RNA Ontology Consortium January 8-9, 2011

Total Page:16

File Type:pdf, Size:1020Kb

RNA Ontology Consortium January 8-9, 2011 UC San Diego UC San Diego Previously Published Works Title Meeting report of the RNA Ontology Consortium January 8-9, 2011. Permalink https://escholarship.org/uc/item/0kw6h252 Journal Standards in genomic sciences, 4(2) ISSN 1944-3277 Authors Birmingham, Amanda Clemente, Jose C Desai, Narayan et al. Publication Date 2011-04-01 DOI 10.4056/sigs.1724282 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:252-256 DOI:10.4056/sigs.1724282 Meeting report of the RNA Ontology Consortium January 8-9, 2011 Amanda Birmingham1, Jose C. Clemente2, Narayan Desai3, Jack Gilbert3,4, Antonio Gonzalez2, Nikos Kyrpides5, Folker Meyer3,6, Eric Nawrocki7, Peter Sterk8, Jesse Stombaugh2, Zasha Weinberg9,10, Doug Wendel2, Neocles B. Leontis11, Craig Zirbel12, Rob Knight2,13, Alain Laederach14 1 Thermo Fisher Scientific, Lafayette, CO, USA 2 Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA 3 Argonne National Laboratory, Argonne, IL, USA 4 Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA 5 DOE Joint Genome Institute, Walnut Creek, CA, USA 6 Computation Institute, University of Chicago, Chicago, IL, USA 7 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA 8 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 9 Department of Molecular, Cellular and Developmental, Yale University, New Haven, CT, USA 10 Howard Hughes Medical Institute, Yale University, New Haven, CT, USA 11 Department of Chemistry, Bowling Green State University, Bowling Green, OH, USA 12 Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH, USA 13 Howard Hughes Medical Institute, Boulder, CO, USA 14 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA Corresponding Author: Amanda Birmingham This report summarizes the proceedings of the structure mapping working group meeting of the RNA Ontology Consortium (ROC), held in Kona, Hawaii on January 8-9, 2011. The ROC hosted this workshop to facilitate collaborations among those researchers formalizing con- cepts in RNA, those developing RNA-related software, and those performing genome annota- tion and standardization. The workshop included three software presentations, extended round-table discussions, and the constitution of two new working groups, the first to address the need for better software integration and the second to discuss standardization and ben- chmarking of existing RNA annotation pipelines. These working groups have subsequently pursued concrete implementation of actions suggested during the discussion. Further infor- mation about the ROC and its activities can be found at http://roc.bgsu.edu/. Introduction The RNA Ontology Consortium is an international published an RNA Ontology (RNAO) [1] and an coalition of RNA researchers working to develop RNA Structure Alignment Ontology [2] for use by controlled vocabularies pertaining to RNA func- the wider research community, and where appli- tion and based on RNA primary sequence, second- cable has integrated these resources with other ary structure, and tertiary structure. Launched in relevant ontologies such as the Sequence Ontology 2005 with funding from the National Science (SO) [3], Chemical Entities of Biological Interest Foundation, the ROC includes nine working (CheBI) [4], and the Ontology for Biomedical In- groups addressing the ontology needs of RNA do- vestigations (OBI) [5]. mains ranging from backbone conformation to multiple sequence alignment. The Consortium has The Genomic Standards Consortium RNA Ontology Consortium January 8-9, 2011 This workshop furthered the goals of the consor- back of the current implementation of Infernal is tium by making progress on several of the RNA that it is computationally intensive, but accelera- structure mapping concepts elaborated upon dur- tion remains a major goal of the project. ing previous ROC meetings in Kona and in Stras- Jesse Stombaugh presented a live demonstration of bourg. In addition, it brought together members of Boulder ALE (ALignment Editor) [8], a tool for the ROC with members of the Genomic Standards manual examination and adjustment of multiple Consortium (GSC) [6], an open-membership or- sequence alignments. Such manual processing is ganization working towards 1) implementing new often critical to developing gold-standard align- genomic standards, 2) capturing and exchanging ments that can be used as test cases for automated information expressed in these standards and 3) alignment tools. Among other features, Boulder harmonizing information collection and analysis ALE allows users to examine isostericity of base- efforts across the wider genomics community. The pairs in the alignment relative to a reference sec- aim of developing links with the GSC was to in- ondary or 3D structure, to show or hide entire se- form developers and curators of genomic and me- quence features, to rearrange sequences within tagenomic software and resources of the stan- the alignment, and to shift nucleotides (e.g. by in- dards for representing RNA secondary and 3D sertion/deletion of gaps in aligned sequences) and structures and alignments developed by ROC and view the effect of these additions on alignment to encourage collaboration to improve genomic quality. The program currently takes inputs in annotations. FASTA format, but will soon be modified to take The overall structure of the meeting consisted of a Stockholm format [9] inputs for increased intero- working dinner, software presentations, a round- perability with other alignment software. table discussion on annotation challenges, and as- sembly of working groups to address these chal- Zasha Weinberg introduced R2R, software new lenges. The major annotation issues that were application to aid in drawing publication-quality identified included: 1) How can information that is figures for single and consensus RNA structures useful for drawing/representing RNA structures [10]. The goal of this software is to create struc- be exchanged among different software programs ture drawing with both aesthetic layout and em- and incorporated into different genomic and me- bedded annotation while minimizing the require- tagenomic web sites for display to end users? 