + + + + + +.1 + excelsior N E P Rosa canina + + + +.1 + + +.1 + +.1 + MM– Fagus E D + + – – – – + + – – M sylvatica Crataegus M E D + + + + + + + + + + monogyna Potentilla H Cm P + + + + + + + + + + reptans Galium H Ec ... + – + + – + – + + – rubioides Ranunculus H Eua(Md) P + + + + + + +.1 + + + repens Lysimachia Ch E D 1.3 + + 1.3 + + 1.1 + +.1 + nummularia H Eua(Md) P Rubus caesius 2.5 + +.1 1 + + 2 +.1 +.1 +.1 H E P Carex silvatica + + +.1 + + + + + + + H E P Carex remota 3.5 3 2.5 3 + +.5 1 + + +.1 Glechoma Ch–H Eua D 2.3 2.4 3 2.4 2 3.2 3 + +.1 1 hirsuta Oxalis H–G Circ(bor) D 1.5 1 1 + +.1 + + 1 + + acetosella Cirsium H Eua D + + – – + + + – + – oleraceum Dryopteris H Cm P + + + – – + – + + + filix–mas Lamiastrum H(Ch) Ec D +.5 +.1 + 1 + 1.1 1 + + + galeobdolon H Eua D Fragaria vesca + + + – – + – + + – H Cm P Juncus effusus + + + + + – + + + + Stellaria H E D +.3 +.1 1 + +.1 1 + + + + nemorum Impatiens Th Eua D + +.1 1 + + + + + + + noli–tangere H–G Cm P Urtica dioica + + +.1 + 1 + +.1 + + + H Eua DP Poa trivialis 1.5 + 1.1 + 1.2 + 1.1 + +.1 + Myosotis H Eua D + + – – + + + – – silvatica

109

www.mcdr.ro / www.cimec.ro

Aegopodium H(G) Eua DP +.3 +.3 +.2 1.1 + 1 1.1 + 1 1.1 podagraria Pulmonaria H E D officinalis + + 3.1 + + + + + + + ssp.officinalis Geranium Th Cm P + + +.1 + +.1 + + + +.1 + robertianum Lycopus HH Eua D + + + – – + + – + – europaeus MM– Eua P Salix alba – +.1 +.1 + +.1 1 1.1 + + + M M– Eua P Salix fragilis + + + + 1.1 + +.1 + + – MM Corylus M E D – + – – + + – + + + avellana MM– E P Sambucus nigra – + + + – + + + + + M Cornus M Ec D – + + – – + + – + – sanguinea Ligustrum M E(Md) D – + + – – + + – + – vulgare M Eua P Prunus spinosa – + – + – + – + + – Viburnum M Md–Ec D – + – + + + – + + + lantana Humulus H Eua D – + – + – + + – + – lupulus Anthoxanthum H Eua P – + + – + + – + – + odoratum H Eua(Cm) D acetosa – + + + + – + + + + Euphorbia H–G Eua P – + – + + + + + + + cyparissias H Eua(Md) P Geum urbanum – + + – + + – + + – Potentilla H Cm P – + – + + – + + + + anserina Hypericum H Eua DP – + + – + + + – + + perforatum Trifolium H E (Md) D – + – + – + + + + – hybridum Anthriscus H Eua(Md) D – + + + + + + + + + silvestris Symphytum H Eua P – + – + – + + – + + officinale Mentha H(G) Eua–Md P + + + + + + + + + + longifolia Prunella H Circ(bor) P + + – – + + – + + + vulgaris Salvia H Eua–Md P + + + – – + + – + – verticilata H Eua D Plantago major + + – + + + + + + + H Eua P Plantago media – + + – + + – + + +

110

www.mcdr.ro / www.cimec.ro Calystegia H Eua DP + + – – + + + – – – sepium Dipsacus TH Eua–Ct D – + + + – – – + + – laciniatus Th Circ(bor) P Galium aparine – + + + – – + + + – Achillea H Eua P + + – + + + + – + + millefolium Petasites HH Eua P + + + – + – + + – + hybridus G Eua P Tussilago farfara + + + + + + + + + + Tanacetum H Eua D +.1 + 1 – +.1 + + + – + vulgare Chamomilla Th Adv D + + – + + – + – + – suaveolens Soncus Th Eua … – + + – – + + – + – oleraceus Taraxacum H Eua–Md P + + – + + + + + + + officinale Chrysosple- H Circ(bor) P nium – – – – + + + – + – alternifolium Stachys H Eua P – – – – – + + – – – sylvatica G Eua D Circaea lutetiana – – – – – – + + + – Matteucia H Circ(bor) D – – – – – – – + + – struthiopteris Rumex H E P – – – – – – + + – – obtusifolius M– E D Prunus avium – – – – – – + + – – MM M E D Salix purpurea – – – – – – + + – – Impatiens noli– Th Eua D + +.1 1 + + + + + + + tangere H–G Cm P Urtica dioica + + +.1 + 1 + +.1 + + + H Eua DP Poa trivialis 1.5 + 1.1 + 1.2 + 1.1 + +.1 + Myosotis H Eua D + + – – + + + – – silvatica Aegopodium H(G) Eua DP +.3 +.3 +.2 1.1 + 1 1.1 + 1 1.1 podagraria Pulmonaria H E D officinalis + + 3.1 + + + + + + + ssp.officinalis Geranium Th Cm P + + +.1 + +.1 + + + +.1 + robertianum Lycopus HH Eua D + + + – – + + – + – europaeus MM– Eua P Salix alba – +.1 +.1 + +.1 1 1.1 + + + M M– Eua P Salix fragilis + + + + 1.1 + +.1 + + – MM

111

www.mcdr.ro / www.cimec.ro M E D Corylus avellana – + – – + + – + + + MM– E P Sambucus nigra – + + + – + + + + + M Cornus M Ec D – + + – – + + – + – sanguinea Ligustrum M E(Md) D – + + – – + + – + – vulgare M Eua P Prunus spinosa – + – + – + – + + – Viburnum M Md–Ec D – + – + + + – + + + lantana Humulus H Eua D – + – + – + + – + – lupulus Anthoxan-thum H Eua P – + + – + + – + – + odoratum H Eua(Cm) D Rumex acetosa – + + + + – + + + + Euphorbia H–G Eua P – + – + + + + + + + cyparissias H Eua(Md) P Geum urbanum – + + – + + – + + – Potentilla H Cm P – + – + + – + + + + anserina Hypericum H Eua DP – + + – + + + – + + perforatum Trifolium H E (Md) D – + – + – + + + + – hybridum Anthriscus H Eua(Md) D – + + + + + + + + + silvestris Symphytum H Eua P – + – + – + + – + + officinale Mentha H(G) Eua–Md P + + + + + + + + + + longifolia H Circ(bor) P Prunella vulgaris + + – – + + – + + + H Eua–Md P Salvia verticilata + + + – – + + – + – H Eua D Plantago major + + – + + + + + + + H Eua P Plantago media – + + – + + – + + + Calystegia H Eua DP + + – – + + + – – – sepium Dipsacus TH Eua–Ct – + + + – – – + + – D laciniatus Th Circ(bor) P Galium aparine – + + + – – + + + – Achillea H Eua + + – + + + + – + + P millefolium Petasites HH Eua + + + – + – + + – + P hybridus G Eua P Tussilago farfara + + + + + + + + + + Tanacetum H Eua +.1 + 1 – +.1 + + + – + D vulgare+ Chamomilla Th Adv + + – + + – + – + – D suaveolens Th Eua … Soncus oleraceus – + + – – + + – + –

112

www.mcdr.ro / www.cimec.ro Taraxacum H Eua–Md P + + – + + + + + + + officinale Chrysosplenium H Circ(bor) P – – – – + + + – + – alternifolium Stachys H Eua P – – – – – + + – – – sylvatica G Eua D Circaea lutetiana – – – – – – + + + – Matteucia H Circ(bor) D – – – – – – – + + – struthiopteris Rumex H E P – – – – – – + + – – obtusifolius M– E D Prunus avium – – – – – – + + – – MM M E D Salix purpurea – – – – – – + + – –

113

www.mcdr.ro / www.cimec.ro Tableau 4 No.releves 1 2 3 4 5 6 7 8 9 10 11 12 13 L’ altitude m 600 620 400 400 420 450 560 570 560 580 580 570 570 L’ exposition S SE S S SV S S E SE NV SE S S L’ inclination 25 25 20 20 25 20 20 10 10 15 10 25 25 Cyt Le recouvrement 0,6 0,7 0,5 0,9 0,9 0,5 0,7 0,8 0,8 0,8 0,8 0,6 0,8 La sourface analisée m2 400 400 400 400 400 400 400 400 200 200 200 100 100 Quercus MM–M E D 2 1 1 1 1.2 2 1 – + – + +.1 + petraea MM–M Md D Quercus cerris 2 3 3 3 2.3 2.3 1.2 – 1 + + 2 2 Carpinus MM–M E P + – +.1 1 1 1 + + – – – + 1 betulus M–MM Md D Fraxinus ornus + 2 – – + + + – – + – 1 1 Acer MM–M E D 1 + + + + + – – + + – + + campestre Crataegus M E D – + + + – + + – – + + + + monogyna M P–Md DP Cornus mas – + + + + + – – + + – – – Corylus M E D + – – + + + – + + + – + – avellana E Ligustrum H D + – + – + + + – + – – – + (Md) vulgare N E P Rosa canina + – – + – – + + + – – + + Fallopia Th Eua P + + – – – – + – + – – + – convolvulus H (Ch) Eua D Silene vulgaris + – – + + – – – – + – – – Eua Conringia Th D + – – – + – – – – – – – – (Md) orientalis E Lepidium Th D + – – + + – – + – – – + + (Md) campestre Sedum Eua H(G) P telephium – + – + + – – – – – – – – (Md) ssp. maximum 114

www.mcdr.ro / www.cimec.ro H Eua D Fragaria vesca – + + + – + – + + – – 1 + Eua Geum H P + + + – + – + – + – – + + (Md) urbanum Galium G Ec P + + + – + – + + – – – – – schultesii Cruciata H Eua P – + + + – – – – – – – – – glabra Achillea H Eua P + – – + – + + – – + – + + millefolium Centaurea biebersteinii TH–H E (Ct) P + – – + + – – – – – – – – ssp. biebersteinii Eua Hieracium H P + – + + – – – – – – – – – (Md) praealtum Eua Lapsana Th D + – – + + – + + – + + – + (Md) communis Potentilla H Eua DP – + + – – – – – – – – – – argentea Carp– Waldsteinia H … – + – – – – – – – – – + – B geoides Astragalus H Eua D + – – + – – + + – – – + + glycyphyllos H Ec D Lathyrus niger 1 + – – – – + + 1 + + + + Lathyrus H Eua D + – + – – + 1 + + + – + +.1 vernus Lathyrus H P–Md D + – – – – – – – – – – + – venetus Trifolium H Eua P + – + + + + – + + + + + + medium Pulmonaria H E D + – + – + – + + + – – + + officinalis Digitalis H E P + – – – + + – + + – – + + grandiflora

115

www.mcdr.ro / www.cimec.ro Melampyrum Th D–B ... + – – – + + – – + + – – – bihariense Scrophularia H Eua P + – + + – – – + – + – + – nodosa Verbascum TH B ... + – – – – – + + – – – + – glabratum Veronica H Eua P – + – + – + – + – + + – – chamaedrys Veronica H Ec P austriaca + – – + + – – – – – – – – ssp.teucrium Circ Clinopodium H … – + – + + – – – – – – – – (bor) vulgare Galeopsis Th Eua P + + – – + + – – – – – – – tetrahit Glechoma Ch–H Eua D – + – + + – + + – – + + – hirsuta Md– Teucrium Ch P – + – + + – – + + + + + + Ec chamaedrys E Vincetoxicum H DP – + – + + – – + – + + + + (Md) hirundinaria Galium G Eua P + – – – – – + + + + 2 + + odoratum H Eua P Carex divulsa – + – + – – – – – – – – – Eua Dactylis H P 2 – + + + – + – + – – + + (Md) glomerata Festuca Carp– H P pallens – + – + + – – – – – – – – B ssp.pallens Melica H E D – + + – + + – – 1 + 1 + + uniflora H Eua P Poa nemoralis + – + + + – – + + – – + – Epipactis G Eua P + – – + – – – – – – – – – helleborine

116

www.mcdr.ro / www.cimec.ro

Tilia MM Ec D – – + + – – – – – – – – – platyphyllos M–MM E D Prunus avium – – + – + – + – – + + + + Carp– MM P Juglans regia – – – + + + – – – – – – – B M Eua P Ulmus minor – – – + + – – – – – – – – E Sorbus MM D – – – + + + + – + – – + – (Md) torminalis Pyrus pyraster M–MM E D – – + + – – + + + – – – – ssp.achras Malus M E D – – + – + – – – – – – – – sylvestris Md– Viburnum M D – – + – – + – – – – – + + Ec lantana Euonymus M E … – – – – + + – – – – – – – europaeus Ec Clematis N D – – – + – + – – – – – – – (Md) vitalba Ec Brachipodium H D – – + + – + – – – – – – – (Md) silvaticum Eua Polygonatum G DP – – + – – + – – – – – – – (Md) odoratum Cephalanthera G E ... – – – + + – – – – – – – – rubra Eua Stellaria H D – – + + – – – + + – – + – (Md) holostea Th–TH Eua D Silene alba – – – + + – – + – – – – – Viola H Eua D – – – + + – + – – + – – – reichenbachiana Hypericum H Eua DP – – + + + + – – – + – – – perforatum Eua Anthriscus H D – – + – + + + – – – – – – (Md) silvestris

117

www.mcdr.ro / www.cimec.ro

Buglossoides Ec H–G D purpurea– – – + + + + – + – – – + + (Md) caeruleum Lamiastrum H Ec D – – – – + – + + – – – – – galeobdolon Campanula TH E D – – – + – + – – + + – – – patula Eua Tanacetum H P – – + + – + – – – – – + + (Md) corymbosum Eua Mycelis H D – – – + + – + – + – – + – (Md) muralis Quercus MM Md D petraea ssp. – – – – – – 4 3 4 4 4 2 1.2 dalechampi Quercus MM B … – – – – – – – – + – – + – frainetto Fagus MM–M E D – – – – – – – 1 – 1 – 1 + sylvatica Euonymus M E … – – – – – – – + – + + – – verrusosus Rhamnus M Eua P – – – – – – + + – – + 1 + catharticus Sorbus MM–M E D – – – – – – – – – + + + – aucuparia Festuca H E P – – – – – – + – – + + – – heterophylla Eua H–G D Melica nutans – – – – – – – – + 2 + + – (Md) Luzula H E D – – – – – – – – – + 1.2 + + luzuloides Aristolochia H Md ... – – – – – – – + + + – + + pallida Eua Campanula H D – – – – – – + + + – – + – (Md) persicifolia 118

www.mcdr.ro / www.cimec.ro

Cardamine G Ec P – – – – – – 2 + + + + 1 + bulbifera Carp Cardamine G P – – – – – – – – – + + + – end glanduligera Fragaria H E D – – – – – – + – + + + + – viridis Cruciata H Eua D – – – – – – – + – + – – – levipes Genista Ch Eua P tinctoria ssp. – – – – – – 1 + 1 1 1 + + tinctoria Circ Hieracium H P – – – – – – – + + – – + – (bor) umbellatum Lathyrus H DB D – – – – – – – – + + + – – halersteinii Ec– Melittis melyso- H D phyllum – – – – – – – + – + + – – Md ssp.grandiflora Plathanthera G Eua P – – – – – – – + + + – + + bifolia Polygonatum G E D – – – – – – – + + – – + + verticillatum Alp Silene italica H D – – – – – – + + – – – – – Carp ssp.nemoralis Symphytum H –G Ec P – – – – – – – + + + + – – tuberosum Veronica Ch Eua DP – – – – – – – – + – + + – officinalis Lychnis H Eua D – – – – – – – – + – + + – viscaria Dryopteris H Cm P – – – – – – – + – + + – + filix–mas Quercus MM Md D – – – – – – – – – – – 2 2 pubescens 119

www.mcdr.ro / www.cimec.ro

Cornus M Ec D – – – – + + – – – – – + + sanguinea M Eua P Prunus spinosa – – – + + – – – – – – + + Colchicum G E–Md D – – – – – – – + + – + 1 + autumnale Atl– Tamus G P – – – – – – – – – – – + + Md communis Ec– Erysimum H P – – – – – – – – + + – + + Md odoratum E Geranium H P – – – – – – – – – + – + + (Md) sanguineum Laserpitium H E D – – – – – – – + – + – + + latifolium Parietaria H Md D – – – – – – – – – – – + + officinalis E Vincetoxicum H DP – – – – + + – – – – – + + (Md) hirundinaria Ec– Calamintha H P – – – – – – – – – – – + + Md sylvatica Eua– Campanula H D – – – – – – – – – – – + + Ct sibirica

120

www.mcdr.ro / www.cimec.ro

Tableau 5. No. relevees 1 2 3 4 5 6 7 8 L' altitude m 620 610 480 520 500 550 500 500 L' exposition S SE V V NE N V NE Cyt L' inclination 30 60 60 80 75 45 30 30 Le recouvrement 0,7 0,8 0,9 0,8 0,8 0,9 0,8 0,9 La surface analisée m2 400 400 400 400 400 400 400 400 M-MM Md D Fraxinus ornus 2 3 4 4 4 3 3 3 M Ec D Cornus sanguinea 2 + +.1 + 1 1 2 1 M P-Md D-P Cornus mas - - - + + + + + MM-M Md D Quercus cerris - + + - - + - - MM Ec D Tilia plathyphyllos + +.1 + + - - - - M E D Crataegus monogyna + - + + + + - + M Eua P Spirea chamaedryfolia + + - - + - - - N E P Rosa canina +.1 + - + + + +.1 + M E D Corylus avellana - + + + - + - + M E(Md) D Staphyllea pinnata + + - - + - - - Rhamnus catharticus f. M Eua P + + ------dahuricefolia M E P Euonymus europaeus + + + - - - - - M E ... Euonymus verrucosus + + +.1 - +.1 1 + + M Md-Ec D Viburnum lantana - - + +.1 + 1 +.1 + M E(Md) D Ligustrum vulgare - - + + + - + + H(N) Eua ... Clematis alpina - + + - - - - - H Circ(bor) P Asplenium ruta-muraria - + + - - + + - H Cm D Asplenium trichomanes - + +.1 + +.1 + + - H Cm P Cystopteris fragilis - + + + + - + - G Circ D Asplenium scolopendrium - 1 + + + - + + G Circ P Polypodium vulgare - 2 +.1 + + + - - H Cm P Dryopteris filix-mas - - + - + + + - Th Eua P Fallopia convolvulus + - + + + + - - H Ec D Moehringia muscosa + + + - - + + - HG E D Mercurialis perennis - + - - + + - -

121

www.mcdr.ro / www.cimec.ro G E D Hepatica nobilis - + + + - + - - Th Eua(Md) P Alliaria petiolata + + - - + + - - TH Md D Arabis turrita + + + + + - - - TH Ec P Cardaminopsis arenosa + + - + + + - - G Ec P Cardamine bulbifera - + - + + + - - Th Md P Sedum hispanicum - + - - + + - - Sedum telephium HG Eua(Md) P + + + + + - - - ssp.maximum H Eua D Fragaria vesca - - - + + + - - H Eua(Md) P Geum urbanum - - - + + + - - H P-Md D Lathyrus venetus + + + + + - - - Th Cm P Geranium robertianum - +.1 + + + + - - H E P Digitalis grandiflora - - - + + + - - Th B ... Verbascum glabratum - - + - + + - - H P-Md P Scutellaria altissima + + ------Ch Md-Ec P Teucrium chamaedrys - - - + + + - - H E(Md) DP Vincetoxicum hirundinaria + + ------H Eua(Md) D Valeriana officinalis - + - - + + - - H Eua(Md) P Campanula persicifolia - - + + + - - - Alp-B- H P Doronicum columnae - - - + + + - - Carp G Eua(Md) DP Polygonatum odoratum - + + + + - - - G Atl-Md P Tamus communis + + ------H Eua P Carax divulsa - - + + + - - - H E D Melica uniflora - - + 1.2 1.2 + - - H Eua P Poa nemoralis - - - + +.1 + - - MM-M E D Acer campestre - + - - - + - - MM Eua P Acer pseudoplatanus - + + - - - - - MM E D Tilia cordata - + + - - - - - MM-M E P Carpinus betulus + + ------N Ec P Rosa pendulina - - + + - - - - N-E Ec(Md) D Clematis vitalba - - + + - - - - N-E Atl-Md P Hedera helix - + + - - - - - M Circ(bor) D Juniperus communis - - - - + + + -

122

www.mcdr.ro / www.cimec.ro H Circ(bor) P Dryopteris carthusiana - - - + + - - - Th Eua D Moehringia trinervia - - - + + - - - H(Ch) Eua D Silene vulgaris - - - - + + - - HG Eua P Euphorbia cyparissias - - - - + + - - G E P Anemone nemorosa - - - + + + - - HG E D Ranunculus bulbosus - - - - + + - - H Eua DP Hypericum perforatum - - - - + + - - Ch Eua P Sedum acre - - - - + + - - H Eua P Trifolium medium - - - + + + - - H Ec(Md) P Coronilla varia - - - + + + - - Th E D Chaerophyllum temulum + + ------Th Eua(Ct) D Galeopsis speciosa - - - + + - - - H(Ch) Eua D Glecoma hirsuta - - - - + + - - Melittis melissophyllum H Ec-Md D - - + + - - - - var.grandiflora H Eua(Md) D Origanum vulgare - - - + + - + - H Eua D Plantago lanceolata - - - + + - - - G Eua P Galium odoratum - - - + + + - - M Eua P Galium verum - - - + + - - - H Eua(Md) D Mycelis muralis + - - - + - - - G Md D Ornithogalum pyramidale + + + - - + + - H Eua(Md) D Brachypodium silvaticum - - + + + - - - H Eua(Md) P Dactylis glomerata - + + + + - - - H E P Hordelymus europaeus - + + + - - - -

123

www.mcdr.ro / www.cimec.ro Tableau 6 No.releves 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 L' altitude m 650 650 650 650 650 550 500 500 600 650 450 500 500 500 520 580 550 550 550 L' exposition S SE S SV V SE SV SV NE SE NV S S S S N N SE S Cyt L' inclination 30 25 25 20 45 35 30 40 45 25 30 35 40 45 45 35 30 30 45 Le recouvrement 20 30 40 50 40 70 80 80 75 65 70 70 70 60 90 80 75 80 75 La sourface analisée m2 100 100 100 100 100 100 100 100 100 100 100 100 250 500 500 300 500 300 250 M B–Anat D Syringa vulgaris 2.3 3 2.3 2 2 3 3.4 3 1.2 3.4 3 3.4 1.2 +.1 + 4 3 2 3 M–MM Md D Fraxinus ornus 2 2 2 1.2 2 1.2 +.1 2 3 + 1 +.1 3 3 4 1.2 1.2 2.3 2 Crataegus M E D + + 1.2 1.2 – – – + + + – – + + + + + +.1 – monogyna N E P Rosa canina + + – – – – – + – – – + – – – + + + – M E D Corylus avellana + + + – – – + – – – – – + + – – + + – MM Carp–B P Juglans regia + + + + – – + + + – – – – – – – – – – MM–M Md D Quercus cerris + – + – – – – – + – – – – + – + – + – Quercus petraea MM Md D + + + – + – – – – – – – – – – – – – – ssp.dalechampii MM E–Md D Sorbus torminalis + + – – – – – – + – + – – – + – + – – MM–M E D Acer campestre– + + – – – + – – – + – – – + – – + 1.2 – M P–Md DP Cornus mas + + + – + + + + + – + + + – +.1 – + – – Circ M D Juniperus comunnis 1 1 – – – + + + + – + + – + + – + + + (bor) Eua H P Rubus caesius + + – + – – – – + + + – + – – – – – – (Md) Ec N–E D Clematis vitalba – – – + – – – – – – – + – – – + + – + (Md) H Ec–B D Melica ciliata + – + + + + – + – + + – – + + 1.2 – – – Festuca pallens ssp. H Carp–B P + + + – – + – – + – – + – – – – – – – pallens Eua H DP Festuca valesiaca + – 1.2 – + – – +.1 + – + – – – – – – – – (Ct) H Eua P Poa nemoralis – + – – – – – 1 + – – + – – – – – – – Eua Brachypodium H P + – + 2 + – + + – – – – – – – – – – – (Md) pinnatum Petrorhagia Th P–Md D – + – + + + + – – – – – – – – – – – – prolifera

124 www.mcdr.ro / www.cimec.ro Cardaminopsis TH Ec P + + – – – + + – – – + + – – + + – – – arenosa Ec Erysimum H P – + – – + + – – – – – + – + + + – – – (Md) odoratum Th Md P Sedum hispanicum + – – + + + + + – + – + – – – – – – – Eua H P Geum urbanum + + + + + – + – – – – – – – – + + – – (Md) H E(Ct) D Fragaria viridis + – + – – – – + + + – – + + + – – – – H Eua P Sanguisorba minor – + – + – – – – – – – + – – – – – – – Dorycnium Ch Ec–Md D pentaphyllum – – + – + – – – – – – – – – – – – – – ssp.herbaceum Hypericum H Eua DP + – + + + – – + – + – + – + + + – – + perforatum E Vincetoxicum H DP + + – + + + – – + – + – – – + – + + + (Md) hirundinaria Peucedanum H Ec D + – + – – – – – – – – – – – – – – – – austriacum Digitalis H E P + – – + – – – – + – + – – – – – – – – grandiflora Veronica H–Ch Eua P + + – – – – + – – – + – – – – – – – – chamaedrys Teucrium Ch Md–Ec P – – + – – – + + 1.2 1 – – + – – – – 1 + chamaedrys Helianthemum Ch Atl–Md D + – + + + – – – – – – – + + +.1 – – + + canum H Eua P Plantago media – + – – – – – – – + + + – – – – – – – H Eua D Plantago lanceolata – – + + – – – + + – – + – + – – – – – Eua– Valeriana H D + + + – – – + – – + + – – – – + + – – Md officinalis H Eua P Galium album +.1 2 1 1 + 1.2 1 1.2 2 1 1.2 1.2 – – – – – – – Eua H D Campanula sibirica + – + + – – – – – – – + – + + – – + + (Ct) G Md–Ec D Muscari comosum + + – – – – 1.2 + – – – – – – – – – – – Asplenium H Cm D – + – + – +.1 + + 1.2 1.2 1 – – – – – – – – trichomanes Circ Polypodium G P + – + – – – + – 2 – 1 – – – – – – – – (bor) vulgare

