Fast, Sensitive Protein Sequence Searches Using Iterative Pairwise Comparison of Hidden Markov Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Membrane Integration of an Essential Β-Barrel Protein Prerequires Burial of an Extracellular Loop
Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop Joseph S. Wzoreka, James Leea,b, David Tomaseka,b, Christine L. Hagana, and Daniel E. Kahnea,b,c,1 aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; bDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and cDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115 Edited by Robert T. Sauer, Massachusetts Institute of Technology, Cambridge, MA, and approved February 1, 2017 (received for review October 5, 2016) The Bam complex assembles β-barrel proteins into the outer mem- these studies have emphasized how the machine might alter the brane (OM) of Gram-negative bacteria. These proteins comprise membrane structure or how its components might sequentially cylindrical β-sheets with long extracellular loops and create pores bind and thereby guide substrates into the membrane. However, to allow passage of nutrients and waste products across the mem- much less has been done to understand how structure emerges brane. Despite their functional importance, several questions re- within a substrate during assembly by these machines. Here, we main about how these proteins are assembled into the OM after have taken the approach of characterizing the nascent structure their synthesis in the cytoplasm and secretion across the inner of a substrate as it interacts with the machine to identify the membrane. To understand this process better, we studied the as- features of the substrate required to permit its proper membrane sembly of an essential β-barrel substrate for the Bam complex, integration. -
HMMER User's Guide
HMMER User’s Guide Biological sequence analysis using profile hidden Markov models http://hmmer.org/ Version 3.0rc1; February 2010 Sean R. Eddy for the HMMER Development Team Janelia Farm Research Campus 19700 Helix Drive Ashburn VA 20147 USA http://eddylab.org/ Copyright (C) 2010 Howard Hughes Medical Institute. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are retained on all copies. HMMER is licensed and freely distributed under the GNU General Public License version 3 (GPLv3). For a copy of the License, see http://www.gnu.org/licenses/. HMMER is a trademark of the Howard Hughes Medical Institute. 1 Contents 1 Introduction 5 How to avoid reading this manual . 5 How to avoid using this software (links to similar software) . 5 What profile HMMs are . 5 Applications of profile HMMs . 6 Design goals of HMMER3 . 7 What’s still missing in HMMER3 . 8 How to learn more about profile HMMs . 9 2 Installation 10 Quick installation instructions . 10 System requirements . 10 Multithreaded parallelization for multicores is the default . 11 MPI parallelization for clusters is optional . 11 Using build directories . 12 Makefile targets . 12 3 Tutorial 13 The programs in HMMER . 13 Files used in the tutorial . 13 Searching a sequence database with a single profile HMM . 14 Step 1: build a profile HMM with hmmbuild . 14 Step 2: search the sequence database with hmmsearch . 16 Searching a profile HMM database with a query sequence . 22 Step 1: create an HMM database flatfile . 22 Step 2: compress and index the flatfile with hmmpress . -
Modeling and Predicting Super-Secondary Structures of Transmembrane Beta-Barrel Proteins Thuong Van Du Tran
Modeling and predicting super-secondary structures of transmembrane beta-barrel proteins Thuong van Du Tran To cite this version: Thuong van Du Tran. Modeling and predicting super-secondary structures of transmembrane beta-barrel proteins. Bioinformatics [q-bio.QM]. Ecole Polytechnique X, 2011. English. NNT : 2011EPXX0104. pastel-00711285 HAL Id: pastel-00711285 https://pastel.archives-ouvertes.fr/pastel-00711285 Submitted on 23 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE` pr´esent´ee pour obtenir le grade de DOCTEUR DE L’ECOLE´ POLYTECHNIQUE Sp´ecialit´e: INFORMATIQUE par Thuong Van Du TRAN Titre de la th`ese: Modeling and Predicting Super-secondary Structures of Transmembrane β-barrel Proteins Soutenue le 7 d´ecembre 2011 devant le jury compos´ede: MM. Laurent MOUCHARD Rapporteurs Mikhail A. ROYTBERG MM. Gregory KUCHEROV Examinateurs Mireille REGNIER M. Jean-Marc STEYAERT Directeur Laboratoire d’Informatique UMR X-CNRS 7161 Ecole´ Polytechnique, 91128 Plaiseau CEDEX, FRANCE Composed with LATEX !c Thuong Van Du Tran. All rights reserved. Contents Introduction 1 1Fundamentalreviewofproteins 5 1.1 Introduction................................... 5 1.2 Proteins..................................... 5 1.2.1 Aminoacids............................... 5 1.2.2 Properties of amino acids . -
Validation and Annotation of Virus Sequence Submissions to Genbank Alejandro A
Schäffer et al. BMC Bioinformatics (2020) 21:211 https://doi.org/10.1186/s12859-020-3537-3 SOFTWARE Open Access VADR: validation and annotation of virus sequence submissions to GenBank Alejandro A. Schäffer1,2, Eneida L. Hatcher2, Linda Yankie2, Lara Shonkwiler2,3,J.RodneyBrister2, Ilene Karsch-Mizrachi2 and Eric P. Nawrocki2* *Correspondence: [email protected] Abstract 2National Center for Biotechnology Background: GenBank contains over 3 million viral sequences. The National Center Information, National Library of for Biotechnology Information (NCBI) previously made available a tool for validating Medicine, National Institutes of Health, Bethesda, MD, 20894 USA and annotating influenza virus sequences that is used to check submissions to Full list of author information is GenBank. Before this project, there was no analogous tool in use for non-influenza viral available at the end of the article sequence submissions. Results: We developed a system called VADR (Viral Annotation DefineR) that validates and annotates viral sequences in GenBank submissions. The annotation system is based on the analysis of the input nucleotide sequence using models built from curated RefSeqs. Hidden Markov models are used to classify sequences by determining the RefSeq they are most similar to, and feature annotation from the RefSeq is mapped based on a nucleotide alignment of the full sequence to a covariance model. Predicted proteins encoded by the sequence are validated with nucleotide-to-protein alignments using BLAST. The system identifies 43 types of “alerts” that (unlike the previous BLAST-based system) provide deterministic and rigorous feedback to researchers who submit sequences with unexpected characteristics. VADR has been integrated into GenBank’s submission processing pipeline allowing for viral submissions passing all tests to be accepted and annotated automatically, without the need for any human (GenBank indexer) intervention. -
RNA Ontology Consortium January 8-9, 2011
UC San Diego UC San Diego Previously Published Works Title Meeting report of the RNA Ontology Consortium January 8-9, 2011. Permalink https://escholarship.org/uc/item/0kw6h252 Journal Standards in genomic sciences, 4(2) ISSN 1944-3277 Authors Birmingham, Amanda Clemente, Jose C Desai, