Phylogenetic Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetics Topic 2: Phylogenetic and Genealogical Homology
Phylogenetics Topic 2: Phylogenetic and genealogical homology Phylogenies distinguish homology from similarity Previously, we examined how rooted phylogenies provide a framework for distinguishing similarity due to common ancestry (HOMOLOGY) from non-phylogenetic similarity (ANALOGY). Here we extend the concept of phylogenetic homology by making a further distinction between a HOMOLOGOUS CHARACTER and a HOMOLOGOUS CHARACTER STATE. This distinction is important to molecular evolution, as we often deal with data comprised of homologous characters with non-homologous character states. The figure below shows three hypothetical protein-coding nucleotide sequences (for simplicity, only three codons long) that are related to each other according to a phylogenetic tree. In the figure the nucleotide sequences are aligned to each other; in so doing we are making the implicit assumption that the characters aligned vertically are homologous characters. In the specific case of nucleotide and amino acid alignments this assumption is called POSITIONAL HOMOLOGY. Under positional homology it is implicit that a given position, say the first position in the gene sequence, was the same in the gene sequence of the common ancestor. In the figure below it is clear that some positions do not have identical character states (see red characters in figure below). In such a case the involved position is considered to be a homologous character, while the state of that character will be non-homologous where there are differences. Phylogenetic perspective on homologous characters and homologous character states ACG TAC TAA SYNAPOMORPHY: a shared derived character state in C two or more lineages. ACG TAT TAA These must be homologous in state. -
An Introduction to Phylogenetic Analysis
This article reprinted from: Kosinski, R.J. 2006. An introduction to phylogenetic analysis. Pages 57-106, in Tested Studies for Laboratory Teaching, Volume 27 (M.A. O'Donnell, Editor). Proceedings of the 27th Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 383 pages. Compilation copyright © 2006 by the Association for Biology Laboratory Education (ABLE) ISBN 1-890444-09-X All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the copyright owner. Use solely at one’s own institution with no intent for profit is excluded from the preceding copyright restriction, unless otherwise noted on the copyright notice of the individual chapter in this volume. Proper credit to this publication must be included in your laboratory outline for each use; a sample citation is given above. Upon obtaining permission or with the “sole use at one’s own institution” exclusion, ABLE strongly encourages individuals to use the exercises in this proceedings volume in their teaching program. Although the laboratory exercises in this proceedings volume have been tested and due consideration has been given to safety, individuals performing these exercises must assume all responsibilities for risk. The Association for Biology Laboratory Education (ABLE) disclaims any liability with regards to safety in connection with the use of the exercises in this volume. The focus of ABLE is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. -
A Stochastic Model of Language Evolution That Incorporates Homoplasy and Borrowing
A STOCHASTIC MODEL OF LANGUAGE EVOLUTION THAT INCORPORATES HOMOPLASY AND BORROWING TANDY WARNOW, STEVEN N. EVANS, DONALD RINGE, AND LUAY NAKHLEH 1. Introduction The inference of evolutionary history, whether in biology or in lin- guistics, is aided by a carefully considered model of the evolutionary process and a reconstruction method which is expected to produce a reasonably accurate estimation of the true evolutionary history when the real data match the model assumptions and are of sufficient quan- tity. In molecular systematics (i.e., the inference of evolutionary his- tories from molecular data), much of the research effort has focused in two areas: first, the development of increasingly parameter rich models of molecular sequence evolution, and second, the development of increasingly sophisticated software tools and algorithms for recon- structing phylogenies under these models. The plethora of software for reconstructing phylogenies from molecular data is staggering. By com- parison, much less has been done in historical linguistics in terms of developing statistical models of character evolution or reconstruction methods, suggesting that there is perhaps much to be gained by doing so. To date, although some models have been proposed for language evo- lution, all have failed in some significant ways. In particular, linguistic models either explicitly or implicitly have assumed that no homoplasy (i.e., parallel evolution and/or back–mutation) occurs (see for exam- ple (Ringe et al. , 2002; Taylor et al. , 2000; Warnow, 1997)). Most, but not all, have not modelled borrowing between languages. In this paper, we go beyond earlier models by explicitly incorporating both homoplasy and borrowing into our model. -