125 www.mcdr.ro / www.cimec.ro MM–M E P Carpinus betulus – – – – – – + + – + – + – – – – – – – MM–M E D Quercus petraea – – – – – – + + – – + – – – – + – + + M Eua D Frangula alnus – – – – – + + – – + + – – – – – – – – E M D Ligustrum vulgare – – – – – – – +.1 – – + + – – – + + – – (Md) Euonymus M E ... – – – – – – + + + – + – – – – + – + + verrucosus Astragalus H Eua D – – – – – + + – – – – – – – – – – – – glycyphyllos Ec H P Coronilla varia – – – – – + – +.1 + + + – + – + – – + + (Md) Eua(Md H DP Medicago falcata – – – – – + – + – + 1 – + – + – + – + ) H Md ... Aristolochia pallida – – – – – + + – – – – – – – – – – – – G E P Anemone nemorosa – – – – – – + + – – + + – – – – – – – G E D Hepatica nobilis – – – – – – + – + + – – – + + + – – – Euphorbia H(G) Eua P – – – – – + + + + + + – – – – + + + + cyparissias Circ Ch P Cerastium arvense – – – – – – + – – – + – – – – – – – – (bor) Moehringia H Ec D – – – – – – – + +.1 + 2 – – – – – – – – muscosa TH Md D Arabis turrita – – – – – – – – + + – – – – – – – – – Eua– Sedum telephium H(G) P – – – – – + + + + + + – – – – + + – – Md ssp.maximum H Eua D Fragaria vesca – – – – – – + + 1 1.2 + 1.2 + – – – – – – H Eua DP Potentilla argentea – – – – – + – – – + – – – – – – – – – H Eua–Ct P Potentilla recta – – – – – + – + – – – + – – – – – – – Viola tricolor TH Eua D – – – – – + – + – + + – – – – – – – – ssp.subalpina Eua– Geranium Th D – – – – – – + + + + + + – – – – – – – Md rotundifolium Geranium Th Cm P – – – – – + + + – – – – + + – – – – – robertianum H Eua DP Myosotis silvatica – – – – – + – + – – – – + + – – – – – Carp Ch P Thymus comosus – – – – – 1.2 – – – – – 1.2 – – – + + + + end TH DB … Verbascum lanatum – – – – – + – + + + – + – – – – – – –

126 www.mcdr.ro / www.cimec.ro Melampyrum Th DB … – – – – – – – – – + + – – – – – – – – bihariense H Eua–Ct P Ajuga genevensis – – – – – – + – – + + – + + – – – – – Ch Eua D Glechoma hirsuta – – – – – + +.1 – – + + – – + – – – – – H E D Lamium maculatum – – – – – – + + – + + + – – – – – – – E Th–TH D Acinos arvensis – – – – – + – + – + + – – – – – – – – (Md) Teucrium Ch Md–Ec P – – – – – +.1 – – – – – 1 + + – – – + + montanum Cephalaria H B … – – – – + – – – + – – – – – – – – – – laevigata Eua– Campanula H D – – – – – – – + + – – + + + – – – – – Md persicifolia Centaurea Eua– H P biebersteinii – – – – – + – + – – + + – + – – – – – Md ssp.biebersteinii Centaurea apiculata TH E(Ct) D – – – – – – + – – + – + – – – – – – – ssp.spinulosa Primula veris H Md ... – – – – – – – – – – + + – – – – – – – ssp.columnae Eua– Taraxacum H DP – – – – – + + – – – – + + – – – – – – Md erythrospermum G E D Scilla bifolia – – – – – – + – – – – + – – – – – – – Circ Asplenium ruta– H P – – – – – + + – + + + – – + + – – – – (bor) muraria Pyrus pyraster M–MM E D – – – – – – – – – – + – – + – + – + + ssp.achras Rhamnus M Eua P – – – – + + + – – + + + – – – – – – – catharticus M Md–Ec D Viburnum lantana – – – – – – – – + – – + + + – + – + – N E P Rubus hirtus – – – – – – + – – – + – – – – – – – – H E D Melica uniflora – – – – – – + – – – + – – – – – – – – Eua– Th D Trifolium arvense – – – – – + – – – + – + – + – – – – – Md Circ TH P Arabis hirsuta – – – – – – + – + – – + – – – – – – – (bor) H D (end) D Viola jooi – – – – – – + + – – – – – – – – – – –

127 www.mcdr.ro / www.cimec.ro E Th D Linum catharticum – – – – – – – – – + – + – – – – – – – (Md) Eua H D Origanum vulgare – – – – – – + – + – + + – – – – – – – (Md) Eua H D Salvia verticillata – – – – – – – + + – – + + – + – – – – (Md) Eua Allium senescens G P – – – – – + – – – – + – + – – – – – – (Ct) ssp.montanum Eua Polygonatum G DP – – – – – + – – – + – + – – – – – – – (Md) odoratum Ornithogalum G Md–Ec DP – – – – – – – – – + – + + + – – – – – umbellatum Eua TH D Daucus carota – – – – – – – – – – – + + – – – – – – (Md) TH Eua DP Echium vulgare – – – – – + – – + – – + – + + – – – – Ec Chamaecytisus N P – – – – – – – – – – – + – – – – + + + (Md) hirsutus H P–Md D Stachys recta – – – – – – – – – – – – – + + – – + – H Eua D Silene otites – – – – – – – – – – – – – + – – – – – H Eua … Acinos alpinus – – – – – – – – – – – – – + – + – + – M E P Berberis vulgaris – – – – – – – – – – – – + – + + + – – N E P Rosa corymbifera – – – – – – – – – – – – – + + – + – – MM Md D Quercus pubescens – – – – – – – – – – – – – – – + + – – Polygonatum G E P – – – – – – – – – – – – + – + – + + – verticillatum H Eua P Galium verum – – – – – – – – – – – – + – – – + + – Ec Anthericum G P – – – – – – – – + + – – + – – – + + – (Md) ramosum H Eua P Galium mollugo – – – – – – – – – – – – + +.1 – – + + – Eua Brachypodium H D – – – – – – – – – – – – – + + + + + – (Md) sylvaticum Eua Campanula H D – – + + + – – – – – + + – – + – + – + (Md) trachelium M Ec D Cornus sanguinea – – – + + + – – – – – – – – – – + + – H Eua D Anthemis tinctoria – – – – – – – – – – – – – – + – – – – Lembotropis N Ec P – – – – – – – – – – – – – – + – – +.1 + nigricans H Eua D Viola hirta – – – – + + + – – – – – – – – + + – –

128 www.mcdr.ro / www.cimec.ro H Eua D Aster amellus – – – – – – – + + + + – – – – + – + – Th Adv P Erigeron annuus – + – – + – – – – – – – – + + + – – – Th Eua D Mellilotus officinalis – – – – – – – – – – – – + + + – + – + Rhamnus saxatilis M Md … – – – – – – – – – – – – + + + + + + + ssp.tinctorius Seseli elatum H p–Md ... – – – – – – – – – – – – + + + + – + + ssp.osseum Th P ... Silene dichotoma – – – – – – – – – – – – + + – + – – – Centaurea H DB ... – – – – – – – – – – – – + + + + – + + atropurpurea Circ Koeleria H D – – – – – – – – – – – – + + – – – – – (bor) pyramidata Eua Dichanthium H P – – – – – – – – – – – – – 2 2 – – 2 3.4 (Md) ischaemum H Eua P Festuca rupicola – – – – – – – – – – – – – 1 + + – – – G Eua P Elymus hispidus – – – – – – – – – – – – – + + – – + – H Eua P Potentilla cinerea – – – – – – – – – – – – – + + + – + + Ch Eua P Sedum acre – – – – – – – – – – – – – + + – + – – Th Md–Ec D Orlaya grandiflora – – – – – – – – – – – – – + +.1 + – + – Allium carinatum G Ec–B P – – – – – – – – – – – – – + + – + – + ssp.pulchellum Eua Th D Medicago minima – – + + + – – – – – – – – + + – – – – (Md) TH E P Crepis biennis – – – – – – – – – – – – – + + – + – – H P DP Eryngium campestre – – – – – – – – – – – – – + + – + – – TH Eua P Verbascum chaixii – – – – – – – – – – – – – + + – – – – H Carp–B … Leontodon crispus – – – – – – – – – – – – – – – – – + + Allium albidum G P D – – – – – – – – – – – – – + – + – + – ssp.albidum Eua Cleistogenes G P – – – – – – – – – – – – – – – + – +.1 + (Md) serotina

129 www.mcdr.ro / www.cimec.ro Tableau 7 No.releves 1 2 3 4 5 6 7 8 9 L' altitude m 600 650 650 500 550 450 500 650 500 L' exposition N NV N N N N N N N Cyt L' inclination 25 25 25 20 30 35 25 25 25 Le recouvrement 0,7 0,8 0,9 0,8 0,8 0,6 0,6 0,7 0,7 La sourface analisee m2 200 200 200 200 200 200 200 200 200 Circ Asplenium G D 3.4 3 3 2.3 3 3.4 3 2 2 (bor) scolopendrium MM– E D Fagus sylvatica 2.3 2 2 3.4 2 3.2 2 2 3 M MM E D Fraxinus excelsior + + – – – + – – – Eua N D Daphne mezereum +.1 + + – – – – + + (Md) N E P Rubus hirtus – + + + – + 1 + – H–G Eua P Asarum europaeum + – – + + + – – – Cardamine G Ec P – + + + – – – – – bulbifera E Euphorbia Ch D – – + + – + – – – (Md) amygdaloides G Eua P Galium odoratum + +.1 + + + + – + + Lamiastrum H(Ch) Ec D – – + + + – – – + galeobdolon Mercurialis H–G E D + + – + + + + – – perennis Eua H D Mycelis muralis – – + + + – – – – (Md) Circ H–G D Oxalis acetosella – – + + + + + – – (bor) H Ec D Pulmonaria obscura – + + – – – – – – H Eua D Salvia glutinosa + + – + – + + – – Viola H Eua D + + – – – – – – – reichebachiana H Eua D Actaea spicata – – + + – – – – – H Eua D Lathyrus vernus – – – + – – – – – Atl– H D Sanicula europaea + – + – – – – – – Md Eua Epilobium H P + + – – – – – – – (Md) montanum H Ec D Veronica urticifolia – – + + – – – – – Isopyrum G Ec D + + – + – – – – – thalictroides Eua Cardamine Th D – + + – + – – – – (Md) impatiens Scrophularia H Eua P + + – – – – – + – nodosa H E P Carex sylvatica + + – – – – – – – Eua G P Neottia nidus–avis + + – + + – – – – (Md) G E D Hepatica nobilis + – + + – + – – –

130 www.mcdr.ro / www.cimec.ro Symphytum H–G Ec DP tuberosum + – – + – – – – – ssp.nodosum H Eua D Myosotis sylvatica + + + + – + – – + Epipactis G Eua P – + – + + – – – – helleborinae Ec– Melittis H D – – + + – – + – – Md melissophyllum Hordelymus H E P – – – + + – – + – europaeus Circ Gymnocarpium G P – – + + – + + – – (bor) robertianum Allium ursinum G E D + – + – – – – – – ssp.ucrainicum H Eua D Primula veris + – – + + + – – – H E D Melica uniflora – – + + – – – – – G Ec P Arum maculatum + + + – + + – – – Polystichum H Cm D – – – + + – – – – setiferum

BIBLIOGRAPHIE

Barkman, J., Moravec, J.,et Rauschert, S., Code of phytosociological nomenclature, Vegetatio, vol.67, nr.3, p. 174–195, Upssala, 1981 Bănărescu, N., Boşcaiu, N., Biogeografie. Perspectiva genetică şi istorică, Ed. Ştiinţifică, Bucureşti,1973 Boşcaiu, N., Flora şi vegetaţia Munţilor Ţarcu, Godeanu şi Cernei, Ed. Acad., R.S.R., Bucureşti, 1971 Călinescu, R., Introducere în biogeografia României, Ed. Acad., Bucureşti, 1964 Coldea, Ghe., Aspecte din vegetaţia masivelor calcaroase situate în bazinul văii Geoagiului, Sargetia, Ser. Sci. Nat., vol. X, p.231–237, Deva, 1974 Coldea, Ghe., Prodrome des associations végétales des Carpates du sud- est (Carpates Roumaines), Docum. phytosoc., N. S., 13, Camerino, 1991 Cristea, V., Fitocenologie şi vegetaţia României, îndrumător de lucrări practice, xerografiat, Univ. Cluj-Napoca, 1991 Cristea, V., Fitosociologie şi vegetaţia României, xerografiat, Univ. Cluj–Napoca, 1993 Cristea, V., Drăgulescu, C., Contribuţii la studiul ecologic al unor fitocenoze din Transilvania, Contrib. Bot., p.133–140, Cluj–Napoca, 1976 Csüros, Şt., Pop, I., Consideraţii generale asupra florei şi vegetaţiei masivelor calcaroase din Munţii Apuseni, Contrib. Bot., p. 113–132, Cluj–Napoca, 1965

131 www.mcdr.ro / www.cimec.ro Csürös, Şt., Csürös–Kaptalan, Margareta, Caracterizarea unor asociaţii de plante din Transilvania, Contrib. Bot., p. 163–175, Cluj–Napoca, 1966 Csürös–Kaptalan, Margareta, Aspecte de vegetaţie din împrejurimile staţiunii balneare Vaţa (jud. Hunedoara), Contrib. Bot., p. 117-120, Cluj–Napoca, 1975 Csürös, Şt., Cristea, V., Contribuţii la studiul ecologic al pădurilor din Munţii Apuseni, cu privire specială asupra făgetelor, Făgetele carpatine. Semnificaţia lor bioistorică şi ecoprotectivă, Cluj-Napoca, p. 180-197, 1982 Géhu, J., M., Rivas–Martinez, S., Notions fondamentales de phytosociologie, în vol. Syntoxonomie, Ed. J. Cramer, p. 5-38, Vaduz, 1981 Hodişan, I., Şuteu, Şt., Hodişan, V., Faur, N., Cercetări de vegetaţie de pe valea Ribiţei (jud. Hunedoara), Contrib. Bot., p. 111-121, Cluj-Napoca, 1976 Löwe, A., Löwe, Doris, Chromosome numbers of central and northwest European plant species, Opera botanica, vol.V, (a Societate botanica lundensi in suplimentum seriei “Botaniska notiser“ editata), 1961 Pop, I., Hodişan, I., Contribuţii la cunoaşterea florei şi vegetaţiei Cheilor Mada, St. şi cercet. de biol., tom. VIII, nr. 1-2, p.133–155, Cluj, 1957 Pop, I., Hodişan, I., Contribuţii la cunoaşterea florei şi vegetaţiei Cheilor Ardeu, St. şi cercet. de biol., tom. IX, nr.2, p. 183-208, Cluj, 1958 Pop, I., Hodişan, I., Flora şi vegetaţia masivelor calcaroase de la Băcâia şi Cheile Cibului, St. şi cercet. de biol., tom. X, nr. 2, p. 217-239, Cluj, 1959 Pop, I., Hodişan, I., Aspecte din flora şi vegetaţia Cheilor Bulzeşti, Studia Univ. Babeş– Bolyai, Ser. Biol., 2, p. 44-54, Cluj, 1963 Pop, I., Conspectul asociaţiilor irrboase de pe masivele calcaroase din cuprinsul Carpaţilor româneşti, Contrib. Bot., p. 267–275, Cluj-Napoca, 1968 Sanda, V., Popescu, A., Doltu, I. M.,Cenotaxonomia şi corologia grupărilor vegetale din România, St. şi Comun., St. Nat., supl., 24, Sibiu, 1980 Sanda, V., Popescu, A., Doltu, I. M., Doniţă, N., Caracterizarea ecologică şi fitocenologică a speciilor spontane din flora României, St. şi Comun., St. Nat., supl., 25, Sibiu, 1983 Şuteu, Şt., Faur, N., Aspecte de vegetaţie în masivul Grohot (jud. Hunedoara), Contrib. Bot., p. 121-125, Cluj–Napoca, 1977

Marcela Balazs Le Musée de la Civilisation Dacique et Romaine. La section des Sciences Naturelles.Rue 1 Decembrie 39, Deva, Roumanie

132 www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 133 - 151

DES DATES CONCERNANT LA FLORE DE LA RÉSERVE NATURELLE “LA FORÊT BEJAN - DEVA“ (LE DÉPARTEMENT DE HUNEDOARA, ROUMANIE)

MARCELA BALAZS

Rezumat Date privind flora rezervaţiei naturale “Pădurea Bejan - Deva” (judeţul Hunedoara, România)

Pădurea Bejan este una dintre cele mai importante rezervaţii naturale din România. Aflându-se în zona de întâlnire a provinciei central-europene est-carpatice (caracterizată prin pădurile de Quercus robur L. şi Quercus petraea (Matt.) Liebl. ssp. petraea) cu provincia daco-ilirică a pădurilor de Quercus cerris L., această pădure oferă condiţii prielnice de vegetaţie pentru numeroase specii de plante vasculare. În lucrare sunt prezentate 351 specii însoţite de date ecologice.

La forêt de Bejan, située sur le territoire de la ville de Deva (le département de Hunedoara ) est connue comme l’une de plus importantes réserve naturelles de la Roumanie. Les particularités de cet unique écosysteme, avec une superficie totale de 103 ha, sont: - la disposition altitudinale et le mode particulier de la succesion des diverses types de rouvraies. - la coexistence des diverses espèces de Quercus et le phénomène d’une hyrridation naturelle. On mentionne les hybrides endemiques: x Quercus Tabajdiana Simk (Q. frainetto x O. polycarpa), x Quercus Tufae Simk. (Q. frainetto x Q. petraea), x Quercus dacica Borb. (Q. polycarpa x Q. pubescens), x Quercus Haynaldiana Simk. (Q. frainetto x Q. robur), x Quercus Kerneri Simk. (Q. pubescens x Q. robur), x Quercus budensis Borb. (Q. pubescens x Q. virgiliana), x Quercus rosacea Bechst. Sylvan (Q. robur x Q. petraea), x Quercus pseudodalechampii Cretz. (Q. robur x Q. dalechampii), x Quercus Csatoi Borb. (Q. robur x Q. polycarpa), x Quercus diversifrons Borb. (Q. petraea x Q. virgiliana), x Quercus cazanensis Paşcovschi (Q. dalechampii x Q. virgiliana) (Schreiber & Agnişa Nuţu 1968; Schreiber 1970; Stănescu, Şofletea & Stanciu 1997). La flore de cette réserve a été peu etudiée. Schreiber & Agnişa Nuţu (1968) mentionnent seulement les espèces rares: Centaurea micranthos, Centaurea nigrescens, Mentha longifolia ssp. incana var. viridescens Borb.

133

www.mcdr.ro / www.cimec.ro Notre étude a été effectué entre 1984 et 1991. On a identifié 351 espèces des plantes vasculaires. Les exemplaires collectées dans cette réserve sont gardées dans la collection du Musée de Deva. On présente la liste systématique des espèces des plantes vasculaires, accompagnée par des dates ecologiques.

SPHENOPSIDA EQUISETACEAE

1. Equisetum arvense L., G, Cm, U3 T3 R 0 , Filipendulo-Petasition

2. Equisetum pratense Ehrh., G, Cm, U3,5 T2,5 R 0, Alno-Padion

3. Equisetum telmateja Ehrh., G, Circ(bor), U3,5 T2 R0, Car. Alno-Padion, Filipendulo-Petasition

FILICOPSIDA ASPLENIACEAE

4. Asplenium ruta-muraria L., H, Circ (bor), U1,5 T3 R5, Asplenio rutae-murariae-Melicetum

5. Asplenium trichomanes L., H, Cm, U3 T0 R 4, Car. Asplenietalia rutae-murariae

ASPIDIACEAE (DRYOPTERIDACEAE)

6. Dryopteris filix-mas (L.) Schott., H, Cm, U4 T3 R0, Car. Fagetalia

ATHYRIACEAE

7. Cystopteris fragilis (L.) Bernh., H, Cm, U3,5 T0 R0, Car. Asplenietea, Acerion

POLYPODIACEAE

8. Polypodium vulgare L., G, Circ (bor), U3,5 T3 R4, Car. Asplenietea

CONIFEROPSIDA PINACEAE

9. Larix decidua Mill., MM (plantat), Carp-Sudet, U2,5 T0 R 0

ANGIOSPERMATOPHYTINA DICOTYLEDONEAE (MAGNOLIOPSIDA) ARISTOLOCHIACEAE

10. Asarum europaeum L., H(G), Eua, U3,5 T3 R 4, Car. Fagetalia

11. Aristolochia clematitis L., H–G, Ec(Md), U3 T4 R 5, Prunetalia

134

www.mcdr.ro / www.cimec.ro

RANUNCULIDAE RANUNCULACEAE

12. Isopyrum thalictroides L., G, Ec, U3 T3,5 R3, Car. Fagion

13. Anemone ranuncluloides L., G, E, U3,5 T3 R 4, Fagetalia, Querco-Fagetea

14. Anemone nemorosa L., G, E, U3,5 T4 R 0, Fagetalia, Car. Querco-Fagetea

15. Anemone sylvestris L., G, Eua (Ct), U2 T3,5 R4, Quercetalia, Geranion sanguinei, Car. Quercion pubescentis

16. Hepatica nobilis Mill., G, E, U3 T 3 R 4, Fagetalia, Car. Querco-Fagetea

17. Pulsatilla montana (Hoppe) Rchb., H, Alp–D, U1 T 4 R 4, Festucion rupicolae

18. Clematis vitalba L., N–E, Ec (Md), U3 T 3 R 3, Querco-Fagetea, Car. Prunetalia

19. Clematis recta L., H, P–Md, U2,5 T3 R 4, Car. Geranion sanguinei

20. Ranunculus ficaria L., H–G, Eua (Md), U3,5 T3 R 3, Querco-Fagetea

21. Ranunculus auricomus L., H, Eua, U3,5 T3 R 0, Querco-Fagetea

22. Ranunculus cassubicus L., H, E(Ct), U3,5 T3 R0, Carpinion

23. x Ranunculus fallax (Wimm. et Grab.) =auricomus x cassubicus, H, E (Ct), U3,5 T 3 R 3

24. Ranunculus repens L., H, Eua (Md), U4 T0 R0, Alno-Padion

25. Ranunculus polyanthemos L., H, Eua (Ct), U2,5 T 3 R 3, Quercion pubescentis

26. Ranunculus acris L. ssp. strigulosus (Schur) Nyl, HG,P–Md, U3,5 T2 R3, Car. Molinio- Arrhenatheretea

27. Thalictrum aquilegiifolium L., H, E, U3 T2,5 R 3, Quercetalia

28. Thalictrum minus L., H, Eua (Ct), U2 T4 R4, Geranion sanguinei-Quercion pubescentis, Quercetea

BERBERIDACEAE

29. Berberis vulgaris L., H, E, U2 T3 R 4, Car. Berberidion

PAPAVERACEAE

30. Chelidonium majus L., H, Eua, U3 T3 R 4, Car. Arction

FUMARIACEAE

31. Corydalis solida (L.) Sw., G, E, U3 T3 R 0, Car. Fagetalia

CARYOPHYLLIDAE CARYOPHYLLACEAE

32. Stellaria media (L.) Cyr., Th–TH, Cm, U3 T0 R 0, Car. Chenopodietea

33. Stellaria holostea L., H–Ch, Eua, U3 T3 R 0, Querco-Fagetea, Car. Carpinion

135

www.mcdr.ro / www.cimec.ro 34. Stellaria graminea L., H, Eua(Md), U2,5 T2 R 3, Arrhenatheretalia, Molinio-Arrhenatheretea

35. Cerastium holosteoides Fries em Hyl, H–Ch, Cm, U3 T 0 R 0, Potentillio-Nardion

36. Cerastium sylvaticum W.et K., TH–H, Ec, U3,5 T3 R 0, Fagetalia, Alno-Padion

37. Holosteum umbellatum L., Th, Eua(Md), U2 T3,5 R 0, Festuco-Brometea, Secalietea

38. Sagina procumbens L., H, Circ(bor), U4 T3 R 3, Plantaginetea

39. Moehringia trinervia (L.) Clairv., TH–H, Eua (Md), U2,5 T 3 R 3, Querco-Fagetea

40. Lychnis viscaria L., H, Eua, U3 T 4 R 0, Pino-Quercetalia

41. Lychnis flos–cuculi L., H, Eua, U3,5 T 2,5 R 0, Milinio-Arrhenatheretea

42. Silene vulgaris (Mnch.) Garce, H, Eua, U3 T3 R 4, Quercetea

43. Silene viridiflora L., H, Md, U2 T3,5 R3, Quercetea pubescenti-petraeae, Car. Quercion farnetto

44. Silene alba (Mill.) E.Krause, Th–TH, Eua, U3 T 2 R 3, Chenopodio-Scleranthea, Onopordion

45. Silene noctiflora L., Th–TH, Eua, U2 T3,5 R 0, Secalietea, Alliarion

46. Dianthus puberulus (Simk.) Kern., H, B, U2 T3,5 R 4, Festuco-Brometea

47. Dianthus gigantheus D’Urv., H, B, U2,5 T3 R 4, Syringo-Carpinion orientalis

48. Dianthus carthusianorum L., H–Ch, E, U2 T5 R 5, Festuco-Brometea

AMARANTHACEAE

49. Amaranthus retroflexux L., Th, Adv, U3 T3 R 0, Chenopodietea

50. Amaranthus crispus (Lesp.et Thév) N.Terraciano, Th, Adv, U3 T4 R 3, Sisymbrion, Onopordion

POLYGONACEAE

51. Rumex acetosa L., H, Cm, U3 T0 R0, Car. Molinion-Arrhenatheretea

52. Rumex sanguineus L., H, E, U4 T3 R4, Alno-Padion, Fagetalia

53. Polygonum aviculare L., Th, Cm, U2,5 T0 R3, Car. Polygonion avicularis

FAGACEAE

54. Fagus sylvatica L., MM–M, E, U3 T3 R0, Car. Fagion, Fagetalia 55. Quercus rubra L., MM–M, Am bor.

56. Quercus cerris L., MM–M, Md, U2 T3,5 R3, Quercion farnetto, Quercion pubescenti-petraeae

57. Quercus petraea (Matt.) Liebl., ssp.petraea, MM–M, Ec, U2,5 T3 R0, Car. Quercion pubescenti- petraeae

58. Quercus petraea ssp. dalechampii (Ten.) Soó, MM, Md, U2,5 T3 R0, Querco-Fagetea, Quercetea pubescenti–petraeae

59. Quercus robur L., MM,E, U3,5 T3 R0, Quercion roboris, Alno-Padion

60. Quercus frainetto Ten., MM, B, U2 T4 R3, Quercion farnetto, Quercetum farnetto-cerris

61. Quercus pubescens Willd, MM, Md, U1,5 T4 R5, Car. Quercetalia pubescentis

136

www.mcdr.ro / www.cimec.ro 62. Quercus virgiliana Ten., MM, Md, U2 T4 R4, Orno-Cotinion

CORYLLACEAE

63. Carpinus betulus L., MM–M, E, U3 T3 R 0, Car. Carpinion, Fagion

64. Corylus avellana L., MM–M, E, U3 T3 R 3, Car. Querco-Fagetea

ULMACEAE

65. Ulmus minor Mill., MM, Eua, U3 T3 R4, Querco–Fagetea, Carpinion

MORACEAE

66. Morus alba L., MM–M, Adv, U2 T3,5 R4,5

URTICACEAE

67. Urtica dioica L., HG, Cm, U3 T3 R 4, Car. Artemisietea, Alno-Padion, Fagetalia

68. Parietaria officinalis L., H, Md, U4 T3,5 R4, Arction, Alno-Padion

JUGLANDACEAE

69. Juglans regia L., MM, Carp–B–Anat, U3 T4 R 3, Acerion

ROSIDAE ROSACEAE

70. Spirea chamaedryfolia L., M, Eua, U3 T2,5 R 0, Asplenietea

71. Pyrus pyraster ssp. achras (Gaertn) Stohr., M–MM, E, U2 T3 R 4, Quercetea, Car. Querco-Fagetea

72. Malus silvestris (L.)Mill., M, E, U3,5 T3 R 4, Car. Alno-Padion, Carpinion

73. Sorbus aucuparia L., MM–M, E, U3 T2,5, R 2, Quercetalia pubescenti-petraeae

74. Sorbus torminalis (L.) Cr., MM, Eua, U2,5 T3 R4, Car. Quercetalia pubescenti-petraeae

75. Sorbus torminalis (L.) Cr., f. semitorminalis (Borb.) Jav., MM, E, U2,5 T3 R 4, Car. Quercetalia pubescenti-petraeae

76. Crataegus monogyna Jacq., M, E, U2,5 T3 R3, Querco-Fagetea, Car. Prunetalia

77. Rubus idaeus L., M, Eua, U3 T3 R3, Fagetalia

78. Fragaria vesca L., H, Eua, U3 T2,5 R0, Querco-Fagetea, Car. Fragarion vescae

79. Potentilla alba L., H, E(Ct), U2,5 T3,5 R3, Quercion petraeae, Car. Quercetalia

80. Potentilla argentea L., H, Eua, U2 T4 R2, Quercetea

81. Potentilla cinerea Chaix in Vill., H, E (Ct), U2 T3,5 R5, Car. Festucetalia valesiacae

82. Geum urbanum L., Eua (Md), U3 T3 R4, Prunetalia, Carpinion, Alno-Padion, Car. Querco-Fagetea

83. Filipendula vulgaris Mnch., H, Eua, U2,5 T3 R 0, Car. Festuco–Brometea (→ Quercetea)

137

www.mcdr.ro / www.cimec.ro 84. Agrimonia eupatoria L., H, Eua, U2,5 T3 R 4, Festuco-Brometea, Quercetea

85. Sanguisorba minor Scop., H, Eua, U2 T3,5 R4, Festuco-Brometea

86. Rosa gallica L., N, Md (est), U2 T4 R4,Quercetea

87. Rosa canina L., N, E, U3 T3 R3, Quercetea → Fagetalia

88. Rosa corymbifera Borkh., N, E, U2,5 T3 R3, Quercetalia, Prunion spinosae, Car. Prunetalia

89. Prunus spinosa L., M, Eua, U2 T3 R 3, Car. Prunetalia, Prunion spinosae

90. Prunus avium L., M–MM, E, U3 T3 R3, Car. Carpinion, Querco-Fagetea

91. Prunus padus L., MM, Eua, U3,5 T3,5 R4, Alno–Padion

FABACEAE

92. Genista tinctoria L., Ch–N, Eua, U2,5 T3 R2, Quercetea pubescenti-petraeae

93. Genista tinctoria L. ssp. ovata (W. et K.)Arc., Ch, E, U2,5 T3 R3,Quercetea pubescenti-petraeae

94. Chamaecytisus banaticus (Griseb. et Senek), Ch–N, B–p, U1,5 T4 R 3, Quercetalia pubescenti- petraeae

95. Lembotropis nigricans (L.) Griseb., N, Ec, U2,5 T 3 R 0, Quercetalia petraeae-pubescentis

96. Ononis arvensis L., Ch(H), Eua (Ct), U3 T4 R 0, Molinio-Arrhenatheretea

97. Medicago lupulina L., Th–TH, Eua, U2,5 T3 R 4, Molinio-Arrhenatheretea

98. Medicago sativa L.ssp.falcata (L.)Arcangeli, H, Eua(Md), U2 T3 R 5, Car. Festuco–Brometea, Quercetea

99. Melilotus officinalis (L.)Pall., TH–Th, Eua, U2,5 T 3,5 R 0, Chenopodietea, Secalietea

100. Trifolium hybridum L., H, E (Md), U3,5 T3 R 4, Molinietalia

101. Trifolium repens L., H, Eua, U3,5 T0 R 0, Molinio-Arrhenatheretea

102. Trifolium pratense L., H–TH, Eua, U3 T0 R 0, Car. Molinio-Arrhenatherea

103. Trifolium montanum L., H, Eua (Ct), U2,5 T 2 R 4, Festuco-Brometea

104. Trifolium medium L., H, Eua, U3 T3 R 0, Quercetalia pubescentis, Querco-Fagetea, Car. Trifolion medii

105. Trifolium alpestre L., H, E(Md), U2,5 T3 R 4, Quercetea

106. Trifolium ochroleucum Huds., H, Md–Ec, U2 T3 R 3, Quercetalia pubescentis

107. Anthyllis vulneraria L., H, E(Md), U2 T0 R4, Car. Festuco-Brometea

108. Lotus corniculatus L., H, Eua, U2,5 T0 R 0, Molinio-Arrhenatheretea

109. Galega officinalis L., H, P–Md, U4,5 T3 R4, Bidention, Calystegion, Molinietalia

110. Astragalus glycyphyllos L., H, Eua, U3 T3 R 4, Querco–Fagetea, Car. Origanetalia

111. Coronilla varia L., H, Ec(Md), U2 T3 R4, Quercetea

112. viciifolia Scop., H, Md, U2 T4 R 5, Car. Mesobromion, Festucetalia valesiacae

113. Vicia sepium L., H, Eua, U3 T3 R 3, Quercetea, Querco-Fagetea, Car. Fagetalia

114. Vicia cracca L., H, Eua, U3 T 0 R 3, Car. Molinio-Arrhenatheretea

138

www.mcdr.ro / www.cimec.ro 115. Lathyrus pannonicus (Jacq.) Garcka ssp. asphodeloides (Gouan), H–G, Eua (Ct), U2 T4 R5,

Quercetea, Car. Geranion sanguinei

116. Lathyrus vernus (L.) Bernh., H, Eua, U3 T3 R3, Car. Fagetalia

117. Lathyrus hallersteinii Baumg., H, D–B, U3 T3 R4, Carpinion dacicum, Fagion dacicum

118. Lathyrus tuberosus L., H (G), Eua (Md), U2 T4 R4, Secalietea, Car. Caucalidion

ONAGRACEAE

119. Epilobium hirsutum L., H, Eua, U4 T3 R3, Car. Filipendulo-Petasition

120. Epilobium montanum L., H, Eua (Md), U3 T0 R4, Car. Fagetalia

LYTHRACEAE

121. Lythrum salicaria L., H–HH, Cm, U4 T3 R 0, Alnetea

ACERACEAE

122. Acer campestre L., MM–M, E, U2,5 T3 R3, Car. Querco-Fagetea

123. Acer tataricum L., M–MM, E (Ct), U2,5 T3,5 R4, Aceri-Quercion

STAPHYLEACEAE

124. Staphylea pinnata L., M, E (Md), U2,5 T3,5 R4, Querco-Fagetea, Car. Berberidion-Acerion

OXALIDACEAE

125. Oxalis acetosella L., H(G), Circ (bor), U4 T3 R3, Fagetalia

GERANIACEAE

126. Geranium pratense L., H, Eua, U3,5 T3 R5, Arrhenatheretea

127. Geranium sanguineum L., H, E(Md), U2 T3 R4, Quercetea, Festucetalia

POLYGALACEAE

128. Polygala comosa Schur., H(Ch), Eua, U2 T4 R4, Molinio-Arrhenatheretea (→ Quercetalia)

129. Polygala vulgaris L., H(Ch), Eua, U3 T3 R 3, Arrhenatheretea - Nardion

CELASTRACEAE

130. Euonymus verrucosus Scop., M, E, U2,5 T3 R4, Querco-Fagetea, Quercetea pubescenti-petraeae, Prunetalia

131. Euonymus europaeus L., M, E, U3 T3 R3, Querco-Fagetea, Car. Prunetalia

139

www.mcdr.ro / www.cimec.ro RHAMNACEAE

132. Rhamnus catharticus L., M, Eua, U2 T 3 R 4, Querco-Fagetea, Car. Prunetalia

133. Rhamnus saxatilis Jacq., M, Md, U1,5 T4 R5, Orno-Cotinion 134. Rhamnus saxatilis Jacq. var. subpubescens (Nyar.) , M, Md, Orno-Cotinion

LORANTHACEAE

135. Loranthus europaeus Jacq., Ch–N, E, U3 T3,5 R0, (pe Quercus rubra), Querco-Fagetea, Carpinion

136. Viscum album L., Ch–N, Eua, U3,5 T3 R 0, Pulmonario (rubrae)-Abieti-Fagetum

EUPHORBIACEAE

137. Euphorbia epithymoides L., H, p–B, U2,5 T4 R3, Quercetea, Car. Geranion sangunei

138. Euphorbia platyphyllos L., Th, Md–Ec, U3 T3 R 3, Chenopodietea

139. Euphorbia virgata W. et K., H, Eua–Ct, U2 T4 R 3, Secalietea

140. Euphorbia cyparissias L. f. vernalis Nyar., H(G), Eua, U2 T3 R 4, Festucetalia, Car. Festuco- Brometea

141. Euphorbia amygdaloides L., Ch, E(Md), U3 T3,5 R4, Car. Fagetalia (→ Quercetea)

142. Mercurialis perennis L., H(G), E, U3,5 T3 R 4, Car. Fagetalia

ARALIACEAE

143. Hedera helix L., N–E, Atl–Md, U3 T 3 R 3, Fagetalia, Acerion

APIACEAE (UMBELLIFERAE)

144. Eryngium campestre L., H, P, U1 T5 R 4, Festuco-Brometea

145. Eryngium planum L., H, Eua (Ct), U2 T3 R4, Arrhenatherion

146. Anthriscus silvestris (L.) Hoffm., H, Eua(Md), U3 T3 R4, Alno-Padion

147. Daucus carota L., TH–H, Eua(Md), U2,5 T3 R 0, Molinio-Arrhenatheretea

148. Carum carvi L., TH, Eua, U3,5 T 3 R 3, Arrhenatheretea

149. Aegopodium podagraria L., H(G), Eua, U3,5 T3 R3, Fagetalia, Querco-Fagetea

150. Pimpinella saxifraga L., H, Eua, U2,5 T 0 R 3, Car. Festuco-Brometea

151. Seseli pallasii Bess., H, B–p, U2 T 3,5 R 4, Festucion rupicolae

152. Peucedanum cervaria (L.) Lapeyr., H, E(Md), U2 T3,5 R 5, Quercetea pubescenti-petraeae

153. Heracleum sphondylium L., H, Eua, U3 T 2,5 R 0, Car. Arrhenatheretalia

154. Trinia ramosissima (Fisch. ex Trev.) Koch, H, B–P, U2,5 T 3,5 R 4, Festucion rupicolae

HYPERICACEAE (GUTTIFERAE)

155. Hypericum perforatum L., H, Eua, U3 T3 R 0, Origanetalia

140

www.mcdr.ro / www.cimec.ro 156. Hypericum hirsutum L., H, Eua, U3 T3 R 3, Querco-Fagetea

VIOLACEAE

157. Viola odorata L., H, Atl–Md, U2,5 T3,5 R 4, Querco-Fagetea

158. Viola reichenbachiana Jord., H, Eua, U3 T 3 R 4, Querco-Fagetea

159. Viola riviniana Rchb., H, E, U3 T3 R 3, Fagetalia, Quercion roboris

160. Viola mirabilis L., H, Eua, U3 T3 R 4, Querco-Fagetea, Fagetalia

161. Viola tricolor L., TH, Eua, U2,5 T3 R 0, Molinio-Arrhenatheretea

CISTACEAE

162. Helianthemum nummularium (L.) Mill., Ch–H, Ec (Md), U2 T3 R4, Festucetalia valesiacae

BRASSICACEAE (CRUCIFERAE)

163. Alliaria petiolata (M.B.)Cavara et Grande, TH–H, Eua (Md), U3 T 3 R 4, Alliarion, Querco- Fagetea

164. Hesperis silvestris Cr., M, Md (P), U4 T2 R 3, Fagetalia

165. Rorippa sylvestris (L.) Bess., H(G), E, U4 T2 R 3, Agropyro-Rumicion

166. Cardamine impatiens L., TH(Th), Eua (Md), U4 T 3 R 4, Car. Fagetalia

167. Cardamine amara L., H, Eua (Md), U5 T0 R 0, Alno-Padion

168. Cardamine bulbifera (L.) Cr., G, Ec, U3 T 3 R 4, Fagetalia

169. Cardaminopsis arenosa (L.) Hay., TH–H, Ec, U2,5 T 3 R 4, Quercetea

170. Arabis hirsute (L.) Scop., TH–H, Circ(bor), U1,5 T 3 R 4, Quercetea pubescenti-petraeae

171. Capsella bursa–pastoris (L.) Medik., Th–TH, Cm, U3 T0 R 0, Chenopodio-Scleranthea

172. Lepidium campestre (L.) R.Br., Th, E(Md), U2,5 T 3 R 0, Car. Polygono-Chenopodion

SALICACEAE

173. Salix caprea L., M, Eua, U3 T 3 R 3, Car. Sambuco-Salicion capreae

174. Salix silesiaca Willd, M, B–Carp, U4 T 2 R 2,

TILIACEAE

175. Tilia tomentosa Mnch., MM, B, U2,5 T 3,5 R 3, Quercion farnetto

176. Tilia cordata Mill., MM, E, U3 T 3 R 3, Car. Carpinion

CORNACEAE

177. Cornus mas L., M, P–Md–Ec, U2 T 3,5 R 4, Quercetea pubescenti-petraeae

178. Cornus sanguinea L., M, Ec, U3 T 3 R 4, Querco-Fagetea, Car. Prunetalia

141

www.mcdr.ro / www.cimec.ro

PRIMULACEAE

179. Lysimachia nummularia L., Ch, E, U4 T 3 R 3, Querco-Fagetea

180. Anagalis arvensis L., Th, Cm, U3 T 3 R 0, Car. Polygono-Chenopodion

181. Primula vulgaris Huds., H, Atl–Md, U3 T 3 R 3, Fagetalia

182. Primula veris L. em Huds., H, Eua, U3 T 2 R 5, Querco-Fagetea

LAMIIDAE GENTIANACEAE

183. Centaurium erythraea Rafn., Th, Eua, U3 T 3 R 2, Quercetea, Molinion-Arrhenetheretea

184. Gentiana asclepiadea L., H, Ec (mont), U4 T 2 R 4, Origanetalia

185. Gentianella ciliata (L.)Borkh., H, E, U2 T 0 R 5, Cynosurion

APOCYNACEAE

186. Vinca minor L., Ch, Md (Ec), U3 T3 R 3, Fagetalia, Car. Carpinion

ASCLEPIADACEAE

187. Vincetoxicum hirundinaria Medicus, H, E (Md), U2 T4 R 4, Quercetea pubescenti-petraeae

RUBIACEAE

188. Asperula tinctoria L., H, Ec (Md), U2,5 T3,5 R 5,Quercetea pubescenti–petraeae

189. Galium flavescens Borb., H, D–B, U2 T 4 R 5, Festucion rupicolae

190. Galium glaucum L., H, P–Md, U2 T4 R 4, Festucetalia valesiacae (→ Quercetea)

191. Gallium odoratum (L.) Scop., G, Eua, U3 T3 R 3, Car. Fagetalia

192. Gallium schultesii Vest, G, Ec, U2,5 T3 R 3,Querco-Fagetea, Car. Carpinion

193. Gallium aparine L., Th, Circ (bor), U3 T3 R 3, Car. Convolvuletalia

194. Gallium mollugo L., H, Eua, U3 T0 R 3, Seslerio-Festucion pallentis

195. Cruciata levipes Opiz., H, Eua, U2,5 T3 R 3, Alno-Padion

OLEACEAE

196. Fraxinus ornus L., M–MM, Md, U1,5 T3,5 R 5, Orno-Cotinetalia

197. Ligustrum vulgare L., M, E(Md), U2,5 T3 R 3, Querco-Fagetea

CAPRIFOLIACEAE

198. Viburnum lantana L., M, Md–Ec, U2,5 T3 R 5, Querco-Fagetea

199. Sambucus nigra L., MM–M, E, U3 T3 R 3, Prunetalia, Alno-Padion

142

www.mcdr.ro / www.cimec.ro

VALERIANACEAE

200. Valeriana officinalis L., H, Eua (Md), U4 T3 R4, Alno-Padion

DIPSACACEAE

201. Succisa pratensis Mnch., H, Eua, U4 T3 R 0, Molinio-Juncetea

202. Knautia arvensis Coult. f. pratensis (Schur) Szabo, H, E, U2,5 T3, R 0, Car. Arrhenatheretea

203. Knautia arvensis Coult. f. integrata Briq., H, E, U2,5 T3 R 0, Car. Arrhenatheretea

204. Scabiosa ochroleuca L., H, Eua(Ct), U2 T4 R 4, Festucetalia valesiacae, Festuco-Brometea

CONVOLVULACEAE

205. Convolvulus arvensis L., H–G, Cm, U0 T0 R 0, Chenopodio-Scleranthea

BORAGINACEAE

206. Cerinthe minor L., TH(H), P–Md, U3 T3 R 0, Caucalidion-Onopordion, Festucion rupicolae, Car. Onopordion

207. Buglossoides purpureocaeruleum (L.) I.M.Johnston, H–G, Ec (Md), U2,5 T4 R5, Quercetea pubescenti-petraeae

208. Echium vulgare L., TH, Eua, U2 T3 R 4, Sedo-Scleranthetea, Car. Festuco-Brometea

209. Echium rossicum, J.F.Gmel., TH, P–p, U2 T4 R 4, Festucion rupicolae

210. Myosotis sylvatica (Ehrh.)Hoffm., H, Eua, U3,5 T3 R 3, Fagetalia

211. Myosotis arvensis (L.) Hill., TH, Eua, U3 T3 R 0, Aperion

212. Myosotis ramosissima Roch., Th, E, U2, T3,5 R 4, Festuco-Brometea

213. Pulmonaria officinalis L., H, E, U3,5 T3 R 3, Car. Fagetalia

214. Pulmonaria mollis Wulfen ex Hornem ssp. mollisima (A.Kerner) Nyman, H, Eua, U2,5 T3 R4, Origanetalia

215. Nonea pulla (L.) Lam et DC., TH–H, Eua, U2 T4 R 3, Festucion rupicolae, Car. Caucalidion

216. Symphytum officinale L., H, Eua, U4 T3 R 0, Molinio–Juncetea

217. Symphytum tuberosum L., H–G, Ec, U3 T3 R 3, Car. Fagetalia, Carpinion, Querco-Fagetea

218. Anchusa officinalis L., TH–H, E (Md), U2 T3,5 R 0, Festucion rupicolae, Car. Onopordion

219. Cynoglassum officinale L., TH, Eua (Ct), U2 T3 R 4, Car. Onopordion, Festucuion rupicolae

SCROPHULARIACEAE

220. Verbascum nigrum L., TH–H, Eua, U2 T3 R 4, Quercetea

221. Verbascum blattaria L., H, Eua (Md), U2,5 T3,5 R 4, Car. Onopordion

222. Verbascum phoeniceum L., H, Eua–Ct, U2 T4 R4, Festucetalia valesiacae (→ Quercetea)

143

www.mcdr.ro / www.cimec.ro 223. Linaria vulgaris Mill., H, Eua, U2 T3 R 4, Chenopodio-Scleranthea

224. Scrophularia nodosa L., H, Eua, U3,5 T3 R 0, Car. Fagetalia

225. Veronica austriaca L., H, Ec, U1,5 T4 R 5, Seslerio-Festucion pallentis

226. Veronica austriaca L.ssp.jacquinii (Baumg.) J.Maly, H, Ec, U1,5 T4 R5, Festucetalia valesiacae

227. Veronica officinalis L., Ch, Eua, U2 T2 R 2, Quercion roboris

228. Veronica beccabunga L., HH–H, Eua, U5 T3 R 4, Glycerio–Sparganion

229. Veronica praecox All., Th, Me–Ec, U1,5 T3,5 R 3, Festucetalia vaginatae

230. Veronica serpyllifolia L., H, Cm, U3 T3 R 0, Agropyro-Rumicion

231. Rhinanthus rumelicus Velen, Th, D–B–Anat, U3 T 4 R 0, Arrhenatheretea

232. Melampyrum cristatum L., Th, Eua, U2 T 3 R 5, Quercetea

233. Melampyrum bihariense Kern., Th, D–B, U2,5 T 3 R 4, Carpinion, Quercion pubescentis

234. Lathraea squamaria L., G, Eua, U3 T 3 R 3, Fagetalia, Car. Querco-Fagetea

PLANTAGINACEAE

235. Plantago major L., H, Eua, U3 T0 R 0, Plantaginetea

236. Plantago media L., H, Eua, U2,5 T0 R 5, Car. Festuco-Brometea

237. Plantago lanceolata L., H, Eua, U0 T0 R 0, Festuco-Brometea LAMIACEAE (LABIATAE)

238. Ajuga reptans L., H–Ch, E, U3,5 T0 R 0, Arrhenatheretalia, Fagetalia

239. Ajuga genevensis L., H, Eua (Ct), U2,5 T 3 R 4, Car. Festuco-Brometea

240. Teucrium chamaedrys L., Ch, Md (Ec), U2 T3,5 R 4, Quercetea pubescenti-petraeae

241. Scutellaria altissima L., H, P–Md, U2,5 T3,5 R 4, Syringo-Carpinion orientalis

242. Glecoma hederacea L., Ch (H), Eua, U3,5 T3 R4, Alno-Padion

243. Prunella grandiflora (L.) Jacq., H, E, U3 T3 R5, Car. Festuco-Brometea

244. Prunella laciniata (L.) L., H, Md (Ec), U2,5 T3,5 R3, Festuco-Brometea

245. Melittis melissophyllum L., H, Ec (Md), U2,5 T3 R 5, Orno-Cotinion

246. Lamium purpureum L., Th, Eua, U3 T0 R4, Secalietea, Car. Polygono-Chenopodietalia

247. Lamium album L., H, Eua, U3 T3 R 0, Arction

248. Lamiastrum galeobdolon (L.) Ehrend et Polatschck, H–Ch, Ec, U3 T0 R4, Fagetalia

249. Galeopsis speciosa Mill., Th, Eua, U3 T2 R 0, Fagetalia

250. Stachys germanica L., H–TH, P–Md, U2 T4 R 4, Onopordion

251. Stachys sylvatica L., H, Eua, U3,5 T0 R 0, Car. Fagetalia

252. Stachys recta L., H, P–Md, U2 T4 R5, Festucetalia valesiacae, Festuco-Brometea, Car. Geranion sanguinei

253. Salvia pratensis L., H, E (Md), U2,5 T3 R5, Car. Festuco-Brometea (→ Quercetea pubescenti- petraeae)

144

www.mcdr.ro / www.cimec.ro 254. Salvia transsilvanica Schur, H, D (end), U1,5 T3,5 R 4

255. Salvia nemorosa L., H, Ec, U2,5 T4 R 3, Festuco-Brometea

256. Salvia verticillata L., H, Eua (Md), U2 T4 R 0, Festuco-Brometea 257. Salvia x sylvestris L., = nemorosa x pratensis

258. Melissa officinalis L., H, Md, U2 T4 R 0, Quercetea

259. Calamintha sylvatica Bromf., H, Ec (Md), U2,5 T 3,5 R 5, Car. Quercion pubescenti-petraeae

260. Clinopodium vulgare L., H, Circ (bor), U2 T 3 R 3, Querco-Fagetea

261.Thymus pulegioides L., Ch, Ec, U2,5 T 3 R 3, Festuco-Brometea

262. Lycopus exaltatus L., HH, Eua (Ct), U5 T 3 R 0, Phragmitetea

263. Mentha longifolia (L.) Nathh, H(G), Eua (Md), U4,5 T3 R 0, Glycerio-Sparganion

CAMPANULACEAE

264. Campanula sibirica L., H, Eua (Ct), U2,5 T 4 R 4, Festucetalia valesiacae

265. Campanula rapunculoides L., H, Eua (Md), U3 T2 R0, Querco-Fagetea, Fagetalia, Car. Geranion sanguinei

266. Campanula patula L., TH, E, U3 T2,5 R 3, Arrhenatheretea

ASTERACEAE ( COMPOSITAE)

267. Bellis perennis L., H, E (Md), U3 T2,5 R 0, Arrhenatheretea, Car. Cynosurion

268. Aster amellus L., H, Eua (Ct), U2 T 3 R 4, Quercetalia petraeae-pubescentis

269. Omalotheca sylvatica (L.) Schultz Bip. Et R.W. Schultz, H, Circ (bor), U3 T3 R3, Car. Epilobietea

270. Inula hirta L., H, Eua (Ct), U2 T 4 R 5, Quercion pubescentis

271. Inula ensifolia L., H, P–p, U1,5 T 5 R 4, Festucetalia valesiacae, Car. Cirsio-Brachypodion

272. Inula britannica L., TH–H, Eua (Md), U3 T 3 R 0, Plantaginetea

273. Anthemis tinctoria L., H, Eua, U1,5 T 3 R 3, Festucetalia valesiacae

274. Achillea collina Becker, H, Ec, U2 T3 R3, Festuco-Brometea, Chenopodio-Scleranthea

275. Achillea millefolium L., H, Eua, U3 T0 R 0, Molinio-Arrhenatheretea

276. Leuchanthemum vulgare L., H, Eua, U3 T0 R 0, Car. Arrhenatheretea

277. Tanacetum corymbosum (L.) Schultz Bip., H, Eua (Md), U2,5 T2,5 R3, Querco-Fagetea, Quercetalia pubescentis

278. Tussilago farfara L., G (H), Eua, U3,5 T0 R 5, Filipendulo-Petasition

279. Doronicum hungaricum Rchb., G (H), Ec (B), U2 T3 R4, Quercetea pubescenti-petraeae, Aceri- Quercion

280. Senecio vulgaris L., Th–TH, Eua, U3 T0 R 0, Chenopodio–Scleranthea, Car. Chenopodietea

281. Senecio jacobea L., H, Eua, U2,5 T3 R 3, Quercetea

145

www.mcdr.ro / www.cimec.ro 282. Xeranthemum cylindraceum Sibth. et Sm., Th, P–Md, U1,5 T 4 R 3, Festucion rupicolae

283. Arctium minus (Hill.) Bernh, TH, E, U3 T 3, R 5, Car. Arction

284. Carduus crispus L., TH, E, U4 T 3 R 0, Alno-Padion, Salicion

285. Cirsium arvense (L.) Scop., G, Eua (Md), U0 T 0 R 0, Chenopodio-Scleranthea

286. Cirsium canum (L.) All., G, Eua (Ct), U4,5 T 3 R 5, Alno-Padion, Alnetea

287. Cirsium rivulare (Jacq.) Link, H, Ec, U4 T 3,5 R 0, Alnetea, Alno-Padion

288. Cirsium vulgare (Savi) Ten., TH, Eua, U3 T 3 R 0, Epilobietea

289. Jurinea mollis (Torn.) Rchb. ssp. transsilvanica (Sprengel) Hayek, H, P–B, U1 T4 R4, Festucion rupicolae

290. Centaurea stenolepis Kern., H, P–p–B, U2,5 T 3 R 2, Quercion

291. Centaurea cyanus L., Th, Cm, U3 T4 R 0, Secalietea, Car. Aperetalia

292. Centaurea scobiosa L., H, Eua (Md), U2,5 T0 R4, Festuco-Brometea, Car. Geranion-Sanguinei

293. Centaurea jacea L.ssp. banatica (Roch.) Hay., H, P–D, U3 T 0 R 0

294. Centaurea nigrescens Willd., H, Ec, U3,5 T 3 R 3, Molinio-Juncetea, Arrhenatherion

295. Cichorium intybus L., H, Eua, U2,5 T 3,5 R 5, Arrhenatheretea

296. Lapsana communis L, Th, Eua (Md), U2,5 T 3 R 3, Querco-Fagetea, Arction, Car. Alliarion

297. Aposeris foetida (L.) Less., H, Ec, U3 T 2,5 R 4, Car. Fagion dacicum, Carpinion

298. Hypochoeris radicata L., H, E, U3 T3 R 3, Cynosurion

299. Leontodon hispidua L., H, Eua, U2,5 T 0 R 0, Mesobromion, Car. Molinio-Arrhenatheretea

300. Picris hieracioides L., TH(H), Eua, U1,5 T 3 R 4, Arction

301. Tragopogon pratensis L.ssp.orientalis (L.) Celak, Th, Eua, U3 T 3 R 4, Arrhenatheretea

302. Mycelis muralis (L.) Dum., H, E, U3 T3 R 0, Car. Querco-Fagetea

303. Hieracium pilosella L., H, E (Md), U2,5 T 0 R 0, Festuco-Brometea

304. Hieracium auricula Lam. et DC., H, E, U3 T 0 R 3, Fagetalia

305. Hieracium umbellatum L., H, Circ(bor), U2,5 T3 R 3, Pino-Quercetalia

MONOCOTYLEDONEAE (LILIOPSIDA) ASPARAGALES ASPARAGACEAE

306. Convallaria majalis L., G, E, U2,5, T3 R 3, Car. Querco-Fagetea

307. Maianthemum bifolium (L.) F.W.Schm., G, Eua, U3 T 3 R 0, Fagetalia

308. Polygonatum odoratum ( Mill.) Druce, G, Eua (Md), U2 T3 R4, Quercetea, Geranion sanguinei

309. Polygonatum latifolium (Jacq.) Desf., G, P–p–B, U3 T3,5 R 4, Querco-Fagetea

310. Polygonatum multiflorum (L.) All., G, E, U3 T 3 R 3, Querco-Fagetea, Car. Fagetalia

ASPHODELLACEAE

146

www.mcdr.ro / www.cimec.ro 311. Anthericum ramosum L., G, Ec (Md), U2,5 T3,5 R4, Festuco-Brometea

HYACYNTHACEAE

312. Muscari comosum (L.) Mill., G, Md–Ec, U1,5 T3,5 R 0, Festuco-Brometea

313. Ornithogalum pyramidale L., G, Md, U2,5 T 4 R 4, Secalietea

314. Ornithogalum umbellatum L., G, Md (Ec), U0 T3,5 R 4, Secalietea

315. Scilla bifolia L., G, E, U3,5 T3 R 4, Car. Querco-Fagetea, Carpinion

ALLIACEAE

316. Allium oleraceum L., G, Eua, U3 T 3 R 0, Quercetea AMARYLLIDACEAE

317. Galanthus nivalis L., G, E (Md), U3,5 T3 R4, Fagetalia, Car. Querco-Fagetea LILIALES COLCHICACEAE

318. Colchicum autumnalis L., G, E (Md), U3,5 T3 R 4, Molinietalia

IRIDACEAE

319. Crocus banaticus Gay., G, D–B, U3 T 3 R 0, Fagion

320. Crocus vernus (L.) Hill, G, Carp–B, U3 T 1 R 2, Fagion

ORCHIDALES ORCHIDACEAE

321. Orchis purpurea Huds., G, Ec, U2,5 T4 R5, Quercion petraeae, Fagetalia,Quercetalia pubescentis

322. Dactylorhiza incarnata (L.) Soó, G, Eua, U4 T0 R 4, Car. Calthion

323. Platanthera bifolia (L.) L. C. Rich., G, Eua (Md), U3,5 T0 R 3, Molinietalia, Querco-Fagetea

324. Listera ovata (L.) L.Br., G, Eua (Md), U3,5 T0 R 4, Fagion

325. Neottia nidus–avis (L.) L. C. Rich., G, Eua (Md), U3,5 T 3 R 3, Car. Fagetalia

326. Epipactis helleborine (L.) Cr., G, Eua, U3 T 3 R 3, Quercetalia pubescenti-petraeae

JUNCALES JUNCACEAE

327. Juncus buffonius L., Th, Cm, U4,5 T0 R3, Plantaginetalia

328. Juncus effusus L., H, Cm, U4,5 T3 R 3, Plantaginetea

329. Luzula pilosa (L.) Willd., H, Eua, U2,5 T2 R 3, Fagetalia, Quercetalia roboris

330. Luzula campestris (L.) Lam. et DC., H, E (Md), U3 T0 R3, Arrhenatheretea

147

www.mcdr.ro / www.cimec.ro

CYPERALES CYPERACEAE

331. Scirpus sylvaticus L., HH, Circ, U4,5 T3 R0, Car. Alno-Padion

332. Carex muricata L., H, Eua (Md), U3 T3 R0, Quercetea pubescenti- petraeae, Querco-Fagetea

333. Carex digitata L., H, E, U3 T 3 R 3, Car. Fagetalia

334. Carex tomentosa L., G, Eua (Md), U3 T 3 R 0, Molinio-Arrhenatheretea

335. Carex sylvatica Huds., H, E, U3,5 T3 R 4, Car. Fagetalia

336. Carex distans L., H, E, U4 T 3 R 4, Agrostion stoloniferae

337. Carex humilis Ley., H(G), Eua (Ct), U2 T3 R5, Quercetea pubescenti-petraeae

POALES (GLUMIFLORAE) (GRAMINEAE)

338. Anthoxanthum odoratum L., H, Eua, U0 T0 R0, Quercetalia

339. Cynodon dactylon (L.) Pers., G, Cm, U2 T3,5 R 0, Festuco-Brometea

340. Agrostis stolonifera L., H, Circ, U4 T0 R 0, Agropyro-Rumicion

341. Milium effusum L., H, Circ, U3,5 T3 R 3, Car. Fagetalia

342. Melica nutans L., H–G, Eua(Md), U3 T 0 R 4, Car. Querco-Fagetea

343. Melica ciliata L., H, Ec–B, U1,5 T4 R 4, Asplenio-Festucion pallentis

344. Deschampsia caespitosa (L.) P. Beauv., H, Cm, U4 T 0 R 0, Molinio-Juncetea

345. Arrhenatherum elatius (L.) J. et C. Presl, H, E (Md), U3 T3 R 4, Agrostion stoloniferae

346. Bromus arvensis L., Th–TH, Eua (Md), U2,5 T3 R 0, Onopordetalia

347. Dactylis glomerata L., H, Cm, U3 T0 R 4, Car. Carpinion, Fagion

348. Poa nemoralis L., H, Eua, U3 T3 R 0, Car. Querco-Fagetea

349. Festuca valesiaca Schleicher, H, Eua, U1 T5 R 4, Quercetea pubescenti-petraeae

350. Lolium perenne L., H, Eua (Md), U2,5 T4 R 5, Cynosurion

ARALES ARACEAE

351. Arum maculatum L., G, Ec (Md), U3,5 T3 R4, Car. Fagetalia L’analyse des bioformes de la zone recherchée releve la prédominance des hémicryptophytes (188 espèces - 53,56%) près de quelles on trouve les géophytes (14,24%) et les chamaephytes (4,55%). Les phanérophytes (des arbres et des arbusts) quoiqu’elles sont prédominantes dans la végétation de la Forêt de Bejan, sont représentées par un nombre réduit des espèces: 46. Les thérophytes (annuelles et biannuelles) sont représentées par 51 espèces (14,52%)(fig.1).

148

www.mcdr.ro / www.cimec.ro Th Ch 15% 5%

M H 13% 53% G 14%

Fig.1.- Les bioformes: H- Hémicryptophytes Th-Thérophytes; G- Géophytes; C -Chamaephytes; M- Mega, Microphanérophyte

Du point de vue floristique, la Forêt de Bejan appartienne au domaine floristique holartique, la region euro-sibériene, la province daco-illyrique attestée par la dominance des éléments floristiques holartiques: euroasiatiques (40,74%), européens (20,79%), center-européens (8,54%), circumpolaires (5,41%). Sur ce fond floristique s’installent les éléments sudiques (12,96%), continentales et cosmopolites (fig. 2)

45 40 35 30 25 % 20 15 10 5 0 Eua E Ec Circ Md DB P p Cm

Fig. 2.- Les éléments floristiques

Les conditions favorables de l’humidité sont confirmées par la proportion élevée des espèces mésophytes (44,72%). Ces espèces, et aussi les mésohygrophytes certifient la répartition uniforme des précipitations dans toute la période de végétation. Les xérophytes (6,55%) avec les xéromésophytes, qui sont plus nombreuses (37,66%) edifient le tapis végétal de cette réserve.(fig. 3)

149

www.mcdr.ro / www.cimec.ro 70 60 50 U 40 T 30 R 20 10 0 1 2 3 4 5 0

Fig. 3.- Les indices écologiques

L’analise des exigences par rapport à la temperature met en evidence une nette dominance des espèces micro-mésothermes (62,67%) ce qui releve, dans cette region des conditions favorables de la temperature. Les espèces moderé-thermophyles (14,52%) se trouvent dans les endroits isolés. Dans la flore de la region recherchée on trouve aussi un nombre plus réduit des espèces microthermes (7,40%) et des espèces eurythermes (13,39%), les dernières adaptées aux temperatures plus elevées (fig. 3). En ce qui concerne la réaction du sol, les espèces acide-neutrophiles (27,06%) et faible acide-neutrophiles (32,76%) sont dominantes, ce qui denote la répandue, dans cette région, des sols moderés faible-acids. Une proportion notable est représentée par les espèces euryioniques (27,35%) avec une large amplitude écologique. Les plantes acidophiles (1,99%) et neutro-basiphiles (10,82%) sont représentées par une proportion reduite dans la flore de la region étudiée (fig. 3).

BIBLIOGRAPHIE

1. PÉTÉRFI M., 1906, Déva flórája, Deva

2. PÉTÉRFI M., 1926, Adatok Deva Flórájához. - Publicaţiile Muzeului judeţului Hunedoara, an II (XXIV), nr.1-2, p. 27–31

3. RESMERIŢĂ I., CERNELEA E., VICOL E., TAUBER F.,1972, Vegetaţia din jurul Devei, Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, IX, p.23-50

4. SANDA V., POPESCU A., DOLTU M., DONIŢĂ N., 1983 Caracterizarea ecologică şi fitocenologică a speciilor spontane din flora României. - Stud. şi Comunic., St. Nat., Muz. Brukenthal, Sibiu, supl., 25

5. SCHREIBER ST., NUŢU A., 1969, Angiospermele dicotiledonate din flora dealurilor Devei, Sargetia, Acta Muz. Dev., Ser. Sci. Nat., Deva, VI, p.231-258 150

www.mcdr.ro / www.cimec.ro 6. SCHREIBER ST., NUŢU A., 1970, Notă asupra Quercineelor Pădurii Bejan, Sargetia, Acta Muz. Dev., Ser.Sci. Nat., Deva, VII, p. 303–305

7. SIMONKAI L., 1886, Enumeratio Florae Transsilvanicae vesculosae critica, Budapest

8. STĂNESCU V., ŞOFLETEA N., STANCIU A., 1997, Oak tree hybrids in the Bejan forest- Deva. Reactualisation and genetic prospections, Sargetia, Acta Muz. Dev., Ser. Sci. Nat., Deva, XVII, p. 29–36

9. UNGAR K., 1925, Flora Siebenbürgens, Sibiu 10. x x x Flora R.P.R (şi) R.S.R., 1952–1976, vol. I-XIII, Ed.Acad., Bucureşti

Marcela Balazs Le Musée de la Civilisation Dacique et Romaine Rue 1 Decembre 39 Deva, Roumanie

151

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 153 -159

THE ORIGIN OF THE CALCIPHILE FLORA FROM THE ROMANIAN CARPATHIANS

DANIELA ILEANA STANCU NICOLAE BOŞCAIU

Rezumat Originea florei calcifile din Carpaţii Româneşti

Este o prezentare a rolului jucat de calcifilie de-a lungul timpului, în special a marilor schimbări climatice care au coincis cu formarea înaltelor nivele complexe ale florei montane. Ca o concluzie, plantele calcifile din Carpaţii Româneşti au origini poligenetice, venind din diferite arii fitogeografice şi emigrarea lor s-a produs în diferite ere fitoistorice.

The high frequency of the calciphile species has recently been emphasized by the botanical studies. Many petrophytes from all the levels of vegetation in the mountains, from the mountainous level to the alpine level, can easily be found only on the calcareous layer. There is also a great number of orophytes whose calciphilie is optional. Thus, the appearance of calcareous rocks, on small areas, is followed by the trait of a distinct flora. On the other part, there is an evidently relationship between the growing of the altitude and the frequency of the calciphile species. But many calciphile species can frequently be found on alkaline rocks, especially the gabbroic ones.

On H. MERXMULLER (1952) opinion, disjunctions between the calciphile species that can be found these days in the Northern and Southern parts of the Alps, appeared towards the end of the tertiary age when there still where large areas of limestone which, these kinds of plants used to grow on an unbroken area. Relying on the statistic analysis of the flora from the mountains in the Oriental Sayan, L.

M. MALYSHEV (1965) established some important considerations about the florogenetic role of the calciphilie. According to Malyshev's explanations, the calciphilie has been developed in conditions of climate's drying, because the calciphilie provide for compensation of the deficit of humidity during dryness periods. As a result, the calciphilie played an important role during the times of widen climatic changes that coincided with the formation of the complexes high level of the mountains flora. As a consequence of the widen climatic tolerance, the calciphilie encourage the migration of divers vegetal

153

www.mcdr.ro / www.cimec.ro populations across big distances, which supporting the floral changes between distant mountains. So, was favored the extension of the criophyle species in regions where the climate is dryness. At the same time, the optional calciphilie of some criophyle species, became obligatory in the regions with a humid climate, where they can be found only on a calcareous layer. Also, calciphile species can be found in eutrophic or even mezotrophic peat-bogs, but the species that are specific to these peat-bogs could frequently be found on limestones too: Parnassia palustris, Pedicularis verticillata, Pinguicula vulgaris, Primula farinosa, Swertia perennis. On the same way, fontinal higrophytes such as Saxifraga aizoides, Silene pusilla and Viola biflora can often be found on arid limestone. On its turn, Saxifraga mutata ssp. mutata (which is alpine vicariant of the Carpathian endemism Saxifraga mutata ssp. demisa) survived in Romania till today only in the eutrophic peat-bog from the Braşov depression. Yet, there are some exceptions: thus, the obligatory calciphile species from the northern areas such as Helianthemum numularium, could become optional or indifferently, in the southern areas. Finding that the calciphilie is more important for the alpine flora than for the mountainous level, leads to the conclusion that this flora has formed in a moister climate than the alpine level' s flora (L. MALYSHEV 1965). According to Malyshev, many species whose area have far-away disjunction, are calciphile species. In his turn, the frequency of the calcifile areas seems to be correlate to the alohtone elements of the flora. On Malyshev opinion in the native floral complexes, the calciphile species are less numerous than the alohton ones. Thus, calciphilie favored the floristic exchanges between the floras of several massifs of the alpine system and the arctic flora. The calciphile flora from the Romanian Carpathians seems to have a two-folded origin, coming from the tertiary oro-mediteranean flora, as well as from the northern massifs of holarctic flora. But, a great number of nemoral hemiorophyte which are considered as having appeared in the ancient Miocene flora, are calciphobe (Syringa josikaea, Veronica bachofenii) or indifferent at the calcareous layer (Aconitum moldavicum) or, al least, they could eventually be calciphile (Hepatica transsilvanica). The calciphile plants could migrate on long distances under the conditions of a climate that grows arid or cold in catathermes ages. Malyshev's statistics showed that in the Orient Sayan, the calciphilie of the arctic-alpine plants are 30% while the alpine ones only 24%. These percentages are similar to those of the Romanian Carpathians flora have polygenetic origins, coming from different fitogeographic areas and their emigration happened in different fitohistoric ages. Despite the huge fitogeographic interest, the corologic belonging of this plants stands relative, as we do not always know the whole data concerning a certain area of all these species.

154

www.mcdr.ro / www.cimec.ro At the same time, according to the fitogeographic information we have today, we support the following corological classification of the calciphile plants of the Romanian Carpathians flora.

Boreo-Circumpolar Saxifraga hirculus L., 2n =32

Arctic-Alpine-Circumpola Androsace chaejasme Wulfen, 2n = 20 Astragalus frigidus (L.) A. Gray, 2n = 16 Cystopteris montana (Lam.) Desv., 2n = 168 Rhodiola rosea L., 2n = 22 Saxifraga adscendens L., 2n = 22 Saxifraga cernua L., 2n = 52, 54 Saxifraga hieraciifolia Waldst. & Kit., 2n =... Saussurea alpina (L.) DC., 2n = 52,54 Silene acaulis (L.) Jacq., 2n = 24

Alpine-Circumpolar Anemone narcissiflora L., 2n = 14,16 Draba fladnizensis Wulfen, 2n =16 Dryas octopetala L., 2n= 18,36 Hedysarum hedysaroides (L.) Sch. et Thell., 2n =14 Myosotis alpestris F. W. Schmidt, 2n = 24, 48, 72 Oxytropis campestris (L.) DC., 2n =… Polygonum viviparum L., 2n = 82-86, 100 Salix reticulata L., 2n= 38 Saxifraga oppositifolia L., 2n = 26

Alpico-Arctic Arabis alpina L., 2n = 16, 32 Euphrasia salisburgensis Funck, 2n = 44 Nigritella nigra (L.) Reichenb., 2n = 64 Saxifraga aizoides L., 2n = 26 Saxifraga androsacea L., 2n = 16 Saxifraga paniculata Miller, 2n = 28

155

www.mcdr.ro / www.cimec.ro Alpico-Altaic-Arctic Astragalus alpinus L., 2n = 16, 32 Astragalus penduliflorus Lam., 2n = 16 Carex capillaris L., 2n = 54 Pinguicula alpina L., 2n = 32

Alpico-Altaic Aster alpinus L., 2n = 18, 36 Leontopodium alpinum Cass., 2n = 52 Saussurea discolor (Willd.) DC., 2n = 26 Saxifraga moscata Wulfen, 2n = 22, 52

Alpico-Centro-European Androsace lactea L., 2n = 76 Armeria alpina (DC.) Willd., 2n = ... Astragalus australis (L.) Lam., 2n = 32,48 Bupleurum falcatum L. ssp. cernum (Ten.) Archangeli 2n= … Bupleurum ranunculoides L., 2n = 42 Carex brachystachys Schrank, 2n = 40 Cerinthe glabra Miller, 2n = … Draba aizoides L., 2n = 16 Galium anisophyllum Vill., 2n =22-80, 110 Gentiana clusii Perr. & Song., 2n = ... Gentiana lutea L., 2n = 40 Helianthemum alpestre (Jacq.) DC., 2n = 22 Helianthemum numularium (L.) Miller ssp. grandiflorum (Scop.) Schinz. & Thell., 2n= ... Kernera saxatilis (L.) Reichenb., 2n = 16, 32 Linaria alpina (L.) Miller, 2n = 12 Oxytropis pyrenaica Godron & Gren., 2n = 16 Oxytropis halleri Bunge, 2n = 32 Ranunculus thora L., 2n = … Rumex scutatus L., 2n = 40 Salix retusa L., 2n = 76, 114 Scabiosa lucida Vill., 2n = 16 Silene pusilla Waldst. & Kit., 2n = 24 Valeriana montana L., 2n = 32

156

www.mcdr.ro / www.cimec.ro Alpico-Carpathian Androsace obtusifolia All., 2n = … Eritrichium nanum (L.) Schrader ssp. nanum, 2n =… Nigritella rubra (Wettst.) K. Richter, 2n = 34 Polygala alpestris Reichenbach, 2n = 34 Saxifraga mutata L. ssp. mutata, 2n = 28 Viola alpina Jacq., 2n = 22

Alpico- Carpathian- Balcanic Asplenium lepidum C. Presl., 2n = 144 Biscutella laevigata L., 2n = 18, 36 Cerastium eriophorum Kit., 2n = 36 Daphne blagayana Freyer, 2n = 18 Doronicum columnae Ten., 2n = … Genista radiata (L.) Scop., 2n = ... Geranium macrorrhizum L., 2n = 46, 87, 93 Peltaria alliacea Jacq., 2n = 14, 28 Trisetum alpestre (Host.) Beauv., 2n = …

Balcano-Carpathian (incl. Dacian) Alyssum repens (Reut.) Jav., 2n = 16 Arabis praecurrens Waldst. & Kit., 2n = … Asperula capitata Kit., 2n = 22 Bupleurum diversifolium Roch., 2n = … Carduus kerneri Simonkai, 2n = ... Delphinium fissum Waldst. & Kit., 2n = … Draba lasiocarpa Rochel, 2n = … Erysimum comatum Pancici, 2n = ... Erysimum witmanni Zawadski ssp. transsilvanicum (Schur) P.W. Ball, 2n = … Ferulago silvatica (Besser) Reichenb., 2n = … Gypsophila petraea (Baumg.) Reichenb., 2n = … Lilium carniolicum Bernh. ssp. jancae (A. Kern.) Asch. & Graebn., 2n= … Moehringia pendula (Waldst. & Kit.) Fenzl., 2n = … Peucedanum longifolium Waldst. & Kit., 2n = … Seseli gracile Waldst. & Kit., 2n = … Seseli rigidum Waldst. & Kit., 2n = …

157

www.mcdr.ro / www.cimec.ro heufleriana Schur, 2n = … Sesleria rigida Heuffel, 2n = …

Balcano-Dacian-Panonic: Ferula sadleriana Ledeb., 2n = ... Silene flavescens Waldst. & Kit., 2n = …

Illyric: Onobrychis alba (Waldst. & Kit.) Desv., 2n = …

Moesiac: Campanula crassipes Heuffel, 2n= 34 Ferula heuffeli Griseb., 2n = ... Festuca xanthina Roem. & Schultes, 2n = ... Minuartia graminifolia (Ard.) Jav., 2n = ... Primula auricula L. ssp. serratifolia (Roch.) Jav., 2n = ... Scutellaria vellenovskyi Rech., 2n = ... Sesleria filifolia Hoppe, 2n = ... Silene saxifraga L., 2n = 24

Carpathian (incl. Dacian) Athamantha turbith (L.) Brot. ssp. hungarica (Borbas) Tutin, 2n = … Campanula carpatica Jacq., 2n= 34 Dianthus callizonus Schott & Kotschy, 2n = 30 Eritrichium nanum (L.) Schrader ssp. jankae (Simk.) Jav., 2n = … Hesperis moniliformis Schur, 2n = … Hesperis nivea Baumg., 2n = … Hesperis oblongifolia Schur, 2n = … Linum uninerve (Rochel) Jav., 2n = … Onobrychis transsilvanica Simk., 2n = 14 Oxytropis carpatica Uechtr., 2n = ... Papaver corona-sancti-stephani Zapal, 2n = ... Primula wulfwniana Schott ssp. baumgarteniana (Degen & Moesz) Ludi, 2n= 66 Salix kitaibeliana Willd, 2n = 76 Saxifraga mutata L. ssp. demissa (Schot & Kotschy) D.A. Webb., 2n = ... Trisetum fuscum (Kit. ex Schultes) Schultes in Roemer & Schultes, 2n = ...

158

www.mcdr.ro / www.cimec.ro Literature cited ALEXIU V. & DANIELA STANCU (1995): Propunere de rezervaţie pe baza unui studiu fitocenologic în Complexul de chei al Dâmboviţei.- Naturalia, Stud. Cerc., Piteşti, 1: 119-128.

BĂNĂRESCU P. & N. BOŞCAIU (1973): Biogeografie. Perspectivă genetică şi istorică. Edit. Stiinţifică, Bucureşti.

BELDIE AL. (1967): Endemismele şi elementele dacice din flora Carpaţilor româneşti. In: Comunicări de botanică la a V-a Consfătuire de geobotanică, Bucureşti, 113-120.

DIHORU G. & C. PÂRVU (1987): Plante endemice în flora României. Edit. Ceres, Bucureşti.

NEGREAN G. & M. OLTEAN (1989): Endemite şi zone endemo-conservatoare din Carpaţii S- E.- Ocrot. Nat. Med. Inconj., Bucureşti, 33(1): 15-25. *** 1952-1969 – Flora R.P.R. şi R.S.R, Edit. Acad., Bucureşti, vol. I-XIII.

Daniela Ileana Stancu The Museum of Piteşti County 44, Armand Călinescu Street Romania Nicolae Boşcaiu Romanian Academy Cluj-Napoca, 9, Gheorghe Bilaşcu Street Romania

159

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 161 - 169

BIODIVERSITÉ DES FORÊTS VIERGES DE ROUMANIE

STELIAN RADU CORINA COANDĂ

Rezumat Biodiversitatea pădurilor virgine din România

Pădurile virgine şi cvasivirgine din România se disting printr-o remarcabilă diversitate în compoziţia, structura, fondul genetic şi aspectul lor peisager. Această diversitate se manifestă la nivelul genelor, speciilor, ecosistemelor şi ecocomplexelor. În aceste păduri s-au inventariat 34 formaţiuni forestiere, relicte terţiare şi glaciare, un mare evantai de plante endemice şi numeroşi arbori remarcabili. Fauna silvicolă a acestor păduri este reprezentată prin 36 specii de mamifere, 156 specii de păsări, 13 specii de reptile, 15 specii de batracieni şi nevertebrate rare. Numeroase animale şi plante silvicole declarate “monumente ale naturii” sau protejate prin diferite acte normative sunt cantonate în pădurile virgine înglobate în reţeaua de parcuri naţionale sau rezervaţii naturale şi beneficiază de un anumit statut de protecţie.