2) ment for manual work in a graphics program such How can information about covariance models as Adobe Illustrator. One of the notable features automatically be used to infer correspondence of R2R is its ability to gracefully depict informa- groups? 3) How can information about structure tion on variability of consensus structures, such as mapping experiments be captured to facilitate au- hairpins of variable lengths or junctions that join tomatic secondary structure inference and propa- variable numbers of stems. Currently the software gated and displayed in a way that is useful to end is implemented as a command-line tool that takes users? input in Stockholm format and produces PDF or SVG images, as well as intermediate files defining Software Presentations the annotation and layout features. Eric Nawrocki provided an introduction to struc- tural RNA homology search using Infernal (INFE- Day One Discussion Rence of RNA ALignment) [7]. He noted that After the three software presentations, Day One searching DNA sequence for noncoding RNA proceeded with an extensive round-table discus- (ncRNA) molecules is more difficult than search- sion of the role of the RNAO in annotation pipe- ing for proteins, because ncRNA molecules are lines for RNA discovery. While protein (gene) an- generally shorter than protein molecules and their notation is a relatively mature field, RNA annota- alphabet is smaller, so conserved secondary struc- tion is much less mature. Given this fact, there is ture of RNAs provides useful additional signal. In- an opportunity to implement ontological structure fernal scores the combination of consensus se- and support from the very beginning of the stan- quence and consensus structure using covariance dardization of the field. The discussion focused on models; this technique produces results that are identifying ontological needs for end users who more sensitive than either BLAST or basic hidden- create RNA annotations or integrate them into Markov model-based approaches. A major draw- larger genome resources. 253 Standards in Genomic Sciences Birmingham et al. In such a scenario, one key use for ontologies alignments, secondary and tertiary structure an- would be to identify the provenance of RNA se- notations, and molecular functions. One key idea quences incorporated into annotation pipelines and was that information about visualization is itself describe the techniques used to generate these se- an annotation. It was agreed that, WYSIWIG sup- quences. It was noted that researchers performing port might be added in the future, for now it RNA annotation on sequences generated for pro- would be easier to provide presentation informa- tein-level work (i.e. genome and metagenome se- tion through a set of linked tools using a common quences) may be unaware of quality issues asso- file format. RNAO annotations will be referenced ciated with these sequences. For example, some according to their unique identifiers in the RNAO sequencing facilities pre-filter genomic and meta- and, where appropriate, with citations to papers genomic sequences to remove low-quality se- describing them. quences before distributing the sequences
Recommended publications
  • HMMER User's Guide
    HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.org/ Version 3.0rc1; February 2010 Sean R. Eddy for the HMMER Development Team Janelia Farm Research Campus 19700 Helix Drive Ashburn VA 20147 USA http://eddylab.org/ Copyright (C) 2010 Howard Hughes Medical Institute. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. HMMER is licensed and freely distributed under the GNU General Public License version 3 (GPLv3). For a copy of the License, see http://www.gnu.org/licenses/. HMMER is a trademark of the Howard Hughes Medical Institute. 1 Contents 1 Introduction 5 How to avoid reading this manual . 5 How to avoid using this software (links to similar software) . 5 What profile HMMs are . 5 Applications of profile HMMs . 6 Design goals of HMMER3 . 7 What’s still missing in HMMER3 . 8 How to learn more about profile HMMs . 9 2 Installation 10 Quick installation instructions . 10 System requirements . 10 Multithreaded parallelization for multicores is the default . 11 MPI parallelization for clusters is optional . 11 Using build directories . 12 Makefile targets . 12 3 Tutorial 13 The programs in HMMER . 13 Files used in the tutorial . 13 Searching a sequence database with a single profile HMM . 14 Step 1: build a profile HMM with hmmbuild . 14 Step 2: search the sequence database with hmmsearch . 16 Searching a profile HMM database with a query sequence . 22 Step 1: create an HMM database flatfile . 22 Step 2: compress and index the flatfile with hmmpress .