A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member. -
Phylogeny Diversity: a Phylogenetic Framework Phenetics
Speciation is a Phylogeny process by which lineages split. -the evolutionary relationships among We should be able organisms to the reconstruct the history of these (millions of Time years) -the patterns of lineage branching produced splits (i.e., build an by the true evolutionary history evolutionary tree) Linnaean System Diversity: of Classification A Phylogenetic Framework I. Taxonomy II. Phenetics III. Cladistics Carl von Linné a.k.a. Linnaeus (1707-1778) Phenetics Taxonomy does not always reflect evolutionary history. • Grouping is based on phenotypic similarity • Does not distinguish the cause of similarities • Not widely used today because many Example: Example: Example: similarities are not due to common ancestry. Class Aves Kingdom Protista Class Reptilia 1 Convergent Evolution Cladistics • Emphasizes common ancestry (≠ similarity) • Distinguishes between two kinds of similarities: 1) similarity due to common ancestry 2) similarity due to convergent evolution • Most widely used approach to reconstructing phylogenies. Homology Bird feathers are made of keratin. a phenotype that is similar in two species because it was inherited from a common ancestor. fly wings ≠ bird wings Homoplasy a phenotype that is similar in two species because of convergent evolution. Insect wings are made of chiton. An Example of Cladistics Relate the following taxa: • Horse • Seal • Lion • House Cat Homoplasy 2 Data for Cladistic Analysis How to do a Cladistic Analysis * * Cat Lion Horse Seal Cat Lion Horse 1. Define a set of traits. Seal Lizard Trait Lizard 2. Analyze traits for homology. Retractable Claws 1 0 0 0 0 Pointed Molars 1 1 0 0 0 3. Assign phenotypic states to each taxon. -
'The Realm of Hard Evidence': Novelty, Persuasion And
Stud. Hist. Phil. Biol. & Biomed. Sci., Vol. 32, No. 2, pp. 343–360, 2001 Pergamon 2001 Elsevier Science Ltd. All rights reserved. Printed in Great Britain 1369-8486/01 $ - see front matter www.elsevier.com/locate/shpsc ‘The Realm of Hard Evidence’: Novelty, Persuasion and Collaboration in Botanical Cladistics Jim Endersby* In 1998 a new classification of flowering plants generated headlines in the non- specialist press in Britain. By interviewing those involved with, or critical of, the new classification, this essay examines the participants’ motives and strategies for creating and maintaining a research group. It argues that the classification was produced by an informal alliance whose members collaborated despite their disagreements. This collaboration was possible because standardised methods and common theoretical assumptions served as ‘boundary objects’. The group also created a novel form of collective publication that helped to unite them. Both the collaboration and the pub- lishing strategy were partly motivated by the need to give taxonomy a degree of ‘big science’ credibility that it had previously lacked: creating an international team allowed more comprehensive results; and collective publication served to emphasise both the novelty of the work and its claims to objectivity. Creating a group identity also served to exclude practitioners of alternative forms of taxonomy. Finally, the need to obtain funding for continuing work both created the need to collaborate and influenced the way the classification was presented to the public. 2001 Elsevier Science Ltd. All rights reserved. Keywords: Cladistics; Botanical Taxonomy; Boundary Objects; Sociology of Science; Rhetoric of Science. 1. Introduction: ‘A Rose is Still a Rose’ On 23rd November 1998, the Independent newspaper announced that ‘A rose is still a rose, but everything else in botany is turned on its head’. -
A Comparative Phenetic and Cladistic Analysis of the Genus Holcaspis Chaudoir (Coleoptera: .Carabidae)
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. A COMPARATIVE PHENETIC AND CLADISTIC ANALYSIS OF THE GENUS HOLCASPIS CHAUDOIR (COLEOPTERA: CARABIDAE) ********* A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Lincoln University by Yupa Hanboonsong ********* Lincoln University 1994 Abstract of a thesis submitted in partial fulfilment of the requirements for the degree of Ph.D. A comparative phenetic and cladistic analysis of the genus Holcaspis Chaudoir (Coleoptera: .Carabidae) by Yupa Hanboonsong The systematics of the endemic New Zealand carabid genus Holcaspis are investigated, using phenetic and cladistic methods, to construct phenetic and phylogenetic relationships. Three different character data sets: morphological, allozyme and random amplified polymorphic DNA (RAPD) based on the polymerase chain reaction (PCR), are used to estimate the relationships. Cladistic and morphometric analyses are undertaken on adult morphological characters. Twenty six external morphological characters, including male and female genitalia, are used for cladistic analysis. The results from the cladistic analysis are strongly congruent with previous publications. The morphometric analysis uses multivariate discriminant functions, with 18 morphometric variables, to derive a phenogram by clustering from Mahalanobis distances (D2) of the discrimination analysis using the unweighted pair-group method with arithmetical averages (UPGMA). -