INTRODUCTION L’extention spaciale, la pérénité et la stabilité des écosystèmes forestiers sont des atributs qui conférent aux forets et aux milieux sylvicoles la possibilité de réunir des biotopes extrèmement diversifiés et des biocénoses très complexes, constituées par des nombreuses populations d’arbres, d’arbustes, de lianes, d’herbes, de mousses, de lichens, de champignons, de mammifères, d’oiseaux, de batraciens, de reptiles, d’, de vers et de micro-organismes – pour n’énumérer que les principaux groupes d’espèces. En même têmps il faut se rendre compte que dans ces forêts se déroulent sans interromption un impressionnant nombre de processus physiologiques, écologiques et évolutifs. Dans ces conditions, la multitude et la variété des niches écologiques que la forêt et ses arbres composants mettent à la disposition avec générosité aux autres différentes groupes d’êtres vivantes atteindent des dimensions merveilleuses, pas encore rencontrées dans autres formations végétales. Particulièrement, à l’assurance de la rémarquable biodiversité des nos forêts une contribution fondamentale amène le fait qu’elle sont encore représentées, sur des superficies étendues, par des 161

www.mcdr.ro / www.cimec.ro écosystèmes naturels ou peu changés, qu’il existe un apport supplémentaire des espèces par suite de la position géographique, des conditions variées du relief et du climat, aussi qu’aux influences d’un grand nombre de régions biogéographiques, limitrophes ou plus éloignées, qui pénétrent sur le territoire du pays. Et ces constatations reçoivent une forte confirmation surtout dans le cas des forêts vierges et quasivierges, des vrais trésors par rapport à la biodiversité, oû les populations des vivantes et les processus vitals se développement naturellement, sans interventions déréglantes significatives (DONIŢĂ

& SORAN 1994; GIURGIU 1995). Estimées au niveau du pays aux environ 400 milliers d’hectares et cantonées surtout dans le Parcs nationaux constitués en 1990 (l’ordre MAPPM No 7), dans la majorité des bassins hydrografiques peu accesibles et dans quelques réserves naturelles isolées et d’une moindre étendue, les forêts vierges et quasi vierges roumaines se distinguent, d’après les recherches accompli jusqu’à present (GIURGIU 1995; RADU 1995; RADU & COANDĂ 1999; RADU, COANDĂ & BURZA, 2000), par une marquée diversité compositionelle, structurale, génétique et paysagère. Les forêts abritent une flore précieux et une faune riche, représentée par des mammifères sylvicoles y compris des éspeces à peu près disparu dans l’ouest de l’Europe (l’ours, le loup, le lynx), une aviafaune diversifiée et une multitude d’autres taxons des vertébrés et invertébrés. La survi de cette immense richese biologique est strictement associée avec l’intégrité et la conservation de ces refuges naturels. Dans nos forêts naturelles la biodiversité se manifeste pleinement à tous les niveaux hiérarchiques d’organisation (gènes, espèces, écosystèmes, écocomplexes) et peut ètre mise en évidance au moyen d’une série d’indicateurs quantitatifs et qualitatifs. Le tableau 1 présente d’une manière comparative plusieurs indicateurs de cette biodiversité aux niveaux du pays, des écosystèmes forestiers (y compris des milieux associés) et des forêts vierges et quasi vierges, qui permettent une évaluation correcte du rôle des ces dernières, comme principal dépositaire et conservateur d’une grande partie de la diversité sylvicole et nationalle.

162

www.mcdr.ro / www.cimec.ro

Tab. 1- Indicateurs quantitatifs et qualitatifs de la biodiversité des fôrets roumains

Unités et sous- Nombre et pourcentage d espèces (%) divisions Existants en pays Specifiques Signalées dans les forets Espèces sylvicoles Repartition des especes forestieres en differentes categories UICN, taxonomiques aux vierges et quasi vierges 1994 (d'après RADU, 1995) écosystems etudiees forestiers et aux milieux Protégés par Déclarées Espèces Espèces Espèces Espèces Espèces associés differents monuments menaces vulnerables rares rares, indetermi arrêtés naturels (E) (V) (R) potentiel- nées et lement insuffi- vulnerables santes (R/V) connues (I+K)

No. % No. % No. % No. No. No. No. No. No. No. Plantes supérieures 3567 100 1251 35 ? ? 36 19 17 42 194 - 17 Arbres 58 100 58 100 27-51 46-88 3 2 2 5 14 - 1 Arbustes 118 100 118 100 31-84 26-71 5 7 1 13 45 - 7 Herbs de forêts 1075 100 1075 100 ? ? 28 10 14 24 135 - 9 Mammifères 102 100 43 42 36 84 - 2 3 5 8 - 5 Oiseaux 387 100 >250 >65 >156 >62 8 18 14 5 - 11 1 Reptiles 30 100 15 50 13 87 4 - 12** 3*** - - - Batraciens 20 100 16 80 15 94 - 2 5 - - 6*** - Poissons d'eau douce 91 100 21 23 13 62 1 1 2 8 - - -

Légende: * - estimations preliminaries ** - espèces strictement protégées (Directives Habitats – Annexe II) *** - espèces protégées (Directives Habitats – Annexe III)

? - manqué de données

163

www.mcdr.ro / www.cimec.ro DIVERSITÉ BOTANIQUE Au sujet de la diversité des éspèces, dans les forêts vierges et quasi vierges on peut rencontrer, en différentes proportions, toutes les espèces forestières dominantes, tant celles zonales (Pinus cembra, Picea abies, Abies alba, Fagus sylvatica, Quercus petraea, Quercus robur, Quercus cerris, Quercus frainetto), que celles avec des aires intrazonales (Larix decidua, Pinus nigra, Pinus sylvestris, Fraxinus – 3 espèces, Ulmus – 4 espèces, Populus alba, Populus nigra, Populus canescens, Populus tremula, Salix alba et Salix fragilis). Dans ces forêts on a enrégistré (STOICULESCU 1995) la présence de 34 formations forestières parmi les 50 formations, inventariées et décrites à l’échelle du pays. Parmi les 58 espèces d’arbres et 118 espèces d’arbustes qui forment le paysage forestier national, dans les forêts vierges et quasi vierges on peut rencontrer entre 27 (Retezat) et 51 (Cheile Nerei-Beuşniţa) espèces d’arbres et respectivement 31 (Retezat) à 84 (Cheile Caraşului -Semenic) espèces d’arbustes. La richesse en espèces d’arbres des forêts naturelles localisée dans la moitié sud du pays (Cheile Nerei-Beuşniţa, Cheile Caraşului-Semenic, Domogled-Valea Cernei, Cozia) est dû à la présence sur ces territoires d’éléments termophiles d’origine balcanique-méditerranéene tels que: Acer monspessulanum, Carpinus orientalis, Corylus collurna, Celtis australis, Fagus orientalis, Fagus sylvatica ssp. moesiaca, Fraxinus ornus, Juglans regia, Pinus nigra ssp. banatica, 8 espèces et sous espèces de Quercus, 7 espèces de Sorbus dont Sorbus graeca (cretica), Sorbus borbasii et Sorbus umbellata ssp. banatica, 4 espèces de Tilia, ainsi que nombreuses arbustes rares (Daphne laureola, Daphne blagayana, Ruscus aculeatus, Ruscus hipoglossum, Syringa vulgaris, Cotinus coggygria, Staphylea pinnata, Hedera helix etc). Par leur rôle de barrière et de réfuge pour plants et animaux durant des glaciations, les Carpates roumaines et les forêts vierges qui ont survécu içi abritent un grand nombre d’espèces reliques et endémiques. Dans la catégorie des reliques tertiaires, protégées dans différentes réserves, nous trouvons Syringa josikaea et Hepatica transsilvanica, alors que Betula humilis, Betula nana, Salix starkeana et Vaccinium oxycoccus sont connu comme étant reliques glaciaires. Dans ces forêts on rencontrent aussi un grand éventail de plants endémiques parce que la majorité des centres endémo-conservatoires des Carpates (Rodna, Bistrita, Ceahlau, Bucegi et Piatra Craiului, Retezat-Godeanu, les montagnes du Banat) se superposent sur les territoires occupé par des grands massifs de forêts naturelles. Au pont de vue écologique, les espèces endémiques sont surtout cantonnées dans les milieux associés aux forêts (versants abrupts, éboulis, paturages xériques, micro- stations excessivement humides), sur substrats calciques prédominant (NEGREAN & OLTEAN 1989). Une certaine fréquance a été enrégistré dans les réserves étudiées chez les espèces endemique : Silene dubia, Dianthus tenuifolius, Dianthus spiculifolius, Hepatica transsilvanica, Leontodon

164

www.mcdr.ro / www.cimec.ro pseudotaraxaci, Ranunculus carpaticus, Trisetum macrotrichum et autres. Une occurrence très réduite montrent les espèces: Barbarea lepusnica, Centaurea phrygia ssp. retezatensis, Dianthus callizonus, Draba dorneri, Festuca bucegiensis, Sorbus borbasii, Rosa coziae et autres. PARTICULARITÉS DENDROLOGIQUES Au niveau intraspécifique, les espèces ligneuses des forêts naturelles se distinguent par une ramarquable diversité phénotipique et génétique, manifestée par une polymorphisme prononcé et par la présence de nombreuses sous-espèces, variétés, formes, écotypes (climatiques et édafiques), provenances, populations et hybrides, douées d’excellentes valeurs adaptives et productives. Dans les Carpates roumaines sont localisés les plus précieux centres de gènes européens, en particulier pour Picea abies, Abies alba, Fagus sylvatica et Quercus petraea, comme l’ont prouvé les cultures comparatives de diverses provenances instalées dans diffférants pays du continent de même que les recherches récentes en matière de génétique forestière (KREMER 1996; ENESCU et all. 1997). Ces espèces constituent dans la majorité des forêts vierges et quasi vierges, et ceci sur des superficies remarquables, des peuplements monumental, ayant des performances dimensionnelles, productives et technologiques exceptionnelles. Dans ces peuplements on peut rencontrer, dans leur milieu naturel, de nombreux arbres multiséculaires, de vrais géants du monde végétal du climat tempéré, d’une remarquable valeur dendrologique et dendrocronologique, dépositaires des archives pleins de renseignements, mais jusqu’à présent non encore soumis aux investigations. Dans les forêts vierges; nos arbres trouvent les meilleurs conditions pour démontrer pleinement leur potentiel génétique du point de vue longévité et des dimensions, réalisant de gros diamètres et des hauteurs d’environ 60 m chez l’épicea, 55 m chez le sapin, plus de 45 m chez l’hêtre et 40 m chez le chêne sessile. Dans les forêts du cantonnement forestier Ţarcude on a trouve en 1959 un épicea d’une hauteur de 62,5 m. Des exemplaires ayant des performances dimensionnelles remarquables sont signalés dans les forêts d’Izvoarele Nerei, Caraiman, Slătioara, Runcu-Groşi, Iauna-Craiova et autres, mais les forêts naturelles des Carpates roumaines cachent encore de nombreux spécimens aux âges et dimensions remarquables, qui attendent d’être découverts et présentés au monde scientifique et au grande public. Même après leur mort, ces géants multiséculaires se maintenent dans l’écosystème plusieurs décennies, favorisant ainsi l’instalation et le développement d’une cohorte d’êtres vivantes, ayant des missions bien déterminées dans la structure et dans le fonctionnement de l’écosystème. DIVERSITÉ ANIMALE En ce que concerne la faune sylvicole, on sait que la varieté et l’abondance des ressources noutritives végétales favorisent la concentration et le développement d’un grand nombre des

165

www.mcdr.ro / www.cimec.ro consommateurs (primaires, secondaires, tertiaires) de prédateurs et de parasites, intégrés dans des chaines trophiques spécifiques, et situés aux différents niveaux des réseaux et des pyramides trophiques (CEIANU 1981). Dans la forêt vierge et quasivierge on retrouve d’une manière significative les principalax groupes d’êtres vivants supérieures qui composent la faune sylvicole du pays (tableau 1), respectivement environ 84% des mammifères, 62% des oiseaux, 87% des reptiles, près de 94% des batraciens et 62% des poissons d’eau douce (DRUGESCU 1995; RADU 1995 et autres). Les mammifères sont représentées içi par 36 espèces, y compris par des taxons d’une grande valeur écologique et cynégénitique comme l’ours brun, le loup, le cerf carpatique, le lynx, le chamois, le sanglier, le chevreuil, le chat sauvage et le renard. Cette énumération doit être complétée par des espèces appartenent aux genres Martes, Mustela, Lepus, Sciurus; aux familles Gliridae, Muridae, Cricetidae, Spalacidae, Talpidae, Soricidae et par au moins 13 espèces de chauves-souris (Vespertillionidae). Les forêts des Carpates roumaines abritent les plus vastes et les plus denses populations d’Ursus arctos, c’est à dire la moitié des effectifs européens (en excluant la Russie), 40% de la population de loups (Canis lupus), une tiers de la populations de lynx (Lynx lynx lynx) et aussi les plus belles populations de cerfs (Cervus elaphus hippelaphus) (ALMĂŞAN 1997). L’exceptionnel potentiel génétique des principales espèces cynégétiques a été confirmé par le grand nombre des médailles d’or obtenues par les trophée roumains à l’occasion d’expositions internationales et aussi par le fait que dans les principaux massif montagneuses – forèstieres sont localisés les centres de spéciations pour une série des taxons sous endémiques comme Cervus elaphus montanus, Rupicapra rupicapra carpatica, Sus scrofa attilla, Lepus europaeus transsylvanicus, Capreolus caprolus transsylvanicus etc. La faune avicole est représentée par 156 espèces d’oiseaux qui, grâce à leur adaptations morphologiques, physiologiques et éthologique sont capables d’exploiter d’une manière complexe les diverses riches écologiques offertes par les forêts. Nous trouvons des oiseaux grimpants (les familles Picidae, Sittidae, Certhidae, les genres Parus et Regulus); des insectivores (les genres Philloscopus, Muscicapa, Sylvia, Luscinia, Turdus); des granivores (Garrulus, Pica, Nucifraga, Loxia, Pyrrhula, Emberiza, Fringilla, Spinus et autres) et des prédateurs (Accipiter, Strix, Glaucidium, Bubo). Une position particulière détienent les galliformes phytophages: le grand tétras (Tetrao urogallus), le tétras lyre (Lyrurus tetrix) et la gelinotte des bois (Bonasia bonasia), qui ont une importance cynégétique, à l’exception du tétras lyre en train d’extinction (CEIANU 1981; MUNTEANU, 1984; RADU, 1995). La faune des reptiles rencontrées dans les forêts naturelles englobe 13 espèces de lézards (Lacertidae) et les serpents Vipera berus, Vipera ammodytes, Natrix natrix, Natrix tesselata, Coronella austriaca, Elaphe longissima et Coluber jugularis. Les batraciens des forêts naturelles embrassent 15 espèces d’une dispersion plus large, dans

166

www.mcdr.ro / www.cimec.ro les vallés humides, au long des ruisseaux et au près des étangs: On peut ainsi rencontrer des tritons (Triturus montadoni, Triturus alpestris), les salamandres (Salamandra salamandra) et des grenouilles et crapaux des genres Rana, Hyla, Bombina et Anguis. Dans les eaux vives de montagne, on rencontrent des populations piscicoles formé par des truites (Salmo trutta fario), des saumons (Hucho hucho), et des ombres de rivière (Thymallus thymallus) et, à la limite inférieure des rivières, par des espèces telles que Leuscinus leuscinus (le chevaine), Barbus barbus (le barbeau), Barbus meridionalis petenyi, Chondostroma nasus (le mulet) et Lota lota (la lote). D’autres espèces de petits poissons accompagment les salmonides dans leur habitat naturel. Les recherches réalisées dans les forêts naturelles du Parc national de Retezat ainsi que dans d’autres réserves naturelles (POPOVICI et al. 1992) ont mis en évidance une forte diversité spécifique aussi pour d’autres groupes faunistiques tels que les insects (particulièrement les ordres Lepidoptera, Coleoptera, Collembola et autres), les arthropodes, les lombricides et autres, spécifiques de ces forêts. Dans les forêts du P.N. Domogled-Valea Cernei 350 espèces de coléoptères vivantes dans le bois des arbres ont été identifiées, y compris 60 réliques propres aux forêts vierges, indiquant ainsi la présence inintérrompue des forêts en ces lieux. Parmi ces réliques ont été redécouvertes les espèces Rhysodes sulcatus et Rhysodes americanus, disparues en l’Europe de l’ouest (FABRITIUS 1994). Cette diversité faunistique est déterminée, particulièrement pour les grandes mammifères et les oiseaux d’intérêt cynégétique (l’ours, le loup, le cerf, le grand tétras et autres), par l’existance des forêts séculaires (étendues, compactes et peu accesibles), qui possèdent des structures et textures complexes, telles que des clairières, de vieux arbres (vivants, creux, renversés ou à différantes étapes de décomposition) des ressources nutritives suffisantes (d’origine animale ou végétale – des herbes, des arbrisseaux, des fruits, des champignons), de l’eau (pour abreuvage et baignade) et des réfuges

(pour repos, reproduction ou hibernation)(ICHIM 1994). Englobant dans son espace des biotopes si diversifiés et si complexes, la forêt vierge est l’unique sanctuaire capable d’assurer des conditions optimales de nurriture, d’abri et de reproduction pour les catégories les plus diverses d’êtres vivants sylvicoles (phytophages, détritivores, omnivores, insectivores, carnivores). MESURES DE PROTECTION Un grand nombre de plantes et animaux sylvicoles declarés “monuments de la nature” ou protégés à la suite des documents juridiques (à l’action régionale ou nationale) est cantonné; partiellement ou intégralement, dans les forêts vierges englobées en présent dans les Parcs nationaux ou dans les réserves naturelles et sont les bénéficiaires d’un certain statut de protection. De cette catégorie font partié: Taxus baccata, Pinus cembra, Pinus nigra ssp. banatica, Larix decidua ssp. carpatica, Daphne blagayana, Daphne cneorum, Rhododendron kotschyi, Ruscus aculeatus, Ruscus

167

www.mcdr.ro / www.cimec.ro hypoglossum, Angelica archangelica, Cypripedium calceolus, Dianthus callizonus, Fritillaria meleagris, Gentiana lutea, Leontopodium alpinum, Nigritella nigra, Nigritella rubra et autres. Parmi les représentants de la faune sylvicole le même statut de protection ont obtenu au cours du têmps les espèces : Rupicapra rupicapra, Lynx lynx et les oiseaux Gypaetus barbatus, Aegypius monachus, Gyps fulvus, Aquila chrysaetos, Neophron percnopterus, Tetrao urogallus, Lyrurus tetrix et Corvus corax, bien que les prémiers trois vautours mentionnés (le gypaète barbu, le vautour moine et le vautour fauve) ont déjà disparu et l’existance du tétras lyre est limitée à un biotope réduit et menacé. Parmi les poissons sont protégés Romanichtus valsanicola et Hucho hucho, espèces caractérisées par d’aires restreintes et des populations en visible régression. Quelques espèces disparues (la marmotte, la chèvre ibex, le bison d’Europe) ont été réintroduites. Dans la faune du pays on a signalé l’apparition, en provenance des pays voisins, de quelque espèces: Alces alces, Canis aureus moreaticus, Nyctereutes procyonoides et Ondatra zibetica.

Selon des recherches préliminaires (RADU, 1995) de nombreuses espèces végétales et animales mentionnées ont été encadrées dans les catégories des espèces “menacées” et “vulnérables” (UICN, 1994) et demandent une protection ferme pour mettre fin à leur déclin et au rétrécissement de la biodiversité sylvicole actuelle. Dans cette situation, la législation nationale (La loi du l’environnement, Le code sylvicole, La loi du fond cinégétique et de la protection du gibier) représentent seulement une première étape et contienent des principes généraux pour la réalisation d’un cadre juridique nécessaire pour la promotion d’actions concrètes et efficientes pour sauver la biodiversité. La conservation d’une telle remarquable biodiversité est directement liée au destin future des forêts vierges et quasi vierges. La légifération des celles-ci comme domaine public d’intérêt national, leur intégration dans la catégorie des aires protégées et même leur intégration dans une réseau européenne des forêts vierges, aussi que l’implantation d’une gestion durable dans le reste des forêts du pays – indépendamment de la forme de la propriété – sont les mesures nécessaires pour mentenir et développer cette diversité végétale et animale.

BIBLIOGRAPHIE ALMĂŞAN, H. (1997): Cercetarea cinegetică românească – trecut, prezent şi viitor. Acta Cinegetica Romaniae. vol. I, Ed. Aldus, Bucureşti, p.7-18.

BĂNĂRESCU, P. (1994): The present day conservation status of the fresh water fish fauna of Romania. Ocrot. nat. şi a med. înconj., nr.1, p. 5-20.

BELDIE AL. (1979): Caracterizarea ecologică şi fitosociologică a speciilor forestiere din România. ICAS.

CEIANU I. (1981): Fauna pădurilor. În : Pădurile României. Edit. Academiei R.S.R., p. 142-153.

DONIŢĂ N., SORAN V. (1994): Din problematica generală privind diversitatea biologică şi

168

www.mcdr.ro / www.cimec.ro implicaţiile acestei problematici în silvicultură. Revista pădurilor, 4.

DRUGESCU C. (1994): Zoogeografia României. Ed. All, Bucureşti, 140 p.

FUHN I. (1964): Situaţia actuală a faunei noastre de amfibieni şi reptile şi ocrotirea ei. Ocrot. nat. şi a med. înconj., 8, nr.2, p.231-248.

ICHIM R. (1994): Bazele ecologice ale gospodăririi vînatului din zona montană. Ed. Ceres, Bucureşti.

KREMER A. (1996): La diversité génétique des arbres forestiers: un prérequis à la gestion durable des forêts. INRA mensuel, no. 12, p. 42-46.

MUNTEANU D. (1984): Propuneri pentru o listă roşie a speciilor din aviafauna R.S.R. Ocrot. nat. şi a med. înconj., 28, nr.2.

MUNTEANU D. (1998): Dicţionar poliglot al speciilor de păsări din România, ed. II. Publicaţiile Societăţii Ornitologice Române, Cluj-Napoca.

MURARIU D. (1984): La liste des mammifères actuels de Roumanie; noms scientifiques et roumains. Travaux du Muséum d’Histoire Naturelle “Grigore Antipa”, Bucureşti, vol. XXI, p. 251- 261.

NEGREAN G., OLTEAN M. (1989): Endemite şi zone endemice conservatoare din Carpaţii sud- estici. Ocrot. nat. şi a med. înconj., 33, p.15-25.

RADU S. (1995): Definitivarea “Listei roşii” a speciilor de plante şi animale rare, endemice şi periclitate, din ecosistemele forestiere. Ref. Şt., Mss., ICAS, 134 p.

RADU S., COANDĂ CORINA (1999): Indicators of biodiversity for natural forests. Acta Musei Devensis-Sargetia-Series Scientia Naturae, XVIII, Deva, p. 137-142.

RADU S., COANDĂ CORINA, BURZA E. (2000): Cercetări asupra biodiversităţii în ecosisteme de pădure cu structuri particulare (ecosisteme cvasivirgine şi naturale din Parcurile naţionale). Ref. Şt., Mss., ICAS. UICN,1997, Parcuri pentru viaţă. Acţiune pentru ariile protejate din Europa (ediţia în limba română). REC, PHARE. ***, 1996, Legea fondului cinegetic şi a protecţiei vânatului. Jurnalul naturii, nr. 29. ***,1996, Strategia naţională pentru conservarea biodiversităţii şi planul de acţiune în România. Mss., ICAS. Dr. ing. Stelian Radu Ing. Corina Coandă Staţiunea de cercetări silvice ICAS – Str. Biscaria, nr. 1 2625-Simeria, Jud. Hunedoara

169

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 171 - 176

NEW RECORDS OF ADELIDAE AND PRODOXINAE (LEPIDOPTERA, INCURVARIOIDEA) IN THE FAUNA OF ROMANIA

ZOLTAN KOVÁCS, SANDOR KOVÁCS

Rezumat Noi semnalări ale speciilor de Adelidae şi Prodoxinae (Lepidoptera, Incurvarioidea) în fauna României

In lista microlepidopterelor din România (Popescu-Gorj, 1984), metaxella Hbn. (Adelidae) şi Lampronia capitella Cl. (Prodoxidae) au fost considerate specii cu statut incert, care necesită reconfirmare. Speciile Lampronia fuscatella Tgstr. şi Lampronia splendidella Hein. nu figurează în lista mai sus menţionată. Cu ocazia reviziei familiilor Adelidae şi Prodoxidae (Kovács & Kovács, în pregătire) am examinat marea majoritate a colecţiilor din România precum şi câteva colecţii din străinătate şi am găsit numeroase exemplare aparţinătoare speciilor sus menţionate. Materialul examinat, caracterele de diagnoză, genitaliile, biologia şi distribuţia speciilor sunt prezentate.

In the checklist of the Romanian microlepidoptera (POPESCU-GORJ, 1984) the presence of the species Nematopogon metaxella Hbn. (Adelidae) and Lampronia capitella C. (Prodoxidae) were considered doubtful wich need reconfirmation. The Prodoxid species Lampronia fuscatella Tgstr. and Lampronia spendidella Hein. are missing from above mentioned checklist.

With the occasion of the revision of the Romanian Adelidae and Prodoxidae (KOVÁCS &

KOVÁCS, in preparation) we have examided the material of the biggest Romanian collection and also some foreign one. In some of the examined collections we found several specimens of the previously mentioned taxa: National Museum of Natural History “Grigore Antipa” (MINGA) in Bucharest, the D.

CZEKELIUS collection of the Natural History Museum of Sibiu, the L. DIÓSZEGHY collection of the Museum in Sf. Gheorghe, Natural History Museum (TTM) in Budapest (Hungary), the private collections of V. VICOL in Tg. Mureş, H. NEUMANN in Timişoara, S. KOVÁCS & Z. KOVÁCS in Sf.

Gheorghe, and CS. SZABÓKY in Budapest (Hungary). In the following we present the collecting data of

171

www.mcdr.ro / www.cimec.ro them, give a short description of their main characteristics useful in their identification, and show their biology and distribution.

Fam. Adelidae

Nematopogon metaxella (HÜBNER, 1813) (Figs. 1,5)

MATERIAL EXAMINED: 11 ♂♂, 2 ♀♀, including 1♂ genitalia preparation) Apatiu, 1.VI.1911 (3 ♂♂), legit. A. Schmidt, coll. TTM; Ineu (Arad), 28.IV. 1922 (1♂), l egit. & coll. L. Diószeghy; Glodeni, jud. Mureş, 1. VI. 1983 (1♂); Depresiunea Ciucului, Tuşnad Sat, Valea Mijlocie, 16. VI. 1986 ♀);(1 Munţii Nemira, Apa Roşie, 1100 m, 8. VII. 1990. (4♂♂), genitalia preparation no. 533/M/Kovács), legit. & coll. S. Kovács & Z. Kovács; Dragşina-Timiş, 8.VI.1988. (1♂), legit. & coll. H. Neumann; Sânmarghita, 9-10.VI.1996. (1♀), legit. & coll. V. Vicol. This species can be easy differentiated from the other species of the genus because of its relatively short and wide fore wings (Fig. 1). Its colour is ochre, uniform on the fore wings, head, thorax and abdomen. The long pectinifer on the ventral margin of the valvae is the main characteristic of the male genitalia (Fig. 5). It can be found in wet areas from the lowlands to the mountains, even in marshlands. The species is widespread in Europe, in Romania was found only in the western and the central part of the country (Fig. 9).

