Walch World History I Unit 1

Total Page:16

File Type:pdf, Size:1020Kb

Walch World History I Unit 1 WALCH WORLD HISTORY I UNIT 1 Walch – World History I Performance-Based Assessment Option for Unit 1 A performance-based assessment is one that requires students to demonstrate that they have mastered specific skills and competencies by performing or producing something. The Earliest People For the project you will be answering the following questions: • Why do you think the Nile River was crucial to the development of ancient Egyptian civilization? • Is the Fertile Crescent the same as Mesopotamia? Explain your answer. • Examine the geography of Mesopotamia. What does the geography suggest about why the city-states were constantly trying to conquer one another? Some Background Information Before Beginning the Project Cartography is the science or practice of drawing maps. It is the creation of charts and maps based on the layout of a territory's geography. Graphic design, also known as communication design, is the art and practice of planning and projecting ideas and experiences with visual and textual content. Infographics are graphic visual representations of information, data or knowledge intended to present information quickly and clearly. Visit the following site for some great examples of infographics. http://infographicworld.com/our- work/ The Project For this assessment, you will create an infographic. The infographic will be a map. Be creative. It can be hand-drawn or computer generated. Project Criterion The infographic should include the following: • Map the Fertile Crescent and Mesopotamia • Map of Ancient Egypt • Significant people, places, and events • Important information about people such as Sumerians, Babylonians. Assyrians, and Chaldeans, Persians, and Phoenicians • Answers to the above questions Assessment Tool: Bridgeway Academy Project Rubric: WALCH WORLD HISTORY I UNIT 1 .
Recommended publications
  • Evolution of the Infographic
    EVOLUTION OF THE INFOGRAPHIC: Then, now, and future-now. EVOLUTION People have been using images and data to tell stories for ages—long before the days of the Internet, smartphones, and Excel. In fact, the history of infographics pre-dates the web by more than 30,000 years with the earliest forms of these visuals being cave paintings that helped early humans find food, resources, and shelter. But as technology has advanced, so has our ability to tell meaningful stories. Here’s a look into the evolution of modern infographics—where they’ve been, how they’ve evolved, and where they’re headed. Then: Printed, static infographics The 20th Century introduced the infographic—a staple for how we communicate, visualize, and share information today. Early on, these print graphics married illustration and data to communicate information in a revolutionary way. ADVANTAGE Design elements enable people to quickly absorb information previously confined to long paragraphs of text. LIMITATION Static infographics didn’t allow for deeper dives into the data to explore granularities. Hoping to drill down for more detail or context? Tough luck—what you see is what you get. Source: http://www.wired.co.uk/news/archive/2012-01/16/painting- by-numbers-at-london-transport-museum INFOGRAPHICS THROUGH THE AGES DOMO 03 Now: Web-based, interactive infographics While the first wave of modern infographics made complex data more consumable, web-based, interactive infographics made data more explorable. These are everywhere today. ADVANTAGE Everyone looking to make data an asset, from executives to graphic designers, are now building interactive data stories that deliver additional context and value.
    [Show full text]
  • The Use and Potential Misuse of Data in Higher Education: a Compilation of Examples
    IHE Research Projects Series IHE Research in Progress Series 2019-001 Submitted to series: April 5, 2019 The Use and Potential Misuse of Data in Higher Education: A Compilation of Examples Karen L. Webber Institute of Higher Education, University of Georgia, [email protected] Find this research paper and other faculty works at: https://ihe.uga.edu/rps Webber, K.L. “The Use and Potential Misuse of Data in Higher Education: A Compilation of Examples” (2019). IHE Research Projects Series 2019-001. Available at: https://ihe.uga.edu/rps/2019_001 The Use and Potential Misuse of Data in Higher Education A Compilation of Examples Karen L. Webber, Ph.D. RAPID INCREASES IN TECHNOLOGY have led to a heightened demand for and use of data collection and data visualization software. There are a number of data analyses or visualisations that, when presented without the proper context or that do not follow principles of good graphic design, have resulted in inaccurate conclusions. Principles of cognition and good graphic design are available a number of scholars, including Amos Tversky, Daniel Kahneman, Edward Tufte, Stephen Kosslyn, and Alberto Cairo. In addition to good graphic design, context is critical for correct interpretation, as there are many questions around the legitimacy, intentionality, and even the ideology of data use within higher education (Calderon 2015). Inaccurate conclusions can lead to incorrect discussions for possible program development and/or policy changes. You may wish to read more detail from several important scholars; see references at the end of this document. Below are some examples found in books or on the internet that may help you see the possibility of misrepresentation or misunderstanding.