II. a Cladistic Analysis of Rbcl Sequences and Morphology
Systematic Botany (2003), 28(2): pp. 270±292 q Copyright 2003 by the American Society of Plant Taxonomists Phylogenetic Relationships in the Commelinaceae: II. A Cladistic Analysis of rbcL Sequences and Morphology TIMOTHY M. EVANS,1,3 KENNETH J. SYTSMA,1 ROBERT B. FADEN,2 and THOMAS J. GIVNISH1 1Department of Botany, University of Wisconsin, 430 Lincoln Drive, Madison, Wisconsin 53706; 2Department of Systematic Biology-Botany, MRC 166, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012; 3Present address, author for correspondence: Department of Biology, Hope College, 35 East 12th Street, Holland, Michigan 49423-9000 ([email protected]) Communicating Editor: John V. Freudenstein ABSTRACT. The chloroplast-encoded gene rbcL was sequenced in 30 genera of Commelinaceae to evaluate intergeneric relationships within the family. The Australian Cartonema was consistently placed as sister to the rest of the family. The Commelineae is monophyletic, while the monophyly of Tradescantieae is in question, due to the position of Palisota as sister to all other Tradescantieae plus Commelineae. The phylogeny supports the most recent classi®cation of the family with monophyletic tribes Tradescantieae (minus Palisota) and Commelineae, but is highly incongruent with a morphology-based phylogeny. This incongruence is attributed to convergent evolution of morphological characters associated with pollination strategies, especially those of the androecium and in¯orescence. Analysis of the combined data sets produced a phylogeny similar to the rbcL phylogeny. The combined analysis differed from the molecular one, however, in supporting the monophyly of Dichorisandrinae. The family appears to have arisen in the Old World, with one or possibly two movements to the New World in the Tradescantieae, and two (or possibly one) subsequent movements back to the Old World; the latter are required to account for the Old World distribution of Coleotrypinae and Cyanotinae, which are nested within a New World clade. -
Hemiplasy and Homoplasy in the Karyotypic Phylogenies of Mammals
Hemiplasy and homoplasy in the karyotypic phylogenies of mammals Terence J. Robinson*†, Aurora Ruiz-Herrera‡, and John C. Avise†§ *Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa; ‡Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Genetica e Microbiologia, Universita`degli Studi di Pavia, via Ferrata 1, 27100 Pavia, Italy; and §Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697 Contributed by John C. Avise, July 31, 2008 (sent for review May 28, 2008) Phylogenetic reconstructions are often plagued by difficulties in (2). These syntenic blocks, sometimes shared across even dis- distinguishing phylogenetic signal (due to shared ancestry) from tantly related species, may involve entire chromosomes, chro- phylogenetic noise or homoplasy (due to character-state conver- mosomal arms, or chromosomal segments. Based on the premise gences or reversals). We use a new interpretive hypothesis, termed that each syntenic assemblage in extant species is of monophy- hemiplasy, to show how random lineage sorting might account for letic origin, researchers have reconstructed phylogenies and specific instances of seeming ‘‘phylogenetic discordance’’ among ancestral karyotypes for numerous mammalian taxa (ref. 3 and different chromosomal traits, or between karyotypic features and references therein). Normally, the phylogenetic inferences from probable species phylogenies. We posit that hemiplasy is generally these cladistic appraisals are self-consistent (across syntenic less likely for underdominant chromosomal polymorphisms (i.e., blocks) and taxonomically reasonable, and they have helped those with heterozygous disadvantage) than for neutral polymor- greatly to identify particular mammalian clades. However, in a phisms or especially for overdominant rearrangements (which few cases problematic phylogenetic patterns of the sort described should tend to be longer-lived), and we illustrate this concept by above have emerged. -
Preliminary Phylogeny of Diplostephium (Asteraceae): Speciation Rate and Character Evolution