Fam. Prodoxidae

Lampronia capitella (CLERCK, 1759), (Figs. 2,6)

MATERIAL EXAMINED: 2♀♀, including 1♀ genitalia prepatarion) Munţii Retezat, 1000 m, 10.V. 1937. (1♀), legit. & coll. L. Diószeghy; Cheile Bicazului, Suhardul Mic, 1000 m, 2-4.VII.1982 (1♀), genitalia preparation no. 610/♀/Kovács, legit. & coll. S. Kovács & Z. Kovács. This species is characterized by its large size (15-18 mm) and its fore wing pattern formed by three spots: a long basal spot of the posterior margin which sometimes reaches the costal margin, a tornal spot and a rounded spot on the costal margin opposite the tornal spot (Fig. 2). The female genitalia is characterized by the star shaped signa with numerous, long and thin branches (Fig. 6). Larvae live on Ribes, adults fly from May to July. It is distributed in the Northern and Central part of Europe. In Romania was found only in two localities in the Southern and Eastern Carpathians (Fig. 9).

Lampronia fuscatella (TENGSTRÖM, 1848) (Figs. 3,7)

MATERIAL EXAMINED: 1♂, 3♀♀, including 1♂ and 1♀ genitalia preparation Depresiunea Trei Scaune, Mestecănişul de la Reci, 12.V. 1983. ♂,(1 2♀♀), (genitalia

172

www.mcdr.ro / www.cimec.ro preparation no. 619/♀ and 886/♂/Kovács), legit. & coll. S. Kovács & Z. Kovács; Ibidem (♀), coll. Cs. Szabóky. The colour of fore wings is very dark brownish gray without any drawing (Fig.3). The male genitalia is characterized by the wide and rounded valvae and a relatively short vinculum (Fig. 7). Larvae live on Betula, adults fly in May. It is widespread in the Northern and Central part of Europe. In Romania was found only in the Southern part of the Eastern Carpathians (Fig. 9).

This record of the species was already mentioned by SZABÓKY (1985).

Lampronia splendidella (HEINEMANN, 1870), (Figs. 4,8)

MATERIAL EXAMINED: (7 ♂♂, including 1♂ genitalia preparation) Azuga, 20.VII.1902. ♂),( legit. Dr. Fleck, coll. MINGA; Munţii Bugegi, 4.VIII.1909. ♂), ( legit. F. Deubel, coll. D. Czekelius; Munţii Bucegi, Caraiman, 2000 m, 26. VII.1985.♂); (Munţii Bugeci, Valea Jepii, 2100 m, 8.VII.1989. (4♂♂), (genitalia preparation no. 562/♂/Kovács), legit. & coll. S . Kovács & Z. Kovács. The are small sized (13-14 mm). The short and wide fore wings are light green with very strong golden glittering (Fig. 4). The male genitalia is characterized by wide valvae with a strong spine on their ventral margin (Fig. 8). The adults fly in July and August in the alpine zone of the montains. The species is known from the alpine range of the Alps, Tatra and Altai. In Romania was found only in the Bucegi Mountains in the Southern Carpathians (Fig. 9).

Although Lampronia splendidella Hein. was mentioned for the first time by CZEKELIUS

(1917), it was not included in the checklist of the Romanian macrolepidoptera (POPESCU-GORJ, 1984).

Literature cited

CZEKELIUS D. (1917): Beitrage zur Schmetterlingsfauna Siebenbürgens. VI. – Verh. Mitth. Siebenb. Ver. Naturwiss., Hermannstadt, 57(1-6): 1-56.

KOVÁCS S. & KOVÁCS Z. (1998): Noutăţi faunistice.- Bul. Inf. Soc. Lepid. Rom., Cluj- Napoca, 9 (1-2).

KOVÁCS Z. & KOVÁCS S. (1999): Familia Adelidae (Lepidoptera) în România.- Bul. Inf. Soc. Lepid. Rom., Cluj-Napoca, 10(1-4): 9-66.

KOVÁCS S. & KOVÁCS Z. (2000): Familia Prodoxidae (Lepidoptera) în România.- Bul. Inf. Soc. Lepid. Rom., Cluj-Napoca, 33-54.

173

www.mcdr.ro / www.cimec.ro POPESCU-GORJ A. (1984): La liste systématique des especes de Microlépidoptères signalées dans la faune de Roumanie. Mise à jour de leur classification et nomenclature.- Trav. Mus. Hist. Nat. “Grigore Antipa”, Bucureşti, 24: 111-162.

SZABÓKY CS. (1985): A hazai molylepkefauna újdonságai.- Folia ent. Hung., Budapest, 46(2): 221-222.

Zoltan Kovács & Sandor Kovács Str. Laszlo Ferenc Bl. 3A/16 Sfântu Gheorghe, Romania

174

www.mcdr.ro / www.cimec.ro

Fig. 1-5: 1, 5 - Nematopogon metaxella Hbn., 2- Lampronia capitella Cl., 3- Lampronia fuscatella Tgstr., 4- Lampronia splendidella Hein., 1-4: right fore wing, 5- male genitalia

Fig. 6-8: 6- Lampronia capitella Cl., 7- Lampronia fuscatella Tgstr., 8- Lampronia splendidella Hein.; 6- female genitalia, 7-8 male genitalia

175

www.mcdr.ro / www.cimec.ro

Fig. 9: Distribution in Romania of the species: Nematopogon metaxella Hbn., Lampronia capitella Cl., Lampronia fuscatella Tgstr., Lampronia splendidella Hein.

176

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 223 - 247

DATA CONCERNING THE MACROLEPIDOPTERA FAUNA FROM THE EASTERN AND NORTH - EASTERN PART OF THE POIANA RUSCĂ MOUNTAINS (THE WESTERN CARPATHIANS, ROMANIA)

SILVIA BURNAZ

Rezumat Date privind fauna de macrolepidoptere din partea estică şi nord-estică a Munţilor Poiana Ruscă (Carpaţii Occidentali, Romania)

Lucrarea prezintă lista sistematică a speciilor de macrolepidoptere identificate până în prezent în ecosisteme naturale din partea estică şi nord- estică a Munţilor Poiana Ruscă, masiv mai puţin cercetat din punct de vedere lepidopterologic. Zonele investigate sunt: Măgurile Devei, Valea Runcului- Govăjdie, Valea Cernei şi împrejurimile localităţii Lunca Cernii, Dealurile Hunedoarei. Lista faunistică elaborată pe baza celor mai recente concepţii privind clasificarea şi nomenclatura ştiinţifică a speciilor de macrolepidoptere este însoţită de date privind staţiunile cercetate, frecvenţa speciilor, distribuţia geografică actuală, exigenţele ecologice şi baza trofică a larvelor. Cumulând datele publicate anterior cu cele obţinute pe baza investigaţiilor personale sunt prezentate 390 specii de macrolepidoptere. Diversitatea specifică variază în funcţie de staţiunile cercetate: 301 specii semnalate în staţiunea Măgurile Devei, 322 specii în regiunea calcaroasă din Valea Govăjdiei, 240 specii pe Valea Cernii şi Lunca Cernii şi 206 specii pe Dealurile Hunedoarei. Rare în zona cercetată sunt speciile: Meganephria bimaculosa, Auchmis detersa, Lopinga achine şi Lycaena helle.

INTRODUCTION The Poiana Ruscă Mountains represent the northern part of the Banat Mountains (Western Carpathians, Romania). They are situated between the parallels 45055' and 45030' parallels Northern latitude and 220 and 230 meridians Eastern longitude. The Poiana Ruscă Mountains cover an area of 2640 Km2, being delimited in the northern part by the Mureş river. In the western part they are bordered by the Caransebeş Depression. The southern and the eastern limits are marked by the Haţeg and Strei Depressions. The difference between the lowest altitude (the Pleşu Hill - 334 m) and the highest one (the Padeş Peak -1374 m) is about 1040 m. The mountainous zone has two principal geomorphological areas. In the western part, between the Caransebeş Depression and the basins of Bega and Cerna rivers, the landscape is strongly fragmented. The eastern part of the massif is represented by a large plateau with levels of 900-1000 m

223

www.mcdr.ro / www.cimec.ro on the central area and 400-500 m on the outside. This plateau, known like “The Pădureni County” is very the characteristic for the Poiana Ruscă Mountains landscape. The general aspect of this plateau looks like a large hillocky region. The geological substratum consists on metamorphic rocks (crystalline schists, micaschists, gneisses, etc) that are spread in the most part of the mountainous area; magmatic rocks, especially andesite corps in the north-eastern part; sedimentary rocks (dolomites, gritstones, etc) in the peripheric zones of the massif. The annual average temperature diminishes with the altitude: from 9-110C in the peripheric regions to 2 - 80C in the mountainous area. The annual average precipitations increases from 600 -700 mm in the peripheric regions to

1200 - 1400 mm in the central area of the massif (KRAUTNER 1984). As a result of these edapho-oro-climatic conditions, the vegetation is represented almost exclusively by forests. The mixed forests (As. Pulmonario rubro-Abieti-Fagetum (Knapp 42) Soó 64) cover the mountainous area (900 m-1250 m). The inferior and the middle mountain levels (400-900 m) are dominated by the beech forests (As. Carpino-Fagetum Paucă 41) alternating with lawns (As. Festuco rubrae-Agrostetum capillaris Horv. (51) 52, As. Medicagini - Festucetum valesiacae Wagner 1940; As. Botriochloetum (Andropogonetum) ischaemi (Krist.1937) I. Pop 1977) and rocky grasslands (As. Stipetum eriocaulis Dihoru et al. 1973). In the calcareous area of the Poiana Ruscă Mountains (the

Runc Basin and Govăjdie Basin) Phyllitidi-Fagetum Vida 63 (DONIŢĂ et al., 1992) is the predominant association. The Macrolepidoptera fauna of the western part of the Poiana Ruscă Mountains was studied by KÖNIG (1975). Adriano Ostrogovich has collected some few species in the surroundings of the

Hunedoara town (POPESCU-GORJ 1964). FOTESCU (1971) published a faunistic list of the Macrolepidoptera species collected in the Basin of Cerna, Govăjdie and the surroundings of Hunedoara town.

MATERIAL AND METHODS Our studies were carried out between 1988-2000 in the Eastern and North-Eastern part of the Poana Ruscă Mountains. Using the entomological net and a light trap with a 250 W mercury vapour lamp, 850 specimens were collected.

Cumulating the anterior data published by FOTESCU (1971) with those supplied by “Adriano Ostrogovich” collection hosted by the Museum of Natural History “Grigore Antipa” from Bucharest

(POPESCU-GORJ 1964) and our personal results, 390 species of Macrolepidoptera were recorded in the natural ecosystems from the eastern and north-eastern part of the Poiana Ruscă Mountains. The studied sites are:

224

www.mcdr.ro / www.cimec.ro 1. The hills of Deva town; situated in the western part of this locality, in the area of beech and oak forests; the most representative are the natural reserves: The Bejan Forest (420 m), the Cetate Hill (380 m) and Sarheghi (Colţu) Hill (583 m) 2. The Runcu Valley and the calcareous area of Govăjdie locality (600 m) 3. The Cerna Valley and the surroundings of Lunca Cernii locality (600-750 m) 4. The hills of Hunedoara town (The Cărpiniş Hill – 437 m, the Forest of Chizid)

RESULTS AND DISSCUTION A taxonomical list, based on the latest systematic and taxonomic conceptions is presented

(Table 1). The classification is after LERAUT (1980), POPESCU-GORJ (1984, 1987), RÁKOSY (1995,1996). It is also shown the distribution of the species in the studied sites, the frequency of the species, the ecological exigences of the adults, the geographical spreading of the species and the larval host-plants (RÁKOSY 1993,1995, 1996, 1997).

Table l -Taxonomical list of the Macrolepidoptera species collected the Eastern and North- Eastern part of the Poiana Ruscă Mountains (Hunedoara County)

Taxon O F B 1 2 3 4 F GS EE LF

HEPIALIDAE Triodia sylvina - - + + - + + F Eua M R (P,S) (LINNAEUS, 1761) COSSIDAE Zeuzera pyrina Polyphagous (trees) - - + + + - - RF Eua Mh (LINNAEUS, 1761) Endophagous (trunk) Cossus cossus Polyphagous (trees) - + + + + + + RF Eua Mh (LINNAEUS, 1758) Endophagous (trunk) ZYGAENIDAE Rhagades pruni S (DENIS & - - + + + + + RF Eua M Prunus spinosa, Calluna SCHIFFERMÜLLER, 1775) vulgaris P Adscita statices Oligophagous Rumex - - + + + + + RF Eua Mxt (LINNAEUS, 1758) acetosella, Rumex acetosa P Adscita globulariae - - + + + + - F Wam Mxt Oligophagous: (HÜBNER, 1793) Asteraceae P Zygaena ephialtes + - + + + + + F Eua Mxt Monophagous Coronilla pannonica HOLIK, 1972 varia P Zygaena filipendulae - - + + + + - VF Eua Mxt Oligophagous (LINNAEUS, 1758) Fabaceae Zygaena carniolica P Oligophagous onobrychis (DENIS & - + + + + + - F Eua Mxt Fabaceae SCHIFFERMÜLLER, 1775) P Zygaena purpuralis pluto + + + + + + + VF Eua Mxt Monophagous Thymus OCHSENHEIMER, 1808 serpyllum

225

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

LASIOCAMPIDAE Malacosoma neustria - - + - + + - RF Eua M D (LINNAEUS, 1758) Macrothylacia rubi + + + + + + + RF Eua Mh P; S (LINNAEUS, 1758) Gastropacha quercifolia - - + - + - - RF Eua Mt D; S (LINNAEUS, 1758) Odonestis pruni - - + - + - - RF Eua Mt D (LINNAEUS, 1758) ATTACIDAE Saturnia pyri (DENIS & SCHIFFERMÜLLER, - + + + + - - R Eua M D 1775) Saturnia pavonia S - + - - + + - RF Eua M (LINNAEUS, 1758) Oligophagous Rosaceae Aglia tau - + - - + - - F Eua M D (LINNAEUS, 1758) SPHINGIDAE P Herse convolvuli - + + + + - + F Str Mx Monophagous (LINNAEUS, 1758) Convolvulus arvensis Mimas tiliae - - + - + - - RF Eua Mh D (LINNAEUS 1758) Smerinthus ocellatus Oligopgahous: - - + + + - - RF Eua Mh (LINNAEUS, 1758) Macroglossum stellatarum - + + + + + + F Eua Mx P (LINNAEUS, 1758) Hemaris tityus - + + - - + + RF Hol Mt P (LINNAEUS, 1758) Hyles euphorbiae - - + + + + + VF Eua Mx P (LINNAEUS, 1758) Deilephila elpenor - - + + + - - F Eua Mh P (LINNAEUS, 1758) Deilephila porcellus - - + + + - - F Eua M P (LINNAEUS, 1758) HESPERIIDAE S Carcharodus alceae + - + + - - - R Eua Xt Oligophagous (ESPER, 1780) Malvaceae S Carcharodus flocciferus - + + + - - - VR Pm Mt Oligophagous Labiatae (ZELLER, 1847) (Stachys, Marrubium) Erynnis tages P + + + + + + + VF Eua Mxt (LINNAEUS, 1758) Oligophagous Fabaceae Pyrgus malvae P; S + - + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Rosaceae P Pyrgus alveus Monophagous - - + - - + - F Eua Mxt (HÜBNER, 1803) Helianthemum nummularium Pyrgus fritillarius + + + - - + + F E.Was Xt P; S (PODA, 1761) G Carterocephalus palaemon - - + + + - + RF Eua M Oligophagous (PALLAS, 1771) Poaceae Ochlodes venatus faunus G - + + + + + + VF Eua Mh (TURATI, 1905) Oligophagous Poaceae Thymelicus sylvestris G - - + - + - - RF Eua Mxt (PODA, 1761) Oligophagous Poaceae Thymelicus lineolus G + - + + + + + R Hol M (OCHSENHEIMER, 1808) Oligophagous Poaceae

226

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Hesperia comma G - - + + + + + VF Hol M (LINNAEUS, 1758) Oligophagous Poaceae PAPILIONIDAE Parnassius mnemosyne P distincta BRYK-EISNER, - - + + + + - RF Eua Mh Oligophagous Corydalis 1930 sp. P Papilio machaon - + + + + + + RF Hol M Oligophagous (LINNAEUS, 1758) Umbelliferae Iphiclides podalirius + + + + + + + F Eua M S (SCOPOLI, 1763) PIERIDAE Leptidea sinapis sinapis P + + + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Fabaceae Anthocharis cardamines P meridionalis + + + + + + + VF Eua M Oligophagous VERITY, 1908 Brassicaceae S Aporia crataegi + + + + - - + RF Eua M Oligophagous Rosaceae (LINNAEUS, 1758) (Prunus, Crataegus) P Pieris brassicae + + + + - + + F Eua M Oligophagous (LINNAEUS, 1758) Brassicaceae P Pieris rapae + + + + + + + VF Hol M Oligophagous (LINNAEUS, 1758) Brassicaceae P Pieris napi meridionalis + + + + + + + VF Pm M Oligophagous (HEYNE, 1895) Brassicaceae P Pontia daplidice - + + - + + - VF Eua M Oligophagous (LINNAEUS, 1758) Brassicaceae Colias hyale P (LINNAEUS, 1758) - + + + + + + VF Eua M Oligophagous Fabaceae

P Colias erate - - + + - - - RF Eua Mx Monophagous (ESPER, 1803) Medicago sativa Colias crocea P (GEOFFROY in FOURCROY, - + + + + + + F Med M Oligophagous Fabaceae 1785) Gonepteryx rhamni S meridionalis + + + + + + + F Wam M Oligophagous ROBER, 1909 Rhamnaceae LYCAENIDAE P Hamearis lucina + + + + + + + VF E M Oligophagous (LINNAEUS,1758) Primula sp. Lycaena helle P (DENIS & SCHIFFERMÜLLER, - - + - + - - VR Eua Mh Monophagous 1775) Polygonum bistorta P Lycaena phlaeas + - + + + - + RF Hol M Oligophagous (LINNAEUS, 1761) Polygonaceae P Lycaena dispar rutila - + + + - - - RF Eua Tf Oligophagous (WERNEBURG, 1864) Rumex sp. P Lycaena virgaureae + + + + + + + VF Eua Mh Solidago virgaurea, (LINNAEUS, 1758) Rumex acetosa

227

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

P Lycaena tityrus dorilis - - + + + - - RF Eua M Oligophagous (HUFNAGEL, 1766) Rumex S Thecla betulae + - + + + - + R Eua M Rosaceae (LINNAEUS,1758) Myrmecophil Q Neozephyrus quercus + - + + - - - R E.Was Mt Quercus (LINNAEUS, 1758) Myrmecophil Callophrys rubi virgatus - - + + + + + F Eua Mt P;S VERITY, 1913 S Satyrium acaciae nostras + - + + - - + R Pm Xt Monophagous (COURVOISIER, 1913) Prunus spinosa Satyrium spini S (Rhamnus cathartica, (DENIS & SCHIFFERMÜLLER, + - + - + + + RF Eua Mt Prunus spinosae) 1775) Myrmecophil Rhamnus catharticus, Satyrium w-album - - + + + - + RF Eua Mh Ulmus glabra, Tilia (KNOCH, 1782) Myrmecophil S Fixsenia pruni - - + + + - - RF Eua M Monophagous (LINNAEUS, 1758) Prunus spinosa P;S Cupido minimus + - + - + + + F Eua M Fabaceae (FUESSLY, 1775) Myrmecophil P Everes argiades + - + + + + + VF Eua Mh Fabaceae (PALLAS, 1771) Myrmecophil Celastrina argiolus P;S + + + + + + + VF Hol M (LINNAEUS, 1758) Myrmecophil P Scoliantides orion - + + + + + + RF Eua Xt Sedum sp. (PALLAS, 1771) Myrmecophil P Glaucopsyche alexis + + - - + + + RF Eua Mh Fabaceae (PODA, 1761) Myrmecophil P Maculinea arion Thymus serpillum - - + - + + - R Eua M (LINNAEUS, 1758) T. praecox Myrmecophil Plebejus argus P - - + + + + + VF Eua M (LINNAEUS, 1758) Myrmecophil P Plebejus argyrognomon - - + - + - - RF Eua Mxt Fabaceae (BERGSTRASSER, 1779) Myrmecophil P Cyaniris semiargus - - + + + + + F Eua Mxt Fabaceae (ROTTEMBURG, 1775) Myrmecophil Polyommatus daphnis P (DENIS & SCHIFFERMÜLLER, + - + - + + - RF Wam Xt Fabaceae 1775) Myrmecophil P Polyommatus coridon - + + - + - - RF E Mxt Fabaceae (PODA, 1761) Myrmecophil NYMPHALIDAE Argynnis paphia P (LINNAEUS, 1758) + + + + + + + VF Eua M Oligophagous Violaceae

Argynnis aglaja - - + + + + + VF Pal M Oligophagous Violaceae (LINNAEUS, 1758)

228

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Argynnis adippe P (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Pal M Oligophagous Violaceae 1775) Argynnis niobe P - - + + + + - VF Eua M LINNAEUS, 1758) Oligophagous Violaceae P Issoria lathonia + + + + + + + VF Pal M Oligophagous (LINNAEUS, 1758) Viola sp. P Brenthis daphne Oligophagous (DENIS & SCHIFFERMÜLLER, - + + - + + - R Eua Mxt Rubus fruticosus, Rubus 1775) idaeus Brenthis hecate P (DENIS & SCHIFFERMÜLLER, + + + + + - + R Eua M Monophagous 1775) Filipendula ulmaria Clossiana selene P (DENIS & SCHIFFERMÜLLER - + + + + + + VF Hol M Oligophagous 1775) Viola sp. Clossiana euphrosyne P euphrosyne - + + + + + + VF Eua M Oligophagous (LINNAEUS, 1758) Viola sp. P Clossiana dia + + + + + + + VF Eua M Oligophagous (LINNAEUS, 1767) Viola sp. Vanessa atalanta + + + + + + + F Cosm M P (LINNAEUS, 1758) Vanessa cardui - + + + + + + VF Cosm Mg P (LINNAEUS, 1758) Inachis io P - + + + + + + F Eua M (LINNAEUS, 1758) Oligophagous Urtica sp. Aglais urticae P - + + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Urtica sp. Polygonia c-album + + + + + + + F Eua M P;S;D (LINNAEUS, 1758) P Araschnia levana - + + + + + + VF Eua Mh Oligophagous (LINNAEUS, 1758) Urtica sp. Nymphalis polychloros - + - + - + + R Eua M D (LINNAEUS, 1758) Nymphalis xanthomelas D (DENIS & SCHIFFERMÜLLER, + + - - - - + VR Eua M Oligophagous 1775) Salicaceae D Nymphalis antiopa - + + + + + - RF Hol M Oligophagous (LINNAEUS, 1758) Salicaceae Melitaea cinxia - + + + + + + VF Eua M P (LINNAEUS, 1758) Melitaea phoebe (DENIS & SCHIFFERMÜLLER, + + + + + + + VF Eua M P 1775) Melitaea trivia P (DENIS & SCHIFFERMÜLLER, + + + + - + - R Am Mt Oligophagous 1775) Verbascum sp. Melitatea didyma + + + + + + + VF Eua M P (ESPER, 1779) Melitaea aurelia + + + - + - + RF E Mh P NICKERL, 1850 Melitaea britomartis - - + + - - - R Eua Mt P ASSMANN, 1847

229

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Melitaea athalia + + + + + + + VF Eua M P (ROTTEMBURG, 1775) Limenitis camilla P - + + - + + - R Eua M (LINNAEUS, 1764) (Lonicera sp.) Neptis rivularis - + + - + + - RF Eua M P;S (SCOPOLI, 1763) Neptis rivularis ludmilla - - + + - - + RF Eua M P;S NORDMANN, 1851

Neptis sappho aceris + + + + + + + VF E M Monophagous (LEPECHIN, 1770) Lathyrus vernus D Apatura iris - + + + + - - RF Eua Mh Oligophagous (LINNAEUS, 1758) Salicaceae (Salix sp.) Pararge aegeria tircis G + + + + + + + VF E M (BUTLER, 1867) Oligophagous Poaceae Lasiommata megera G + + + + + + + VF Eua M (LINNAEUS, 1767) Oligophagous Poaceae Lasiommata maera G - + + + + + + VF Pal M (LINNAEUS, 1758) Oligophagous Poaceae Lopinga achine achine G - - + - + - - VR Eua Xt (SCOPOLI, 1763) Oligophagous Poaceae Coenonympha arcania G + + + + + + + VF E.Was Mh (LINNAEUS, 1761) Oligophagous Poaceae Coenonympha glycerion G - + + + - + + F Eua Hg (BORKHAUSEN, 1788) Oligophagous Poaceae Coenonympha pamphilus G + + + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Poaceae Pyronia tithonus Mt, G - + + + + - - RF E.Was (LINNAEUS, 1771) Xt Oligophagous Poaceae Aphatopus hyperantus G - + + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Poaceae Maniola jurtina G - + + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Poaceae Erebia ligea carthusianorum - - + + + - - VF Eua M G FRUHSTORFER, 1909 Erebia aethiops aethiops G - - + + + + - VF Eua M (ESPER, 1777) Oligophagous Poaceae Melanargia galathea scolis G + + + + + + + VF E.Wam M FRUHSTORFER, 1917 Oligophagous Poaceae G Minois dryas drymeia - + + - + - - RF Eua M Monophagous FRUHSTORFER, 1903 Molinia caerulea Hipparchia fagi G - + + + - - + RF Pm M (SCOPOLI, 1763) Oligophagous Poaceae Hipparchia semele G + + + + + - + RF E.Was Mxt (LINNAEUS, 1758) Oligophagous Poaceae DREPANIDAE S Thyatira batis - - + - + + - VF Eua Mh Oligophagous (LINNAEUS, 1758) Rubus Habrosyne pyritoides S - - + + + + - VF Eua Mh (HUFNAGEL, 1766) Oligophagous Rubus D Tethea or - - + + + - - F Eua Mh Oligophagous (GOEZE, 1781) Salicaceae Ochropacha duplaris - - + + + - - RF Eua M D (LINNAEUS, 1761) Drepana falcataria - - + + + - - RF Eua Mh D (LINNAEUS, 1758)