    [Show full text]
  • Validation and Annotation of Virus Sequence Submissions to Genbank Alejandro A
    Schäffer et al. BMC Bioinformatics (2020) 21:211 https://doi.org/10.1186/s12859-020-3537-3 SOFTWARE Open Access VADR: validation and annotation of virus sequence submissions to GenBank Alejandro A. Schäffer1,2, Eneida L. Hatcher2, Linda Yankie2, Lara Shonkwiler2,3,J.RodneyBrister2, Ilene Karsch-Mizrachi2 and Eric P. Nawrocki2* *Correspondence: [email protected] Abstract 2National Center for Biotechnology Background: GenBank contains over 3 million viral sequences. The National Center Information, National Library of for Biotechnology Information (NCBI) previously made available a tool for validating Medicine, National Institutes of Health, Bethesda, MD, 20894 USA and annotating influenza virus sequences that is used to check submissions to Full list of author information is GenBank. Before this project, there was no analogous tool in use for non-influenza viral available at the end of the article sequence submissions. Results: We developed a system called VADR (Viral Annotation DefineR) that validates and annotates viral sequences in GenBank submissions. The annotation system is based on the analysis of the input nucleotide sequence using models built from curated RefSeqs. Hidden Markov models are used to classify sequences by determining the RefSeq they are most similar to, and feature annotation from the RefSeq is mapped based on a nucleotide alignment of the full sequence to a covariance model. Predicted proteins encoded by the sequence are validated with nucleotide-to-protein alignments using BLAST. The system identifies 43 types of “alerts” that (unlike the previous BLAST-based system) provide deterministic and rigorous feedback to researchers who submit sequences with unexpected characteristics. VADR has been integrated into GenBank’s submission processing pipeline allowing for viral submissions passing all tests to be accepted and annotated automatically, without the need for any human (GenBank indexer) intervention.
    [Show full text]
  • Tools for Simulating Evolution of Aligned Genomic Regions with Integrated Parameter Estimation Avinash Varadarajan*, Robert K Bradley† and Ian H Holmes†‡
    Open Access Software2008VaradarajanetVolume al. 9, Issue 10, Article R147 Tools for simulating evolution of aligned genomic regions with integrated parameter estimation Avinash Varadarajan*, Robert K Bradley and Ian H Holmes Addresses: *Computer Science Division, University of California, Berkeley, CA 94720-1776, USA. Biophysics Graduate Group, University of California, Berkeley, CA 94720-3200, USA. Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA. Correspondence: Ian H Holmes. Email: [email protected] Published: 8 October 2008 Received: 20 June 2008 Revised: 21 August 2008 Genome Biology 2008, 9:R147 (doi:10.1186/gb-2008-9-10-r147) Accepted: 8 October 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/10/R147 © 2008 Varadarajan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Simulation<p>Threefor richly structured tools of genome for simulating syntenic evolution blocks genome of genomeevolution sequence.</p> are presented: for neutrally evolving DNA, for phylogenetic context-free grammars and Abstract Controlled simulations of genome evolution are useful for benchmarking tools. However, many simulators lack extensibility and cannot measure parameters directly from data. These issues are addressed by three new open-source programs: GSIMULATOR (for neutrally evolving DNA), SIMGRAM (for generic structured features) and SIMGENOME (for syntenic genome blocks). Each offers algorithms for parameter measurement and reconstruction of ancestral sequence.