    [Show full text]
  • State Infographic: Using Infographics to Visually Represent Data
    Lesson/Activity Title: STATE INFOGRAPHIC: USING INFOGRAPHICS TO VISUALLY REPRESENT DATA Time: 1 class period for Teach/Model and Guided Practice; several class periods or homework nights for Independent Practice; 1 class period for Closure and Extend/Enrich Instructional Goals: • The student will use the PebbleGo Next State Studies and American Indian History database to research statistical information on a state in the United States of America. • The student will navigate an online database to locate needed information. • The student will use other information sources (such as nonfiction books and websites) to locate additional information, as needed. • The student will analyze data to determine the best way to visually represent that data. • The student will create an infographic that illustrates the state information discovered. Materials/Resources: • PebbleGo Next online database • Additional information sources, such as the U.S. Census Bureau’s “State amd County Quick Facts” website (quickfacts.census.gov) • Free app or website for creating infographics (search for “free infographic app” online or in applicable app store) or paper, markers, and pencils for hand-drawing an infographic • Example infographic (available online by searching “infographics for kids” or in a nonfiction book from the Infographics series by Chris Oxlade, Raintree, ©2014) • Text-based source (such as a nonfiction book or magazine article) presenting similar information as found in the example infographic, for comparison purposes • Note-taking graphic organizer, such as State Infographic Notes handout Procedures/Lesson Activities: Focus 1. Show students an age-appropriate infographic from the Infographic series by Chris Oxlade or one found on the Internet. Show them similar information provided in a text-based format.
    [Show full text]
  • Animated Presentation of Static Infographics with Infomotion
    Eurographics Conference on Visualization (EuroVis) 2021 Volume 40 (2021), Number 3 R. Borgo, G. E. Marai, and T. von Landesberger (Guest Editors) Animated Presentation of Static Infographics with InfoMotion Yun Wang1, Yi Gao1;2, Ray Huang1, Weiwei Cui1, Haidong Zhang1, and Dongmei Zhang1 1Microsoft Research Asia 2Nanjing University (a) 5% (b) time Element Animation effect Meats, sweets slice spin link wipe dot zoom 35% icon zoom 10% Whole grains, title zoom OliVer oil pasta, beans, description wipe whole grain bread Mediterranean Diet 20% 30% 30% Vegetables and fruits Fish, seafood, poultry, Vegetables and fruits dairy food, eggs Figure 1: (a) An example infographic design. (b) The animated presentations for this infographic show the start time, duration, and animation effects applied to the visual elements. InfoMotion automatically generates animated presentations of static infographics. Abstract By displaying visual elements logically in temporal order, animated infographics can help readers better understand layers of information expressed in an infographic. While many techniques and tools target the quick generation of static infographics, few support animation designs. We propose InfoMotion that automatically generates animated presentations of static infographics. We first conduct a survey to explore the design space of animated infographics. Based on this survey, InfoMotion extracts graphical properties of an infographic to analyze the underlying information structures; then, animation effects are applied to the visual elements in the infographic in temporal order to present the infographic. The generated animations can be used in data videos or presentations. We demonstrate the utility of InfoMotion with two example applications, including mixed-initiative animation authoring and animation recommendation.
    [Show full text]
  • Mapping Deforestation Deforestation Has Caused the Destruction of Millions of Acres of Forest Habitat
    Mapping deforestation Deforestation has caused the destruction of millions of acres of forest habitat. But what is driving people to cut down so much forested land? And can reforestation efforts help rebuild what has been lost? Part 1: Global Forest Watch Map Directions: Global Forest Watch, a non-profit that monitors deforestation across the planet, has an interactive map that shows how forests have been cut down and expanded since 2000. Go to their website and click on the map (or go to https://www.globalforestwatch.org/map). To the left of the screen, there is a tool (Figure 1) that will allow you to see the change in tree cover gain (blue) and tree cover loss (pink) with unchanged forest (green). Click on the “play” button towards the bottom of the screen to see how each factor has changed since the year 2000 (Figure 1). As the simulation runs, observe different parts of the world and how their forests have changed. 1. What continents saw the most tree cover loss? ____________________________________________ 2. What continents saw the most tree cover gain? ____________________________________________ Part 2: Change in tree cover by country Deforestation has not been evenly distributed across the Earth, some countries have seen a lot of their forests cut down while other have preserved and even expanded their natural habitats. Directions: Select a country by either using the search tool at the bottom left of the screen or by clicking on that country on the map. Once you have selected your country, click analyze (Figure 2) which will show that country’s forested area.
    [Show full text]
  • Information Graphics Design Challenges and Workflow Management Marco Giardina, University of Neuchâtel, Switzerland, Pablo Medi
    Online Journal of Communication and Media Technologies Volume: 3 – Issue: 1 – January - 2013 Information Graphics Design Challenges and Workflow Management Marco Giardina, University of Neuchâtel, Switzerland, Pablo Medina, Sensiel Research, Switzerland Abstract Infographics, though still in its infancy in the digital world, may offer an opportunity for media companies to enhance their business processes and value creation activities. This paper describes research about the influence of infographics production and dissemination on media companies’ workflow management. Drawing on infographics examples from New York Times print and online version, this contribution empirically explores the evolution from static to interactive multimedia infographics, the possibilities and design challenges of this journalistic emerging field and its impact on media companies’ activities in relation to technology changes and media-use patterns. Findings highlight some explorative ideas about the required workflow and journalism activities for a successful inception of infographics into online news dissemination practices of media companies. Conclusions suggest that delivering infographics represents a yet not fully tapped opportunity for media companies, but its successful inception on news production routines requires skilled professionals in audiovisual journalism and revised business models. Keywords: newspapers, visual communication, infographics, digital media technology © Online Journal of Communication and Media Technologies 108 Online Journal of Communication and Media Technologies Volume: 3 – Issue: 1 – January - 2013 During this time of unprecedented change in journalism, media practitioners and scholars find themselves mired in a new debate on the storytelling potential of data visualization narratives. News organization including the New York Times, Washington Post and The Guardian are at the fore of innovation and experimentation and regularly incorporate dynamic graphics into their journalism products (Segel, 2011).
    [Show full text]
  • 1. Cartography: the Development and Critique of Maps and Mapmaking
    1. Cartography: the development and critique of maps and mapmaking Maps ‘are once again in the thick of it’ for critical social theorists, artists, literary critics and cultural geographers, but also in a very different way for planners, GIS researchers and scientists. Art and science offer different cartographic explanations. There are profound differences between those who research mapping as a practical form of applied knowledge, and those who seek to critique the map and the mapping process. (Perkins 2003: 341-342) Cartography is the study of maps and map-making. Classically, it focused on the art of the map-maker; today it includes the history of maps and their use in society. A map, as defined by the International Cartographic Association (2009), is ‘a symbolised image of geographical reality, representing selected features or characteristics, resulting from the creative effort of its author's execution of choices, and is designed for use when spatial relationships are of primary relevance’. While this definition eloquently indicates the varying constructions of maps, leading to the different ways maps are conceptualised and produced within society, its basic premise -- that a map is first and foremost ‘a symbolised image of a geographical reality’ -- has been challenged with the rise of a critical cartography/geography. Taking this definition as a starting premise, this chapter will seek to illustrate the ‘creativity’ and ‘selectivity’ of maps through a brief history of cartography, before embarking in later sections on a more critical analysis of the debates that surround the subject. The primary goal here is to understand the lessons that can be drawn from the historical development of cartography in a bid to assist contemporary criminologists in the development of more appropriate questions about maps and ultimately the process of crime mapping itself.