230

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Sabra harpagula - - + - + - - RF Eua Mht D (ESPER, 1786) Cilix glaucatus - - + + + - - F Eua Mt S: Prunus, Crataegus (SCOPOLI, 1763) GEOMETRIDAE Archiearis notha - - + + - - - VR Eua Mh D (HÜBNER, 1803) Alsophila aescularia (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Eua M D 1775) Alsophila quadripunctaria - - + + + - - RF Eua M D (ESPER, 1800) Aplasta ononaria - - + - + - - R Wam Xt P (FUESSLY, 1783) P Pseudoterpna pruinata - - + - + - - RF Eua Mh Oligophagous Fabaceae: (HUFNAGEL, 1767) Genista Geometra papilionaria - - + + + - - RF Eua M D (LINNAEUS, 1758) Euchloris smaragdaria - - + + + - - RF Eua Xt P (FABRICIUS, 1787) Hemithea aestivaria - - + - + + - RF Eua M P (HÜBNER, 1799) Chlorissa viridata - - + + + - - RF Eua Mt S (LINNAEUS, 1758) Thalera fimbrialis - - + + + + - RF Eua Mxt P (SCOPOLI, 1763) Jodis lactearia - - + + + + - RF Eua M D (LINNAEUS, 1758) Cyclophora annulata - + + - + - - F Eua Mt D (SCHULZE, 1775) Cyclophora punctaria Q - - + + + + - F E.Was Mt LINNAEUS, 1758) Oligophagous Quercus Cyclophora linearia - - + + + + - VF Eua M Dq (HÜBNER, 1799) P Timandra griseata - + + + + + - VF Eua Mt Oligophagous W. PETERSEN, 1902 Polygonaceae Scopula immorata + - + + + + + VF Eua Mxt P (LINNAEUS, 1758) Scopula nigropunctata - - + - + - - F Eua Mxt P (HUFNAGEL, 1767) Scopula ornata - - + - + + - F Eua Mt P (SCOPOLI, 1763) Scopula rubiginata - - + - + + - F Eua Mxt P (HUFNAGEL, 1767) Scopula marginepunctata - - + - + + - RF Eua Mxt P (GOEZE, 1781) Scopula decorata (DENIS & SCHIFFERMÜLLER, - + - - - + - R Eua Mxt P 1775) ochrata - - + - + + - F Eua Xt G (SCOPOLI, 1763) Idaea aureolaria (DENIS & SCHIFFERMÜLLER, - - + - - + - R Eua Mxt P 1775) Idaea dimidiata + - + - - + + RF Eua Mt P (HUFNAGEL, 1767) Idaea rufaria + - - - - - + R Eua Xt P (HÜBNER, 1799)

231

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Idaea aversata + - + - + + + VF Eua M X (LINNAEUS, 1758) Idaea seriata - - + + - - - R Pm Xt P; L (SCHRANK, 1802) Idaea degeneraria - - + - + - + R Eua Mt P (HÜBNER, 1799) Rhodostrophia vibicaria - + + + + + + VF Eua Xt P: Genista (CLERCK, 1759) Lythria purpurata - - + + + + + VF Eua Mt P (LINNAEUS, 1758) Lythria purpuraria - - + + - - - R Wam Mxt P (LINNAEUS, 1758) P Scotopteryx moeniata - + + - + - - RF Wam Mxt Oligophagous Fabaceae: (SCOPOLI, 1763) Genista Scotopteryx chenopodiata P - + + + + + + RF Wam Mt (LINNAEUS, 1758) Oligophagous Fabaceae P Xanthorhoe designata - - + - + + + RF Hol Mh Oligophagous (HUFNAGEL, 1767) Brassicaceae Xanthorhoe ferrugata - - + + + + + F Eua M P (CLERCK, 1759) Xanthorhoe montanata (DENIS & SCHIFFERMÜLLER, - - + - - - - F Eua M P 1775) Xanthorhoe fluctuata + - + - + - + RF Eua M P (LINNAEUS, 1758) Epirrhoe alternata P + - + - - + + RF Eua Mh (O. F. MÜLLER, 1764) Oligophagous Rubiaceae Camptogramma bilineatum - - + + + + + VF Eua M P (LINNAEUS 1758) Mesoleuca albicillata S - + + - + + + VF Eua Mh (LINNAEUS, 1758) Oligophagous Rosaceae P Cosmorhoe ocellata - - + + + + + VF Eua M Oligophagous (LINNAEUS, 1758) Rubiaceae: Galium Eulithis pyraliata P (DENIS & SCHIFFERMÜLLER, - - + + - + - RF Eua Mh Oligophagous Rubiaceae 1775) Ecliptopera silaceata (DENIS & SCHIFFERMÜLLER, - + + + + + + RF Eua Mh P 1775)

Ecliptopera capitata - - + + - + - RF Eua Mh Monophagous Impatiens (HERRICH-SCHAFFER, 1839) noli-tangere Chloroclysta siterata - - + + - - - R Eua M D (HUFNAGEL, 1767) Plemyria rubiginata (DENIS & SCHIFFERMÜLLER, - - + - + + - RF Eua Mht P 1775) Thera variata Dc (DENIS & SCHIFFERMÜLLER, - - + + - + - RF Eua M Oligophagous Pinaceae 1775) Eustroma reticulatum P (DENIS & SCHIFFERMÜLLER, - - + + + + + RF Eua Mh Monophagous Impatiens 1775) noli-tangere Colostygia pectinataria + - - - - - + VR Eua M P (KNOCH, 1784) Horisme vitalbata S (DENIS & SCHIFFERMÜLLER, - - + + - + + RF Eua M Monophagous Clematis 1775) vitalba

232

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Horisme tersata (DENIS & SCHIFFERMÜLLER, - - + - - + + RF Eua M Monophagous Clematis 1775) vitalba Triphosa sabaudiata S - + + - + + - R Eua Xt (DUPONCHEL, 1830) Oligophagous Rhamnus Triphosa dubitata S - + + + + + - RF Eua Mt (LINNAEUS, 1758) Oligophagous Rhamnus Philereme transversata - + + + - - - RF Wam M P (HUFNAGEL, 1767) Operophtera brumata - + + + + + + VF Eua M D (LINNAEUS, 1758) Perizoma alchemillatum - - + + + - - RF Eua Mx P (LINNAEUS, 1758) Perizoma albulatum P (DENIS & SCHIFFERMÜLLER, - - + - + - - RF Eua M Oligophagous 1775) Rhinanthus Eupithecia centaureata (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Eua M P 1775) P Aplocera plagiata + - + + + + + RF Eua Mx Monophagous (LINNAEUS, 1758) Hypericum perforatum P Aplocera praeformata - - + + + + + RF Eua M Monophagous (HÜBNER, 1826) Hypericum perforatum Lobophora halterata + - + + + - - RF Eua Mh D (HUFNAGEL, 1767) Trichopteryx carpinata - - + - + + - R Eua M D (BORKHAUSEN, 1794) Abraxas grossulariata S - - + + + + + RF Eua M (LINNAEUS, 1758) Oligophagous Ribes Calospilos sylvatus - - + + + + + RF Eua M D (SCOPOLI, 1763) Lomaspilis marginata - - + + + + + RF Eua M D (LINNAEUS, 1758) Ligdia adustata S (DENIS & SCHIFFERMÜLLER, - - + + + + + RF Eua M Monophagous 1775) Euonymus verrucosus Semiothisa alternaria - + + + + + + RF Eua M D (HÜBNER, 1809) Semiothisa clathrata P + - + + + + + F Eua M (LINNAEUS, 1758) Oligophagous Fabaceae Semiothisa glarearia P + - + + + + + RF Wam Xt (BRAHM, 1791) Oligophagous Fabaceae Tephrina arenacearia P (DENIS & SCHIFFERMÜLLER, - - + - + - - R Eua Xt Oligophagous Fabaceae 1775) F Petrophora chlorosata - - + - + - - VR Eua Mh Monophagous Pteridium (SCOPOLI, 1763) aquilinium Opistograptis luteolata - - + + + - - RF Eua M D (LINNAEUS, 1758) Epione paralellaria (DENIS & SCHIFFERMÜLLER, + - - - - - + VR Eua M D 1775) Pseudopanthera macularia + + + + + + + VF Eua M P (LINNAEUS, 1758) Ennomos autumnarius - - + + - - - RF Eua M D WERNEBURG, 1859 Ennomos fuscantarius - - + + - - - RF Eua M D (STEPHENS, 1809)

233

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Selenia dentaria - - + + + + + RF Eua M D (FABRICIUS, 1775) Selenia tetralunaria - - + + + + + VF Eua M Dq (HUFNAGEL, 1767) Crocalis elinguaria - - + + + + + F Eua M D (LINNAEUS, 1758) Ourapteryx sambucaria - - + + + + + F Eua M S (LINNAEUS, 1758) Colotois pennaria - + + + + + + F Eua M D (LINNAEUS, 1761) Angerona prunaria + + + + + + + F Eua M D (LINNAEUS, 1758) Lycia hirtaria + - + - + + + RF Eua M D (CLERCK, 1759) Biston betularius - - + + + - - RF Eua M D (LINNAEUS, 1758) Agriopis aurantiaria - - + + - - - RF E.Was Mt Dq (HÜBNER, 1799) Erannis defoliaria - - + + - - + VF E.Was M D (CLERCK, 1759) Peribatodes rhomboidarius (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Eua M D; P 1775) Cleora cinctaria (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Eua M D 1775) Alcis repandatus - + + + + + + VF Eua M D (LINNAEUS, 1758) Boarmia roboraria (DENIS & SCHIFFERMÜLLER, + - + - + - + VR Eua Mt Dq 1775) Serraca punctinalis - - + + + - - FF Eua M P (SCOPOLI, 1763) Ascotis selenaria (DENIS & SCHIFFERMÜLLER, - + + + + - - F Eua M P; D 1775) Ectropis crepuscularia (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Eua M P; D 1775) Ematurga atomaria + + + + + + + VF Eua M P (LINNAEUS, 1758) Cabera pusaria - - + + - + - RF Eua M D (LINNAEUS, 1758) Campaea margaritata - - + - + + - RF Eua M D (LINNAEUS, 1767) Gnophos furvatus (DENIS & SCHIFFERMÜLLER, - + - - + - - VR Eua Xt P 1775) Siona lineata - + + + + + - VF Eua M P (SCOPOLI, 1763) Perconia strigillaria - - + - + + - F Eua Mt P (HÜBNER, 1787) NOTODONTIDAE Phalera bucephala - - + + + - - RF Eua M D (LINNAEUS, 1819) D Cerura vinula - - + + - - + RF Eua Mh Oligophagous (LINNAEUS, 1758) Salicaceae Furcula furcula forficula (FISCHER V. WALDHEIM, - + + + + + + F Hol Mh D: Salicaceae 1820)

234

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Stauropus fagi - + + + + + + VF Eua M D (LINNAEUS, 1758) Peridea anceps - - + - + + - RF Eua Mt Dq (GOEZE, 1781) Spatalia argentina (DENIS & SCHIFFERMÜLLER, - - + + + - - F Eua Mt Dq 1775) Notodonta dromedarius - - + + + + + VF Eua M D (LINNAEUS, 1767) Drymonia dodonaea (DENIS & SCHIFFERMÜLLER, - - + + + + - VF Eua M Dq 1775) Pheosia gnoma - - + + + + - RF Eua M D (FABRICIUS, 1777) Ptilophora plumigera (DENIS & SCHIFFERMÜLLER, - - + + + + - RF Eua M D 1775) Pterostoma palpinum - - + + + + - VF Eua Mh D (CLERCK, 1759) Ptilodon capucina - - + + + - - RF Eua M D (LINNAEUS, 1758) Eligmodonta ziczac - - + + + - - RF Eua Mh D (LINNAEUS, 1758) D Clostera curtula - - + + + - - F Eua Mh Oligophagous (LINNAEUS, 1758) Salicaceae D Clostera pigra - - + + - - - RF Eua Mh Oligophagous (HUFNAGEL, 1766) Salicaceae NOCTUIDAE Idia calvaria (DENIS & SCHIFFERMÜLLER, - - + + - - - RF Wam Mh X 1775) Treitschkendia tarsipennalis - - + + + - - RF Eua Mh X (TREITSCHKE, 1835) Polypogon tentacularia - - + + + - - F Eua Mh G; P (LINNAEUS, 1758) Rivula sericealis - - + + + + - F Eua Mh G (SCOPOLI, 1763) Hypena proboscidalis P: Urtica, Stachys, + + + + - + + VF Eua Mh LINNAEUS, 1758) Aegopodium Hypena rostralis P: Urtica, Humulus, + - + + + + + F Eua M (LINNAEUS, 1758) Rubus D Scolyopteryx libatrix - - + + + + - VF Hol M Oligophagous (LINNAEUS, 1758) Salicaceae D Catocala nupta - - + + + + - RF Eua Mh Oligophagous (LINNAEUS, 1767) Salicaceae D Catocala elocata - - + + - - - R Wam Mth Oligophagous (ESPER, 1787) Salicaceae Catocala fraxini - + - - + - - R Eua M D (LINNAEUS, 1758) Catocala fulminea - - + + + - - F Eua Mt S (SCOPOLI, 1763) Lygephila pastinum P - - + - + - - RF Eua T (TREITSCHKE, 1826) Oligophagous Fabaceace Aedia funesta - - + + + + + F Wam Mt P (ESPER, 1766)

235

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Tyta luctuosa (DENIS & SCHIFFERMÜLLER, - + + + - - + F Eua Xt P 1775) Callistege mi - - + + + + - F Eua Xt P (CLERCK, 1759) Euclidia glyphica - + + + + + + VF Eua Mxt P (LINNAEUS, 1758) Laspeyria flexula (DENIS & SCHIFFERMÜLLER, - - + + + + - RF Eua M L 1775) Colocasia coryli - - + + + + + F Eua M D (LINNAEUS, 1758) Acronicta tridens (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Eua M D 1775) Acronicta leporina - - + + + + + F Hol Mh D (LINNAEUS, 1758) Acronicta megacephala D (DENIS & SCHIFFERMÜLLER, - - + - + + - RF Eua Mh Oligophagous 1775) Salicaceae Acronicta strigosa (DENIS & SCHIFFERMÜLLER, - - + - + - - R Eua Mh S 1775) Acronicta rumicis - - + - + - - F Eua M S; D (LINNAEUS, 1758) Craniophora ligustri S (DENIS & SCHIFFERMÜLLER, - + + + + + + VF Eua Mh Oligophagous Oleaceae 1775) Emmelia trabealis (DENIS & SCHIFFERMÜLLER, - + + + + + + VF Eua Mt P 1775) Euchalcia modestoides - - + + + - - RF Eua M P (POOLE, 1989) Diachrysia chrysitis - - + + + + + VF Eua M P (LINNAEUS, 1758) Macdounnoughia confusa + - + + + + + VF Eua M P (STEPHENS, 1850) Autographa gamma - - + + + + + VF Eua M P (LINNAEUS, 1758) Autographa pulchrina - - + + + - - RF Eua Mh P (HAWORTH, 1809) Abrostola triplasia P - - + + + + + F Eua M (LINNAEUS, 1758) Oligophagous Urtica Abrostola trigemina P + - + + + + + F Eua M (WERNEBURG, 1864) Oligophagous Urtica P Cucullia umbratica - + + + + + + F Eua M Oligophagous (LINNAEUS, 1758) Asteraceae P Shargacucullia verbasci - + + + + + + R Eua Mt Oligophagous (LINNAEUS, 1758) Verbascum Asteroscopus sphinx - - + + - - - R Eua M D (HUFNAGEL, 1766) Pyramidcampa pyramidea - + + + + - + RF Eua M D (LINNAEUS, 1758) Pyramidcampa perflua - - + + + - - R Wam M D (FABRICIUS, 1787) Amphipyra tragopoginis - - + - + .- - RF Hol M P (CLERCK, 1759) Adamphipyra livida (DENIS - + - - + + + R Eua Mt P & SCHIFFERMÜLLER, 1775)

236

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Heliothis viriplaca - + + + + + + F Eua T P (HUFNAGEL, 1766) Helicoverpa armigera Tr- - - + + - - - R T P (HÜBNER, 1808) Str. Elaphria venustula - - + + + - - RF Eua Mt P (HÜBNER, 1790) Panemeria tenebrata - - + + + - - RF Wam Mt P (SCOPOLI, 1763) Caradrina morpheus - - + + + - - RF Eua Mh P (HUFNAGEL, 1766) Paradrina clavipalpis - - + + + + + VF Eua Mt P (SCOPOLI, 1763) Hoplodrina octogenaria + - + + + - + RF Eua M P (GOEZE, 1781) Hoplodrina blanda (DENIS & SCHIFFERMÜLLER, - - + + + + + F Eua M P 1775) Rusina ferruginea - - + + + - - RF Eua M P (ESPER, 1785) Mormo maura - - + + - - - VR Wam Mh P (LINNAEUS, 1758) Thalpophila matura - - + + + - - F Wam M G (HUFNAGEL, 1766) Trachea atriplicis - + + + + - - RF Eua M P (LINNAEUS, 1758) Euplexia lucipara + - + + + - + R Eua Mh P (LINNAEUS, 1758) Phlogophora meticulosa - - + + + - - RF Wam M P (LINNAEUS, 1758) Phlogophora scita - - + + - - - VR Wam M P (HÜBNER, 1790) Actinotia polyodon - - + + + - - RF Eua Mt P (CLERCK, 1759) P Eucarta amethystina - - + - + - - R Eua T-Hg Oligophagous (HÜBNER, 1803) Umbelliferae Mesogona acetosellae (DENIS & SCHIFFERMÜLLER, - - + + - - - RF Eua Xt D 1775) Cosmia pyralina (DENIS & SCHIFFERMÜLLER, - - + + + + + F Eua Mh D 1775) Cosmia trapezina - - + + + + + VF Wam M D (LINNAEUS, 1758) Xanthia aurago (DENIS & SCHIFFERMÜLLER, - - + + + + + F Eua M D 1775) Xanthia gilvago (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Eua Mh D 1775) D Xanthia ocellaris - - + + + + + VF Wam Mh Oligophagous (BORKHAUSEN, 1792) Salicaceae Agrochola circellaris - - + + + + - RF Eua M D; S (HUFNAGEL, 1766) Agrochola nitida (DENIS & SCHIFFERMÜLLER, - - + + + + - RF Wam M S; P 1775) Eupsilia transversa - - + + + + + VF Eua M D (HUFNAGEL, 1766)

237

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Conistra rubiginosa - - + + + - - F Wam Mt D; S (SCOPOLI, 1763) Conistra erythrocephala (DENIS & SCHIFFERMÜLLER, - - + + + + + F Wam Mt Dq 1775) Conistra rubiginea (DENIS & SCHIFFERMÜLLER, - - + + + + + F Wam Mt Dq 1775) Litophane ornitopus - - + + + + + VF Eua M Dq (HUFNAGEL, 1766) Meganephria bimaculosa - - + + - - - VR Wam T-Mh D (LINNAEUS, 1767) Allophyes oxyacanthae - - + + + - - RF Wam Mxt S: Rosaceae (LINNAEUS, 1758) Dichonia convergens Q (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Wam Xt Oligophagous Quercus 1775) Dichonia aeruginea Q - - + + - - - R Wam Xt (HÜBNER, 1808) Oligophagous Quercus Blepharita satura (DENIS & SCHIFFERMÜLLER, - - + + - - - RF Eua M P 1775) Apamea monoglypha - - + + + - - F Eua M R (Poaceae) (HUFNAGEL, 1766) Apamea anceps G (DENIS & SCHIFFERMÜLLER, - - + + + + + F Eua M Olighagous Poaceae 1775) Oligia strigilis G - - + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Poaceae Oligia latruncula G (DENIS & SCHIFFERMÜLLER, + - + - + - + RF Eua Mh Oligophagous Poaceae 1775) Mesapamea secalis G - - + + + + + VF Eua M (LINNAEUS, 1758) Oligophagous Poaceae Gortyna flavago (DENIS & - - + - + - - VR Eua Mh P SCHIFFERMÜLLER, 1775) Charanycha trigrammica - - + + + + + VF Wam M P; G (HUFNAGEL, 1766) Discestra trifolii - - + + + + + VF Hol M P (HUFNAGEL, 1766) Lacanobia w-latinum + - + + - - + RF Eua M P (HUFNAGEL, 1766) Lacanobia oleracea + - + + + + + VF Eua M P (LINNAEUS, 1758) Lacanobia contigua (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Eua M P 1775) P Hadena albimacula - - + - + + + R Eua Mxt Oligophagous (BORKHAUSEN, 1792) Caryophyllaceae Hadena luteago P (DENIS & SCHIFFERMÜLLER, - - + + - - - R Wam Mxt Oligophagous 1775) Caryophyllaceae P Aneda rivularis - - + + - - - RF Eua M Oligophagous (FABRICIUS, 1775) Caryophyllaceae Heliophobus reticulata P (GOEZE, 1781) - - + + + - - RF Eua Mx Oligophagous

Caryophyllaceae

238

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Melanchra persicariae - - + + + + + VF Eua M P (LINNAEUS, 1761) Mamestra brassicaceae - - + + + + + VF Eua M P (LINNAEUS, 1758) Polia nebulosa - - + + + - - RF Eua M D (HUFNAGEL, 1766) Mythimna turca - - + + + - - RF Eua Mh G (LINNAEUS, 1761) Mythimna conigera (DENIS & SCHIFFERMÜLLER, - - + + + + + RF Eua M P; G 1775) Mythimna vitellina - - + + + + + RF Wam Xt P (HÜBNER, 1808) Mythimna l-album - - + + + + + RF Eua M G: Poaceae (LINNAEUS, 1767) Orthosia incerta + - + + + + + VF Eua M D (HUFNAGEL, 1766) Orthosia gothica - - + + + + + VF Eua M Dq (LINNAEUS, 1758) Orthosia miniosa (DENIS & SCHIFFERMÜLLER, - - + + - + - RF Eua Mt Dq 1775) Orthosia munda (DENIS & SCHIFFERMÜLLER, - - + + + - + F Eua M P 1775) Egira conspicillaris - - + + + + + VF Wam M P (LINNAEUS, 1758) Cerapteryx gramminis - - + + + + - F Hol Mh R (Poaceae) (LINNAEUS, 1758) Neuronia decimalis + + + + - - + RF Eua M R (Poaceae) (PODA 1761) Axylia putris + - + + + + + RF Eua M P; G (LINNAEUS, 1761) Ochropleura plecta - - + + + + + VF Hol M P (LINNAEUS, 1761) Noctua pronuba - - + + + + + VF Eua M P; G (LINNAEUS, 1758) Noctua fimbriata - - + + + + + VF Wam M P; D (SCHREBER, 1759) Noctua orbona Med- - - + + - - - RF M P (HUFNAGEL, 1766) As Xestia c-nigrum - - + + + + + VF Cosm M P (LINNAEUS, 1758) Xestia triangulum - - + + + - - RF Eua M P (HUFNAGEL, 1766) Cerastis rubricosa (DENIS & SCHIFFERMÜLLER, - - + + + + + RF Eua M P 1775) Anaplectoides prasina (DENIS & SCHIFFERMÜLLER, - - + + + + - RF Hol M P 1775) Euxoa aquilina (DENIS & SCHIFFERMÜLLER, - - + + + - - RF Eua Mxt R 1775) Agrotis exclamationis + - + + + + + WF Pal Eu R (P,G) (LINNAEUS, 1758) Agrotis ipsilon - - + + + + + VF Cosm Eu R (P,G) (HUFNAGEL, 1766) Agrotis segetum (DENIS & SCHIFFERMÜLLER, - - + + + + + VF Eua M R (P,G) 1775)

239

www.mcdr.ro / www.cimec.ro Taxon O F B 1 2 3 4 F GS EE LF

Agrotis crassa Med- - - + - - - - R Xt R (P,G) (HÜBNER, 1803) As LYMANTRIIDAE Calliteara pudibunda - + + + + + + RF Eua M D (LINNAEUS, 1758) Euproctis chrysorrhoea - - + - + + + RF Eua M D (LINNAEUS, 1758) D Leucoma salicis - + + + + + + F Eua Mh Oligophagous (LINNAEUS, 1758) Salicaceae Arctornis l-nigrum - + + + + + + F Eua M D (O.F.MÜLLER, 1764) Lymantria dispar Dq: Quercus, Fagus, - + + + + - - F Hol M (LINNAEUS, 1758) Carpinus Penthophera morio - - + + - - - RF Eua M P (LINNAEUS, 1758) NOLIDAE Nycteola revayana - - + - + + - RF Wam Mt Dq (SCOPOLI, 1772) D Earias clorana - - + - + + - RF Eua Mh Oligophagous (LINNAEUS, 1761) Salicaceae Bena prasinana - - + + + - + RF Wam Mt Dq: Quercus, Fagus (LINNAEUS, 1758) Pseudoips fagana - - + + + + + RF Eua M D: Fagaceae (FABRICIUS, 1781) ARCTIIDAE Miltochrista miniata + - + + + + + VF Eua M L (FORSTER, 1771) Atolmis rubricollis - - + + + - - F Eua M L (LINNAEUS, 1758) Eilema sororculum - - + + + + - RF Eua Mh L (HUFNAGEL, 1766) Eilema lurideolum - - + + + + + VF Eua Mt L (ZINCKEN, 1817) Arctia caja - - + + + + - RF Eua M P (LINNAEUS, 1758) Arctia villica - - + + + + + RF E.Was M P (LINNAEUS, 1758) Diacrisia sannio - + + + + + + F Eua Mh P (LINNAEUS, 1758) Spilosoma lubricipeda + + + + + + + VF Eua M D (LINNAEUS, 1758) Spilosoma luteum + + + + + + + VF Eua M D (HUFNAGEL, 1766) Diaphora mendica + - + + + + + F Eua M P (CLERCK, 1759) Syntomis phegea danieli + + + + + + + VF Eua M P OBRATZOV, 1966 Dysauxes ancilla - - + + + + - F Pm Xt L, Ms (LINNAEUS, 1767) - - + + + + + VF Eua M P (LINNAEUS, 1758) Phragmatobia caesarea - - + + + + + R Eua M P (GOEZE, 1781) Euplagia quadripunctaria - + + + + + + VF Eua M P (PODA, 1761) Callimorpha dominula - - + + + + - F Wam Mh P; D (LINNAEUS, 1758)

240

www.mcdr.ro / www.cimec.ro Abbreviation: O= Adriano OSTROGOVICH Collection; F= after FOTESCU (1972); B= after BURNAZ SILVIA (1993); 1-4: sites: 1. The hills of Deva town; 2. The Runcu Valley and the calcareous area of Govăjdie; 3. The Cerna Valley and the surroundings of Lunca Cernii locality; 4. The hills of Hunedoara town; Fr=Frequency (after RÁKOSY & VIEHMANN 1991): RF= Relative frequent species (7-5 specimens/day); F= Frequent species (5-15 specimens /day); VF=Very frequent species (>15 specimens/day); R= Rare species (5-10 specimens/generation); VR=Very rare species (1-4 specimens/generation); GS=Geographical spreading (after RÁKOSY 1995, 1996, 1997): Eua= Euroasiatic; E.Wam= Eurowestasiatic-Mediterranean; Wam= Westasiatic-mediterranean; Med=Mediterranean; Am=Atlanto-Mediterranean; Pm=Ponto-Mediterranean; E.Was=Euro-Westasiatic; Hol=Holarctic; Pal=Palearctic; Cosm=Cosmopolite; EE=Ecological Exigences (after RÁKOSY 1995, 1996, 1997): M = Mesophylous; Mh = Mesohigrophylous; Mht=Mezohigrothermophylous; Mth=Mezothermohigrophylous; Mxt=Mezoxerothermophylous; Mx= Mezoxerophylous; Mt=Mezothermophylous; Xt=Xerothermophylous; Hg= Hygrophylous; T=Thermophylous; T-Hg=Thermo-Hygrophylous; T-Mh=Thermo-Mezohygrophylous; LF= Larval Food (after RÁKOSY 1995, 1996, 1997): D=Defoliators of deciduous trees; Q=Defoliators of Quercus sp.; Dq=Defoliators of deciduous trees, especially of Quercus sp. P = Herbaceous plants (Dycotyledonatae); G = Gramineous plants (Monocotyledonatae); S=Shrubs; R=Root consummers; X=Xylophagous species; L: Lichenophagous species.