    [Show full text]
  • INFERNAL User's Guide
    INFERNAL User’s Guide Sequence analysis using profiles of RNA sequence and secondary structure consensus http://eddylab.org/infernal Version 1.1.4; Dec 2020 Eric Nawrocki and Sean Eddy for the INFERNAL development team https://github.com/EddyRivasLab/infernal/ Copyright (C) 2020 Howard Hughes Medical Institute. Infernal and its documentation are freely distributed under the 3-Clause BSD open source license. For a copy of the license, see http://opensource.org/licenses/BSD-3-Clause. Infernal development is supported by the Intramural Research Program of the National Library of Medicine at the US National Institutes of Health, and also by the National Human Genome Research Institute of the US National Institutes of Health under grant number R01HG009116. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. 1 Contents 1 Introduction 6 How to avoid reading this manual . 6 What covariance models are . 6 Applications of covariance models . 7 Infernal and HMMER, CMs and profile HMMs . 7 What’s new in Infernal 1.1 . 8 How to learn more about CMs and profile HMMs . 8 2 Installation 10 Quick installation instructions . 10 System requirements . 10 Multithreaded parallelization for multicores is the default . 11 MPI parallelization for clusters is optional . 11 Using build directories . 12 Makefile targets . 12 Why is the output of ’make’ so clean? . 12 What gets installed by ’make install’, and where? . 12 Staged installations in a buildroot, for a packaging system . 13 Workarounds for some unusual configure/compilation problems . 13 3 Tutorial 15 The programs in Infernal .
    [Show full text]
  • Sequence Databases Enriched with Computationally Designed Protein
    D300–D305 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 27 September 2014 doi: 10.1093/nar/gku888 NrichD database: sequence databases enriched with computationally designed protein-like sequences aid in remote homology detection Richa Mudgal1, Sankaran Sandhya2,GayatriKumar3, Ramanathan Sowdhamini4, Nagasuma R. Chandra2 and Narayanaswamy Srinivasan3,* 1IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560 012, Karnataka, India, 2Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India and 4National Centre for Biological Sciences, Gandhi Krishi Vignan Kendra Campus, Bellary road, Bangalore 560 065, Karnataka, India Received August 03, 2014; Revised September 11, 2014; Accepted September 15, 2014 ABSTRACT INTRODUCTION NrichD (http://proline.biochem.iisc.ernet.in/NRICHD/) Efficiency of protein remote homology detection has been is a database of computationally designed protein- dependent on the availability of sequences which can con- like sequences, augmented into natural sequence vincingly connect distantly related proteins (1,2). With im- databases that can perform hops in protein se- provements in homology detection methods, natural linker quence space to assist in the detection of remote sequences often serve as ‘tools’ that facilitate hops be- tween proteins to connect them (3–6). Despite these ad- relationships. Establishing protein relationships vancements, identification
    [Show full text]
  • Biopython Tutorial and Cookbook
    Biopython Tutorial and Cookbook Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock, Tiago Antao, Eric Talevich Last Update – 31 August 2010 (Biopython 1.55) Contents 1 Introduction 7 1.1 What is Biopython? ......................................... 7 1.2 What can I find in the Biopython package ............................. 7 1.3 Installing Biopython ......................................... 8 1.4 Frequently Asked Questions (FAQ) ................................. 8 2 Quick Start – What can you do with Biopython? 12 2.1 General overview of what Biopython provides ........................... 12 2.2 Working with sequences ....................................... 12 2.3 A usage example ........................................... 13 2.4 Parsing sequence file formats .................................... 14 2.4.1 Simple FASTA parsing example ............................... 14 2.4.2 Simple GenBank parsing example ............................. 15 2.4.3 I love parsing – please don’t stop talking about it! .................... 15 2.5 Connecting with biological databases ................................ 15 2.6 What to do next ........................................... 16 3 Sequence objects 17 3.1 Sequences and Alphabets ...................................... 17 3.2 Sequences act like strings ...................................... 18 3.3 Slicing a sequence .......................................... 19 3.4 Turning Seq objects into strings ................................... 20 3.5 Concatenating or adding sequences ................................