    [Show full text]
  • The History of Cartography, Volume Six: Cartography in the Twentieth Century
    The AAG Review of Books ISSN: (Print) 2325-548X (Online) Journal homepage: http://www.tandfonline.com/loi/rrob20 The History of Cartography, Volume Six: Cartography in the Twentieth Century Jörn Seemann To cite this article: Jörn Seemann (2016) The History of Cartography, Volume Six: Cartography in the Twentieth Century, The AAG Review of Books, 4:3, 159-161, DOI: 10.1080/2325548X.2016.1187504 To link to this article: https://doi.org/10.1080/2325548X.2016.1187504 Published online: 07 Jul 2016. Submit your article to this journal Article views: 312 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rrob20 The AAG Review OF BOOKS The History of Cartography, Volume Six: Cartography in the Twentieth Century Mark Monmonier, ed. Chicago, document how all cultures of all his- IL: University of Chicago Press, torical periods represented the world 2015. 1,960 pp., set of 2 using maps” (Woodward 2001, 28). volumes, 805 color plates, What started as a chat on a relaxed 119 halftones, 242 line drawings, walk by these two authors in Devon, England, in May 1977 developed into 61 tables. $500.00 cloth (ISBN a monumental historia cartographica, 978-0-226-53469-5). a cartographic counterpart of Hum- boldt’s Kosmos. The project has not Reviewed by Jörn Seemann, been finished yet, as the volumes on Department of Geography, Ball the eighteenth and nineteenth cen- State University, Muncie, IN. tury are still in preparation, and will probably need a few more years to be published.
    [Show full text]
  • What Is Geovisualization? to the Growing Field of Geovisualization
    This issue of GeoMatters is devoted What is Geovisualization? to the growing field of geovisualization. Brian McGregor uses geovisualiztion to by Joni Storie produce animated maps showing settle- ment patterns of Hutterite colonies. Dr. Marc Vachon’s students use it to produce From a cartography perspective, dynamic presentation options to com- videos about urban visualization (City geovisualization represents a change in municate knowledge. For example, at- Hall and Assiniboine Park), while Dr. how knowledge is formed and repre- lases require extra planning compared Chris Storie shows geovisualiztion for sented. Traditional cartography is usu- to individual maps, structurally they retail mapping in Winnipeg. Also in this issue Honours students describe their ally seen a visualization (a.k.a. map) could include hundreds of maps, and thesis projects for the upcoming collo- that is presented after the conclusion all the maps relate to each other. Dr. quium next March, Adrienne Ducharme is reached to emphasize or compliment Danny Blair and Dr. Ian Mauro, in the tells us about her graduate research at the research conclusions. Geovisual- Department of Geography, provide an ELA, we have a report about Cultivate ization changes this format by incor- excellent example of this integration UWinnipeg and our alumni profile fea- porating spatial data into the analysis with the Prairie Climate Atlas (http:// tures Michelle Méthot (Smith). (O’Sullivan and Unwin, 2010). Spatial www.climateatlas.ca/). The combina- Please feel free to pass this newsletter data, statistics and analysis are used to tion of maps with multimedia provides to anyone with an interest in geography. answer questions which contribute to for better understanding as well as en- Individuals can also see GeoMatters at the Geography website, or keep up with the conclusion that is reached within riched and informative experiences of us on Facebook (Department of Geog- the research.
    [Show full text]
  • Introduction Infographics 3D Computer Graphics
    Planetary Science Multimedia Animated Infographics for Scientific Education and Public Outreach INTRODUCTION INFOGRAPHICS 3D COMPUTER GRAPHICS Visual and graphic representation of scientific knowledge is one of the most effective ways to present The production of infographics are made by using software creation and manipulation of vector The 3D computer graphics are modeled in CAD software like Blender, 3DSMax and Bryce and then complex scientific information in a clear and fast way. Furthermore, the use of animated infographics, graphics, such as Adobe Illustrator, CorelDraw and Inkscape. These programs generate SVG files to be rendered with plugins like Vray, Maxwell and Flamingo for a photorealistic finish. Terrain models are video and computerized graphics becomes a vital tool for education in Planetary Science. Using viewed in the multimedia. taken directly from DTM (Digital Terrain Models) data available of Solar System objects in various infographics resources arouse the interest of new generations of scientists, engineers and general official sources as NASA, ESA, JAXA, USGS, Google Mars and Google Moon. The DTM can also be raised public, and if it visually represents the concepts and data with high scientific rigor, outreach of from topographic maps available online from the same sources, using GIS tools like ArcScene, ArcMap infographics resources multiplies exponentially and Planetary Science will be broadcast with a precise and Global Mapper. conceptualization and interest generated and it will benefit immensely the ability to stimulate the formation of new scientists, engineers and researchers. This multimedia work mixes animated infographics, 3D computer graphics and video with vfx, with the goal of making an introduction to the Planetary Science and its basic concepts.