A number of 390 Macrolepidoptera species have been recorded from the Eastern and North- Eastern part of the Poiana Ruscă Mountains. The species diversity varies among the sites: 301 species were recorded from the hills of Deva town, 322 species from the Runcu Valley and the calcareous area of Govăjdie, 240 species from the Cerna Valley and the surroundings of Lunca Cernii locality and 206 species from the hills of Hunedoara town (Fig. 1). The structure of the Macrolepidoptera families points out the predominance of Noctuidae (121 species) and Geometridae (99 species), followed by Rhopalocera, especially Lycaenidae (25 species), Nymphalidae (31 species) and Satyridae (16 species) (Table 2).

Table 2 - The structure of the Macrolepidoptera families according to the number of the species

FAMILIES SPECIES NUMBER HEPIALIDAE 1 COSSIDAE 2 ZYGAENIDAE 7 LASIOCAMPIDAE 4 ATTACIDAE 3 DREPANIDAE 6 THYATIRIDAE 4 GEOMETRIDAE 99 SPHINGIDAE 8 NOTODONTIDAE 15 LYMANTRIIDAE 6 ARCTIIDAE 16 NOCTUIDAE 121 HESPERIIDAE 11 RIODINIDAE 1 LYCAENIDAE 25 SATYRIDAE 16 NYMPHALIDAE 31 PAPILIONIDAE 3 PIERIDAE 11 Total 390 species

The majority of species is represented by the relative frequent species (1-5 specimens/day), like: Zeuzera pyrina, Cossus cossus, Malacosoma neustria, Macrothylacia rubi, Odonestis pruni, Eudia pavonia, Drepana falcataria, Falcaria lacertinaria, Sabra harpagula, Alsophila aescularia,

241

www.mcdr.ro / www.cimec.ro Pseudoterpna pruinata, Hemithea aestivaria, Thalera fimbrialis, Scotopteryx chenopodiata, Xanthorhoe fluctuata, Ecliptopera capitata, Eustroma reticulatum, Horisme vitalbata, Aplocera praeformata, Ligdia adustata, Lycia hirtaria, Agriopis aurantiaria, Peribatodes rhomboidarius, Smerinthus ocellatus, Cerura vinula, Peridea anceps, Ptilophora plumigera, Calliteara pudibunda, Arctia caja, Arctia villica, Catocala nupta, Nycteola revayana, Earias clorana, Euchalcia modestoides, Amphipyra tragopoginis, Rusina ferruginea, Trachea atriplicis, Phlogophora meticulosa, Dichonia convergens, Blepharita satura, Lacanobia w-latinum, Mythimna conigera, Mythimna l- album, Anaplectoides prasina, Euxoa aquilina, Carterocephalus palaemon, Lycaena dispar rutila, Meleageria coridon coridon, Meleageria bellargus bellargus, Minois dryas drymeia, Apatura iris iris, Melitaea aurelia aurelia, Aporia crataegi crataegi, Papilio machaon machaon, Parnassius mnemosyne distincta, etc. The most frequent species (6-15 specimens/day) are: Zygaena purpuralis pluto, Zygaena filipendulae, Thyatira batis, Cyclophora linearia, Timandra griseata, Rhodostrophia vibicaria, Lythria purpurata, Camptogramma bilineatum, Operophtera brummata, Pseudopanthera macularia, Erannis defoliaria, Ematurga atomaria, Miltochrista minitata, Spilosoma lubricipeda, Hypena proboscidalis, Euclidia glyphica, Craniophora ligustri, Emmelia trabealis, Paradrina clavipalpis, Oligia strigilis, Mesapamea secalis, Discestra trifolii, Orthosia incerta, Agrotis exclamationis, Agrotis segetum, Hesperia comma comma, Ochlodes venatus faunus, Pyrgus malvae malvae, Lycaena virgaureae virgaureae, Maniola jurtina jurtina, Aphantopus hyperantus hyperanthus, Coenonympha pamphilus pamphilus, Pararge aegeria tircis, Clossiana selene selene, Clossiana euphrosyne euphrosyne, Argynnis paphia paphia, Issoria lathonia lathonia, Argynnis aglaja aglaja, Araschnia levana levana, Melitaea athalia athalia, Melitaea didyma didyma, Pieris rapae rapae, Pieris napi meridionalis, etc. Rare species (5-10 specimens/generation) and very rare species (1-4 specimens/generation) in the studied area are Saturnia pyri, Aplasta ononaria, Scopula decorata, Idaea aureolaria, Idaea rufaria, Chroloclysta siterata, Triphosa sabaudiata, Tricopteryx carpinata, Tephrina arenacearia, Catocala elocata, Catocala fraxini, Shargacucullia verbasci, Asteroscopus sphinx, Heliothis armigera, Hadena albimacula, Hadena luteago, Agrotis crassa, Carcharodus alceae alceae, Carcharodus flocciferus flocciferus, Thecla betulae betulae, Neozephyrus quercus quercus, Maculinea arion arion, Melitatea trivia trivia, Brenthis daphne daphne, Brenthis hecate hecate. The following species identified in this area are rare for the Romanian fauna:

Lycaena helle (DENIS & SCHIFFERMÜLLER, 1775): 2♂♂ Cerna Valley (Lunca Cernii de Jos), 22. 07. 2000 Geographical distribution: Euroasiatic species, in Northern, Central and Easter Europe, Siberia and Amur Basin. In Romania it is a very rare species, recorded from Satu-Mare, Bãile

Herculane, Cerna Valley (Mehedinţi Mountains) (BALINT & SZÁBO 1981; SZÁBO 1982; 1990; RÁKOSY

& NEUMANN 1997).

242

www.mcdr.ro / www.cimec.ro Habitat: Mesohygrophylous grasslands, wet meadows. Voltinism: Bivoltine species, in Mai and July-August. Larval host: Polygonum bistorta Adult food: We observed the adults of Lycaena helle visiting Mentha longifolia, Eupatorium cannabinum, Telekia speciosa.

Pararge achine SCOPOLI, 1763: 1 ♂ Cerna Valley (Lunca Cernii de Jos), 20. 07. 2000 Geographical Distribution: Euroasiatic. In Romania it is a rare and localized species, in the hillocky zone of the Carpathian Mountains. Habitat: In open deciduous forests (oak forests, beech forests), shrubs. Voltinism: Monovoltine, in Juin-July. Larval host: Oligophagous species in Poaceae, especially Poa annua, Dactylis glomerata, Deschampsia cespitosa, Carex sp., Lolium sp. Adult food: The adults nectar at Telekia speciosa.

Auchmis detersa ESPER, 1791: 1 ♂ Govăjdie Valley, in the limestone area, 26.06.1988 Geographical Distribution: Westasiatic- Mediterranean. In Romania, sporadically in the hillocky limestone zone of the Carpathian Mountains (RÁKOSY 1996). Habitat: Open deciduous forests, Shrubs. Larval host: Monophagous on Berberis vulgaris.

Meganephria bimaculosa (LINNAEUS, 1767): 1♂ Deva (The Bejan Forest) 3.10.1997 Geographical Distribution: Westasiatic-Mediterranean. In Romania is a very rare species, recorded from Cluj, Hunedoara, Sighişoara, Timişoara, Herneacova, Bazoş, Ianova, Ardeoani - Bacău,

Focşani, Iaşi, Tecuci, Rarău Mountains (RÁKOSY 1996). Habitat: meadow forests. Voltinism: Monovoltine, septembre-octobre Larval Host: Oligophagous species on Ulmus sp. Zoogeographical analysis indicates the predominance of the species whith an Euroasiatic distribution (78%) followed by Westasiatic-mediterranean (9%) and Holarctic species (5%). Other species (8%) are represented by European, Mediterranean-Asiatic, Euro-Westasiatic, Atlanto- Mediterranean, Tropical-subtropical elements (Fig. 2). The Poiana Ruscă Mountains area is characterized by the predominance of the mesophylous (55%) and mesohigrophylous species (16%), followed by mesothermophylous (10%) and mesoxerothermophylous species (8%). The presence of the xerothermophylous species (6%) is due to the limestone habitats from Govăjdie area and xerophytic rocky grasslands from Deva hills (Fig. 3). The global trophic analysis points out the predominance of the herbaceous plant consumers (Dycotyledonatae) (52%), followed by the defoliators of the deciduous trees (23%), gramineous plant

243

www.mcdr.ro / www.cimec.ro consumers (8%) and shrub consumers (7%). The defoliators of Quercus species represent 5% from all the identified species, connected to the oack forests from Deva and Lunca Cernii hills (Fig. 4). The analysis of the larval food also points out the predominance of the polyphagous species (64.62%), followed by oligophagous (32,05%) and monophagous species (3,33%).

322 350 301 240 300 250 206 200 Species 150 100 50 0 Deva Govajdie Lunca Hunedoara Cernii Sites

Fig. 1- The species diversity among the sites

Euroasiatic 5% 8% 9% Westasiatic- mediterranean Holarctic

78% Other elements

Fig. 2.- Zoogeographical structure of the Lepidoptera species from the Poiana Ruscă Mountains

244

www.mcdr.ro / www.cimec.ro Mesophylous species

6% Mesohigrophylous species 8% 5%

Mesothermophylous 10% species 55% Mesoxerothermophylous species 16% Xerothermophylous species

Other elements

Fig. 3.- Ecological exigences of the Macrolepidoptera species from the Poiana Ruscă Mountains

Herbaceous plant 2% consumers Defoliators of deciduous 5% 3% trees 7% Gramineous plant consumers 8% Shrub consumers 52% Defoliators of Quercus 23% species Root consumers

Other consumers

Fig. 4.- Global trophic structure of the Macrolepidoptera species from the Poiana Ruscă Mountains

CONCLUSIONS

390 species of Macrolepidoptera have been recorded from the natural ecosystems of the Poiana Ruscă Mountains. Most of them are very common species, characteristic for grasslands, beech and oak forests, meadow forests and xerophytic rocky grasslands. The presence of some rare species in Romanian fauna like: Lycaena helle, Meganephria bimaculosa, Auchmis detersa, Mormo maura, justifies the protection of their habitats.

245

www.mcdr.ro / www.cimec.ro

REFERENCES

BALINT Z & G. SZÁBO (1981): A Lycaena helle Den. Et Schiff., elterjedés a Szatmar –Beregi sikon.- Folia entomol. hung., Budapest, 42 (34) (1): 235-236.

BERGMANN A. (1952): Die Grossschmetterlinge Mitteldeutschlands. 2. Tagfalter. - Urania Verlag GMBH, Jena, 425 p.

BURNAZ SILVIA (1993 a): Contribuţii la cunoaşterea faunei de macrolepidoptere a Măgurilor Devei (jud. Hunedoara). - Bul. Inf. Soc. Lepid. Rom., Cluj-Napoca, 4 (1): 3-11.

BURNAZ SILVIA (1993 b): Catalogul colecţiei de lepidoptere a Muzeului judeţean Hunedoara- Deva - Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 14-15: 157-302.

BURNAZ SILVIA, BALAZS MARCELA (2001): Contribuţii la cunoaşterea florei şi faunei sectorului estic şi nord –estic al Munţilor Poiana Ruscä.- Corviniana, Hunedoara, 6(6): 340-346.

CÂNDEA MARIA (1975-1976): Conspectul sistematic al plantelor vasculare de pe Dealul Cetăţii Deva.- Sargetia, Acta Mus. Dev, Ser. Sci. Nat., Deva, 111-12: 139-156.

CIUNTU MARIA (1983): Flora dealurilor Zănoaga şi Colţu- Deva.- Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 13: 75-110.

FOTESCU R. (1972): Contribuţii la cunoaşterea faunei de lepidoptere din Bazinul Cernei şi împrejurimile oraşului Hunedoara.- Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 9:117-130.

GRUESCU I. S. (1975): Noi obiective şi trasee turistice în judeţul Hunedoara. In: Lucr. Al II- lea Colocviu internaţional de Geografia turismului, Bucureşti, Edit. Sport-Turism, 179-182.

KOCH M. (1988): Wir bestimmen Schmetterlinge. Tagfalter, Eulen, Schwarmer, Spinner & Spanner. 2. - Aufl.-Melsungen.729 p.

KOHLER J. & K.-H. MÜLLER-KOLLGES (1999): Die Tagfalter einschl. Dikkopffalter (Lepidoptera: Rhopalocera incl. Hesperiidae) im Hannoverschen Vendland (Ost-Niedersachsen)-Neu und Viederfunde in Niedersachsen verschollener Arten.- Braunschw. Naturkdl. Schr., Braunschweig, 5(4): 883-904.

KÖNIG F. (1974): Contribuţiuni la cunoaşterea faunei de lepidoptere din Munţii Poiana Ruscă. - Tibiscus, Muz. Banatului, 53-63.

KRAUTNER H.G. (1984): Munţii Poiana Ruscă. Ghid turistic. - Edit. Sport-Turism, Bucureşti, 153 p.

LANGE A. & M. PREUSSING (1995): Tagfalter (Lepidoptera: Papilionoidea, Hesperioidea, Zygaenoidea) am Burgberg bei Bevern (Landkreis Holzminden, Niedersachsen) und ihre Bedeutung fur ein Naturschutzkonzept.- Braunschw. Naturkdl. Sch., Braunschweig, 4(4): 841-862.

LERAUT P. (1980): Lyste systématique et synonimique des lépidoptères de France, Belgique et Corse.- Suppl. Alexanor, Rev. des Lépidoptèristes Francais, Paris, 334 p.

MIHUŢ S. (2000): Biological, ecological and zoogeographical considerations on Romanian

246

www.mcdr.ro / www.cimec.ro Butterflies.- Evolution and Adaptation, Cluj-Napoca, 7:45-78.

NICULESCU E.V. (1961): Familia Papilionidae. In: Fauna R. P. R. Insecta. Lepidoptera, Edit. Acad. Române, Bucureşti, 11(5): 5-103.

NICULESCU E.V. (1963): Familia Pieridae. In: Fauna R. P. R., Insecta, Lepidoptera, Edit. Acad. Române, Bucureşti, 11(6): 1-102.

NICULESCU E.V. (1965): Familia Nymphalidae. In. Fauna R. P. R. Insecta. Lepidoptera, Edit. Acad. Române, Bucureşti, 11(7): 1-362.

POPESCU-GORJ A. (1964): Catalogue de la collection de lépidoptères “Prof. A. Ostrogovich” du Museum d' Histoire Naturelle “Grigore Antipa”.- Edit. Mus. Hist. Nat. “Grigore Antipa”, Bucureşti, 293 p.

POPESCU-GORJ A. (1984): La liste systématique des espèces de microlépidoptères signalées dans la faune de Roumanie. Mise á jour de leur classification et nomenclature. – Trav. Mus. Hist. Nat. “Grigore Antipa”, Bucureşti, 26: 111-162.

POPESCU-GORJ A. (1987): La liste systématique revisée des espèces de macrolépidoptères mentionées dans la faune de Roumanie. Mise á jour de leur classification et nomenclature.- Trav. Mus. Hist. Nat. “Grigore Antipa”, Bucureşti, 29: 69-123.

RÁKOSY L. (1995): Die Noctuiden Siebenbürgens (Transsylvanien, Rumänien) (Lepidoptera: Noctuidae). - Nachr. Entomol. Ver. Apollo, Frankfurt/Main, Suppl. 13: 1-109.

RÁKOSY L. (1996): Die Noctuiden Rumäniens.- Staphia, Linz, 648 pp.

RÁKOSY L. (1997): Macrolepidopterele din Parcul Naţional Retezat.- In: Entomofauna parcurilor naţionale Retezat şi Valea Cernei. Edit. Soc. Lepid. Rom., Cluj-Napoca, 87-122.

RÁKOSY L. & Z. LÁSZLOFFY (1997): Fauna de macrolepidoptere de la Fânaţele Clujului (Lepidoptera) (Cluj, România).- Bul. Inf. Soc. Lepid. Rom., Cluj-Napoca, 8(3-4): 165-186.

RÁKOSY L. & J. VIEHMANN (1991): Arguments for the Tur Gorges nature reserve. - Ocrot. Nat. Med. Inconj., Edit. Acad. Române, Bucureşti, 35(1-2): 15-25.

RESMERIŢĂ I., CERNELEA E., VICOL E. C. & F. TÄUBER (1972): Vegetaţia din jurul Devei. - Sargetia, Acta Mus. Dev., Ser. Sci. Nat., Deva, 9: 23-52.

SZÁBO A. (1982): Contribuţii privind răspândirea în România a speciilor Lycaena helle Schiff. şi Philotes bavius Ev. (Lepidoptera: Lycaenidae).- Stud. Comunic. Soc. St. Nat., Reghin, 2: 299-306.

SZÁBO A. (1990): Date despre fauna de lepidoptere a judeţului Satu Mare. Anal. Banatului, Şt. Nat., Timişoara, 2: 69-74.

Silvia Burnaz The Museum of Dacian and Romanian Civilisation Deva, 39, 1 Decembrie Street. Romania

247

www.mcdr.ro / www.cimec.ro Sargetia, Acta Mus. Ser. Sci. Nat. Deva Vol. XIX - 2002 pp. 249 - 252

NEW BIRD SPECIES BREEDING IN RETEZAT MOUNTAINS

ATTILA D. SÁNDOR

Rezumat Specii noi de păsări cuibăritoare în Munţii Retezat

In anul 2000 s-au organizat noi cercetări ornitologice în Parcul Naţional Retezat, cu prilejul inventarierii de bază a florei şi a faunei. S-a constatat cuibăritul la patru specii noi în Munţii Retezat – cârstelul de câmp, ciocârlia urecheată, lăstunul de stâncă şi mugurarul roşu, respectiv rândunica roşcată care a fost găsită în apropierea Parcului. Cu acest prilej s-a făcut si o prezentare mai detaliată a speciilor nominate, referitor la situaţia lor, pe plan european cât şi cel din România.

The Retezat Mountains lay on the south-western part of Romania, taking part from the Southern Carpathians (or Transylavanian Alps), being on of the ornithologically most well known part of the country. From the second half of the XIX century, many ornithologists, native and strangers as well organised trips to the area. The first descriptions of the avifauna in the area cames from CSATÓ

(1869, 1873, 1885), after whom Danford (DANFORD & BROWN 1875), CONGRAVE (CONGRAVE 1929,

1935) and MUNTEANU (1985, 1986, 1987, 1992) gave valuable informations. Csató was the first ornithologist who made systematical observations in the region, he presenting a synopsis of fauna and flora of the area. He used some notes from the late Stetter's collection as well. Many of the bird species found by him were confirmed lately by others. Danford spent several years in the Retezat area, but travelled in the whole Transylvania. In his coautored monograph (DANFORD & BROWN 1875) we may find several notes on Retezat. Congrave in his two papers made a detailed presentation of the bird fauna, mentioning 116 species. Munteanu presents information mainly from the boreal-alpine region, in his papers we found detailed information about the density and abundance of breeding birds from conifer forests, dwarf pine regions and alpine zones.

He mentioned 87 species. We may find several notes on new species observed in Retezat in GHIRA &

NUŢU (1986), GÎRLEA (1977), DUNĂREANU (1956) and others. The aim of this short note is to present some information regarding new breeding bird species in Retezat, records from the year 2000. The observations were made by volunteers of an ecological base-line survey organised by the Retezat National Park Management Authority, between

249

www.mcdr.ro / www.cimec.ro 20.05. - 29.08.2000. In some areas we looked for the species mentioned, other observations were made by chance. Below I will present the occurence of the observed species, with details on their country- wide situation. 1. Corncrake (Crex crex). The species was observed in the core area of the National Park, near Gura Zlata, in the Lănciţi Valley, 1150 m a.s.l., on 23-25.05. and 29.06.2000. In the first occasion one singing male was noted, in the second time there were two singing males. The area is a small pastureland (5-6 ha) surrounded by beech (Fagus sylvatica) and poplar (Betula pendula) forested stands. The birds were noted in a small patch of Urtica dioica, near an abandoned sheepkeeper's hut. The species is a common breeding bird of wet meadows all over the country, reaching high densities in intramontane basins. The Romanian population is estimated 6000 singing males, according to WEBER (1994). 2. Shore Lark (Eremophila alpestris). The species was observed for the first time in the Râu Mare Valley, near Râu de Mori village, on 15.03.2000, when a pair was present, with the male intensively singing. The birds were present in the same area on 22.03., but not found after that date. The first record of breeding was noted on 26.05.2000 when a hardly flying chick was found in the southern slope of Păpuşa Peak, on a scree slope with alpine vegetation. The bird behaved specifically, laying on the ground relying on the ground relying on its mimicry plumage. It was flushed several times in our efforts to capture. The parents not were seen only heard, and the late afternoon timing prevented us from more searches. The species is a very rare breeding bird of the Southern Carpathians, the only proved breeding from the last three decades cames from Cindrel area. Northern populations of the species (of subspecies flava) occur regularly as winter visitors. The estimated breeding population of the species in the country is 30 breeding pairs (WEBER 1994). 3. Crag Martin (Pytyonoprogne rupestris). It was first observed in the Râul Mare Valley, at the Gura Apei dam, on 26.05. 2000. A flock of 62 individuals were seen several times on that day. The first nest was discovered on the same date, attached to a near-vertical rock, with a small shelter, above a commonly used road (three nestlings were reared, they left the nest on 29.07). Two more nests were found, all in the Râul Mare Valley, about 400m and 2000m far from the first one. Birds were seen several times after that date, last observation dated from 15. 09. 2000, near the locality Râu de Mori, when 6 birds were seen. The crag martin is a species in expansion all over its breeding area. The first record of its breeding was proven in late sixties, after that several new breeding areas were found. The closest breeding place to the Retezat Mountains is the Cerna Valley, were several colonies are present

(SÁNDOR & PETROVICI 1996). The estimated breeding population of the species in the country is 300 pairs according to WEBER (1994).

250

www.mcdr.ro / www.cimec.ro 4. Red-rumped Swallow (Hirundo rustica). The species was not observed in the Retezat National Park, but in the very vicinity of its, at about 2 km far from the southern slopes of the Limestone Retezat, and its future breeding in the park is highly probable. Two birds were observed several times (27.05, 29.05, 20.06, 05.07, 19.08) at the Crivadia Gorge. No nest were found, although breeding was suspected.

The species it is in overall expansion, first mentioned in the country by RADU (1977) in

1976, its breeding was confirmed by PASPALEVA (1977) for Southern Dobrogea, and ultimately found in the western part of the country as well (SÁNDOR & PETROVICI 1996). The estimated breeding population of the species in the country is 40 pairs (WEBER 1994). 5. Common Rosefinch (Carpodacus erythrinus). First occurrence of the species in the

Retezat Mountains were noted by KOHL & SASVÁRI (1980) in 1977, a singing male near Cârnic, northern part of the Retezat. Although surveyed several times after that record, no new observation was made in the area. A new breeding population was discovered in 2000, consisting of about 26-33 breeding pairs in the southwestern part of the National Park, in the area Gura Apei - Rotunda. The first birds were observed on 26.05.2000, several singing males in the area of Gura Apei (aprox. 1,100 m a.s.l.), near human habitations. The area is covered by young exemplars of larch (Larix decidua), (Salix sp.) and poplar trees. Late in the season a survey in the area noted 26 singing males. In addition 6-7 singing males were found along the Lăpuşnicu Mare Valley. The birds were present until middle of August (last individual - a juvenile - seen on 16.08.2000). The species is expanding its range from east to west, first bred in the country in 1976 in

Upper Mureş Valley (KOHL & SASVÁRI 1980). The Retezat is it's second proven breeding area and there are signs that in near future will expand its area in other parts of the country as well. The estimated breeding population of the species in the country is 300 pairs, according to SÁNDOR (in prep.).

References CONGRAVE W. M. 1929. Some notes from south-western Transylvania and the Banat of the New Romania. Ibis 52: 443-491.

CONGRAVE W. M. 1935. Further notes from south-western Transylvania. Ibis 58: 564- 577.

CSATÓ J. 1869. A Retyezát helyviszonyrajzi és természetrajzi tekintetben. Erdély Muz. Egylet Évk. Kolozsvár (1866-1867) 4: 72-89.

CSATÓ J. 1873. A Strigy mentének és mellékvölgyeinek természetrajzi leirása. Erd. Múz. Egyl.Éevk. 6: 139.

CSATÓ J. 1885. Über den Zug, das Wandern und die Lebenweise der Vögel in der Komitaten Alsó-Fehér und Hunyad. Zeitschr. Orn. Budap. 2: 392-522.

251

www.mcdr.ro / www.cimec.ro DANFORD C. G., Brown J. A. H. 1875. The Birds of Transylvania. Ibis 11: 188-199, 291-312, 412-435.

DUNĂREANU I. 1956. Despre prezenţa vulturului bărbos în Retezat. Probl. Geogr. 3: 294-295.

GHIRA I., NUŢU A. 1986. Prezenţa unui juvenil de Stercorarius în Parcul Naţional Retezat. Ocrot. Nat. 30: 50-51.

GÎRLEA D. 1977. Lăstunul de stîncă (Apus melba melba L.) în Retezatul Mic. Ocrot. Nat. 21: 43-44.

KOHL I., SASVÁRI L. 1980. Mugurarul roşu (Carpodacus erythrinus Pall.) în România. Marmaţia 5-6: 115-119.

MUNTEANU D. 1985. Räspândirea altitudinală a avifaunei pe Valea Zlătuii (Parcul Naţional Retezat). Ocrot. Nat. 29: 32-36.

MUNTEANU D. 1986. Cercetări asupra populaţiilor de päsäri (Aves) din Munţii Retezat (I). St. Cerc. Biol. , Ser. Biol. anim. 38: 87-90.

MUNTEANU D. 1987. Cercetări asupra populaţiilor de păsări (Aves) din Munţii Retezat (II). St. Cerc. Biol. , Ser. Biol. anim. 39: 171-174.

MUNTEANU D. 1992. Structura specifică a comunităţii de păsări şi mamifere din Parcul Naţional Retezat. In: Parcul Naţional Retezat - Studii Ecologice. (Ed. Popovici I.) West Side Computers, Braşov. p. 192-199.

RADU D. 1977. Hirundo daurica rufula (Temm), specie nouă pentru România. Stud. Cerc. Biol. Ser. Zool. 29: 11-14.

PASPALEVA M. 1977. L’Hirondelle rousseline Hirundo daurica, la Fauvette passerinette Sylvia cantillans, la Perdix bartavelle Alectoris graeca et la Rousserolle de Buissons Acrocephalus dumetorum en Roumanie. Alauda 45: 237-238.

SÁNDOR A. (in prep.) Recent range expansion of the Common Rosefinch (Carpodacus erythrinus) in Romania.

SÁNDOR A., M. PETROVICI 1996. Rândunica roşcată pe Valea Cernei. Milvus 3: 32.

WEBER P. (ed.) 1994. Atlasul provizoriu al păsărilor clocitoare din România. Soc. Orn. Rom., Mediaş.

Attila D. Sandor Str. Mihai Viteazu 10. RO-2700 Deva

252

www.mcdr.ro / www.cimec.ro ISSN 1224 – 7464

Tiparul executat la …….

www.mcdr.ro / www.cimec.ro www.mcdr.ro / www.cimec.ro