    [Show full text]
  • Seqmagick Documentation Release 0.7.0+7.G1642bb8
    seqmagick Documentation Release 0.7.0+7.g1642bb8 Matsen Group May 30, 2018 Contents 1 Changes for seqmagick 3 2 Motivation 7 3 Installation 9 4 Use 11 5 List of Subcommands 13 6 Supported File Extensions 23 7 Acknowledgements 25 8 Contributing 27 i ii seqmagick Documentation, Release 0.7.0+7.g1642bb8 Contents • seqmagick – Motivation – Installation – Use – List of Subcommands – Supported File Extensions * Default Format * Compressed file support – Acknowledgements – Contributing Contents 1 seqmagick Documentation, Release 0.7.0+7.g1642bb8 2 Contents CHAPTER 1 Changes for seqmagick 1.1 0.7.0 • Supports Python 3.4+ • Drops support for python 2.7 • requires biopython >= 1.70 • Drops support for bz2 compression [see GH-66] • New option convert --sample-seed to make --sample deterministic. 1.2 0.6.2 • New quality-filter --pct-ambiguous switch [GH-53] • setup.py enforces biopython>=1.58,<=1.66 (1.67 is not compatible) [GH-59] • This is the last release that will support Python 2! 1.3 0.6.1 • Allow string wrapping when input isn’t FASTA. [GH-45] • Fix --pattern-include, --pattern-exclude, and --pattern-replace for sequences without descriptions (e.g., from NEXUS files). [GH-47] • Fix mogrify example. [GH-52] 3 seqmagick Documentation, Release 0.7.0+7.g1642bb8 1.4 0.6.0 • Map .nex extension to NEXUS-format (–alphabet must be specified if writing) • Use reservoir sampling in --sample selector (lower memory use) • Support specifying negative indices to --cut [GH-33] • Optionally allow invalid codons in backtrans-align [GH-34] • Map .fq extension to FASTQ format • Optional multithreaded I/O in info [GH-36] • Print sequence name on length mismatch in backtrans-align [GH-37] • Support for + and - in head and tail to mimick Linux head and tail commands.
    [Show full text]
  • HMMER Web Server Documentation Release 1.0
    HMMER web server Documentation Release 1.0 Rob Finn & Simon Potter EMBL-EBI Oct 16, 2019 Contents 1 Target databases 3 1.1 Sequence databases...........................................3 1.2 Profile HMM databases.........................................4 1.3 Search provenance............................................4 2 Searches 5 2.1 Search query...............................................5 2.2 Query examples.............................................6 2.3 Default search parameters........................................6 2.3.1 phmmer.............................................6 2.3.2 hmmscan............................................6 2.3.3 hmmsearch...........................................6 2.3.4 jackhmmer...........................................6 2.4 Databases.................................................7 2.4.1 Sequence databases.......................................7 2.4.2 HMM databases.........................................7 2.5 Thresholds................................................7 2.5.1 Significance thresholds.....................................7 2.5.2 Reporting thresholds......................................8 2.5.3 Gathering thresholds......................................9 2.5.4 Gene3D and Superfamily thresholds..............................9 3 Advanced search options 11 3.1 Taxonomy Restrictions.......................................... 11 3.1.1 Search.............................................. 11 3.1.2 Pre-defined Taxonomic Tree.................................. 11 3.2 Customisation of results........................................
    [Show full text]
  • Quiz: Past Midterm Exam (2017) 4/7/21, 9:49 PM
    Quiz: Past midterm exam (2017) 4/7/21, 9:49 PM Past midterm exam (2017) Started: Apr 7 at 6:47am Quiz Instructions Answer as many questions as you can in the time allowed. Question 1 1 pts Which of the following genomic mutation events would you expect to occur most frequently in non-coding, non-selected regions of the human genome? Single nucleotide mutation of A to T Single nucleotide mutation of A to G Single nucleotide mutation of A to C Single nucleotide mutation of C to G Single nucleotide insertion of a C between an A and a G (AG becomes ACG) Single nucleotide deletion of a C between an A and a G (ACG becomes AG) Question 2 1 pts Which of the following is a common structural basis for DNA-protein recognition by transcription factors containing the helix-turn-helix domain? Complementary base-pairing between nucleotides in transcription factor and nucleotides in binding site https://bcourses.berkeley.edu/courses/1498319/quizzes/2322845/take Page 1 of 19 Quiz: Past midterm exam (2017) 4/7/21, 9:49 PM Phosphorylation of transcription factor by kinase proteins Van der Waals interactions between transcription factor and DNA backbone Insertion of protein alpha-helix into DNA major groove Hydrogen bonding between amino acids and unpaired nucleotides in single-stranded regions Question 3 1 pts In a uniform, independent & identically distributed sequence of nucleotides about the length of the HIV genome, roughly how many times would you expect to see the motif ACGACG? Give your answer to one significant figure.