NUMBER 15 VARGAS AND MADRIN˜ A´ N: SPECIATION AND CHARACTER EVOLUTION OF DIPLOSTEPHIUM 1 PRELIMINARY PHYLOGENY OF DIPLOSTEPHIUM (ASTERACEAE): SPECIATION RATE AND CHARACTER EVOLUTION Oscar M. Vargas1,2 and Santiago Madrin˜a´n2 1Section of Integrative Biology and the Plant Resources Center, The University of Texas, 205 W 24th St., Stop CO930, Austin, Texas 78712 U.S.A., email: [email protected] 2Laboratorio de Bota´nica y Sistema´tica Universidad de los Andes, Apartado Ae´reo 4976, Bogota´, D. C., Colombia Abstract: Diplostephium comprises 111 neotropical species that live in high elevation habitats from Costa Rica to Chile. Primarily Andean, the genus seems to have undergone an adaptive radiation indicated by its high number of species, broad morphological variation, and diversification primarily in an ecosystem (pa´ramo) that formed within the last 2–5 my. Internal transcriber spacer (ITS) sequences and several chloroplast markers, rpoB, rpoC1, and psbA-trnH were sequenced in order to infer a preliminary phylogeny of the genus. The chloroplast regions showed no significant variation within the genus. New ITS data were therefore analyzed together with published sequences for generating a topology. Results suggest that Diplostephium and other South American genera comprise a polytomy within which a previously described North American clade is nested. Monophyly of Diplostephium was neither supported nor rejected, but the formation of a main crown clade using different methods of analysis suggests that at least a good portion of the genus is monophyletic. A Shimodaira-Hasegawa test comparing the topology obtained and a constrained one forcing Diplostephium to be monophyletic showed no significant difference between them. -
Introduction to Botany. Lecture 37
Introduction to Botany. Lecture 37 Alexey Shipunov Minot State University December 3, 2012 Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 1 / 25 Outline 1 Questions and answers 2 Methods of taxonomy Expertise Cladistics Likelihood Phenetics Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 2 / 25 Outline 1 Questions and answers 2 Methods of taxonomy Expertise Cladistics Likelihood Phenetics Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 2 / 25 Diploid heterozygotes with lethal gene will survive Organisms with more chromosomes have bigger potential for recombinations Diploids have heterosis (“hybrid vigour”) Questions and answers Previous final question: the answer Why sporophyte is better than gametophyte? Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 3 / 25 Questions and answers Previous final question: the answer Why sporophyte is better than gametophyte? Diploid heterozygotes with lethal gene will survive Organisms with more chromosomes have bigger potential for recombinations Diploids have heterosis (“hybrid vigour”) Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 3 / 25 Methods of taxonomy Expertise Methods of taxonomy Expertise Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 4 / 25 Methods of taxonomy Expertise Experts Experts produce classifications based of their exclusive knowledge about groups. First taxonomic expert was Carolus Linnaeus (XVIII century). Experts use variety of methods, including phenetics, cladistics, general evolutionary approach, their ability to reshape available information and their intuition. Their goal is to create the “mind model” of diversity and then convert it to classification. Shipunov (MSU) Introduction to Botany. Lecture 37 December 3, 2012 5 / 25 Methods of taxonomy Cladistics Methods of taxonomy Cladistics Shipunov (MSU) Introduction to Botany. -
Introduction to Phylogenetics Workshop on Molecular Evolution 2018 Marine Biological Lab, Woods Hole, MA
Introduction to Phylogenetics Workshop on Molecular Evolution 2018 Marine Biological Lab, Woods Hole, MA. USA Mark T. Holder University of Kansas Outline 1. phylogenetics is crucial for comparative biology 2. tree terminology 3. why phylogenetics is difficult 4. parsimony 5. distance-based methods 6. theoretical basis of multiple sequence alignment Part #1: phylogenetics is crucial for biology Species Habitat Photoprotection 1 terrestrial xanthophyll 2 terrestrial xanthophyll 3 terrestrial xanthophyll 4 terrestrial xanthophyll 5 terrestrial xanthophyll 6 aquatic none 7 aquatic none 8 aquatic none 9 aquatic none 10 aquatic none slides by Paul Lewis Phylogeny reveals the events that generate the pattern 1 pair of changes. 5 pairs of changes. Coincidence? Much more convincing Many evolutionary questions require a phylogeny Determining whether a trait tends to be lost more often than • gained, or vice versa Estimating divergence times (Tracy Heath Sunday + next • Saturday) Distinguishing homology from analogy • Inferring parts of a gene under strong positive selection (Joe • Bielawski and Belinda Chang next Monday) Part 2: Tree terminology A B C D E terminal node (or leaf, degree 1) interior node (or vertex, degree 3+) split (bipartition) also written AB|CDE or portrayed **--- branch (edge) root node of tree (de gree 2) Monophyletic groups (\clades"): the basis of phylogenetic classification black state = a synapomorphy white state = a plesiomorphy Paraphyletic Polyphyletic grey state is an autapomorphy (images from Wikipedia) Branch rotation does not matter ACEBFDDAFBEC Rooted vs unrooted trees ingroup: the focal taxa outgroup: the taxa that are more distantly related. Assuming that the ingroup is monophyletic with respect to the outgroup can root a tree.