    [Show full text]
  • History of Cartography by Trista L
    Name Date History of Cartography By Trista L. Pollard Our view of the world has changed since 1500 years ago. The maps and globes we use today are very accurate. They show more details. You can see cities and countries. They show landforms and landmarks. Our maps now have a standard coordinate or grid system. This measurement system helps us to locate places on Earth. But what about the first maps? What are they like? How were they made? Let's take a journey into the history of cartography. Cartography is the science of making maps. Today's cartographers use computers and cameras to help make maps. This is called remote sensing. Cameras are placed or mounted on airplanes. These cameras take pictures of the Earth's surface. Satellites in space are also used for cartography. Mapmakers in the past had much less technology. They used observation and stories from sailors to make maps. Most early scientists believed the Earth was flat. Imagine sailing from your country and falling over a cliff! That's what people thought. They also thought Earth was a flat disc. The center of the disc was filled with people. The outer edges of the Earth were empty. A world map made as early as 500 B.C. showed a disc with two continents. These continents were Europe and Asia. Both were surrounded by an ocean. That makes sense! Most people only knew about their surrounding or immediate area. Geographers also found early maps of the Pacific Ocean. They were made by navigators from Polynesia or the Pacific Islands.
    [Show full text]
  • Tempe AZ 85281 | 480-965-5005
    Institute for Social Science Research Seed Grant Awards Executive Summary February 4, 2019 Director: H. Russell Bernard Associate Director: Elizabeth Wentz, Dean of Social Sciences, The College Operations: Sherry Thurston Seed Grant Cycle: Once per semester, 7 cycles completed Semester break down: Fall 2015 11 Investigators $61,000 ISSR awards $1,577,102 external funding received Spring 2016 15 Investigators $80,625 ISSR awards $574,697 external funding received Fall 2016 15 Investigators $86,290 ISSR awards $2,724,909 external funding received Spring 2017 14 Investigators $89,821 ISSR awards $672,805 external funding received Fall 2017 15 Investigators $94,121 ISSR awards Spring 2018 20 Investigators $144,723 ISSR awards Fall 2018 9 Investigators $64,380 ISSR awards ASU Units represented ISSR Awards ISSR Total Funds External Funding College of Health Solutions 8 $54,206 College of Integrated Science and Arts 1 $6,875 College of Nursing and Health Innovation 13 $89,975 $534,697 Department of Psychology 7 $41,100 $60,000 Herberger Institute for Design and the Arts 1 $3,000 Hugh Downs School of Human Communication 4 $24,350 Mary Lou Fulton Teachers College 9 $56,279 School for the Future of Innovation in Society 3 $11,522 $300,000 School for the Science of Health Care Delivery 1 $8000 School of Biological and Health Systems Engineering 1 $3850 School of Community Resources & Development 3 $22,387 School of Computing, Informatics, and Decision Systems Engineering 1 $8000 $623,000 School of Criminology & Criminal Justice 2 $11,982 $659,454 School of Geographical Sciences and Urban Planning 7 $37,992 $3,099,909 School of Human Evolution and Social Change 6 $40,599 School of Life Sciences 1 $4000 School of Mathematical and Natural Sciences 1 $8000 School of Public Affairs 1 $4500 School of Social and Behavioral Sciences 5 $33,098 School of Social Transformation 2 $15,000 $19,648 School of Social Work 4 $23,750 School of Sustainability 7 $45,400 $40,000 The Sanford School of Social and Family Dynamics 2 $13,000 W.
    [Show full text]