    [Show full text]
  • Sequence Analysis in a Nutshell by Darryl Leon, Scott Markel
    [ Team LiB ] • Table of Contents • Index • Reviews • Reader Reviews • Errata Sequence Analysis in a Nutshell By Darryl Leon, Scott Markel Publisher : O'Reilly Pub Date : January 2003 ISBN : 0-596-00494-X Pages : 302 Sequence Analysis in a Nutshell: A Guide to Common Tools and Databases pulls together all of the vital information about the most commonly used databases, analytical tools, and tables used in sequence analysis. The book contains details and examples of the common database formats (GenBank, EMBL, SWISS- PROT) and the GenBank/EMBL/DDBJ Feature Table Definitions. It also provides the command line syntax for popular analysis applications such as Readseq and MEME/MAST, BLAST, ClustalW, and the EMBOSS suite, as well as tables of nucleotide, genetic, and amino acid codes. Written in O'Reilly's enormously popular, straightforward "Nutshell" format, this book draws together essential information for bioinformaticians in industry and academia, as well as for students. If sequence analysis is part of your daily life, you'll want this easy-to-use book on your desk. [ Team LiB ] [ Team LiB ] • Table of Contents • Index • Reviews • Reader Reviews • Errata Sequence Analysis in a Nutshell By Darryl Leon, Scott Markel Publisher : O'Reilly Pub Date : January 2003 ISBN : 0-596-00494-X Pages : 302 Copyright Preface Sequence Analysis Tools and Databases How This Book Is Organized Assumptions This Book Makes Conventions Used in This Book How to Contact Us Acknowledgments Part I: Data Formats Chapter 1. FASTA Format Section 1.1. NCBI's Sequence Identifier Syntax Section 1.2. NCBI's Non-Redundant Database Syntax Section 1.3.
    [Show full text]
  • MSAC: Compression of Multiple Sequence Alignment Files
    i bioRxiv preprint doi: https://doi.org/10.1101/240341; this version posted December 28, 2017. The copyright holder for this preprint (which i was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. i i 1 Subject Section MSAC: Compression of multiple sequence alignment files Sebastian Deorowicz 1,∗, Joanna Walczyszyn 1, Agnieszka Debudaj-Grabysz 1 1Institute of Informatics, Silesian University of Technology, Gliwice, Poland ∗To whom correspondence should be addressed. Associate Editor: XXXXXXX Received on XXXXX; revised on XXXXX; accepted on XXXXX Abstract Motivation: Bioinformatics databases grow rapidly and achieve values hardly to imagine a decade ago. Among numerous bioinformatics processes generating hundreds of GB is multiple sequence alignments of protein families. Its largest database, i.e., Pfam, consumes 40–230 GB, depending of the variant. Storage and transfer of such massive data has become a challenge. Results: We propose a novel compression algorithm, MSAC (Multiple Sequence Alignment Compressor), designed especially for aligned data. It is based on a generalisation of the positional Burrows–Wheeler transform for non-binary alphabets. MSAC handles FASTA, as well as Stockholm files. It offers up to six times better compression ratio than other commonly used compressors, i.e., gzip. Performed experiments resulted in an analysis of the influence of a protein family size on the compression ratio. Availability: MSAC is available for free at https://github.com/refresh-bio/msac and http: //sun.aei.polsl.pl/REFRESH/msac. Contact: [email protected] Supplementary material: Supplementary data are available at the publisher Web site. 1 Introduction facto standard, allows to reduce many types of data several times.
    [Show full text]
  • HMMER User's Guide
    HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.org/ Version 3.1b2; February 2015 Sean R. Eddy, Travis J. Wheeler and the HMMER development team Copyright (C) 2015 Howard Hughes Medical Institute. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. HMMER is licensed and freely distributed under the GNU General Public License version 3 (GPLv3). For a copy of the License, see http://www.gnu.org/licenses/. HMMER is a trademark of the Howard Hughes Medical Institute. 1 Contents 1 Introduction 7 How to avoid reading this manual . 7 How to avoid using this software (links to similar software) . 7 What profile HMMs are . 7 Applications of profile HMMs . 8 Design goals of HMMER3 . 9 What’s new in HMMER3.1 . 10 What’s still missing in HMMER3.1 . 11 How to learn more about profile HMMs . 11 2 Installation 13 Quick installation instructions . 13 System requirements . 13 Multithreaded parallelization for multicores is the default . 14 MPI parallelization for clusters is optional . 14 Using build directories . 15 Makefile targets . 15 Why is the output of ’make’ so clean? . 15 What gets installed by ’make install’, and where? . 15 Staged installations in a buildroot, for a packaging system . 16 Workarounds for some unusual configure/compilation problems . 16 3 Tutorial 18 The programs in HMMER . 18 Supported formats . 19 Files used in the tutorial . 19 Searching a protein sequence database with a single protein profile HMM . 20 Step 1: build a profile HMM with hmmbuild .
    [Show full text]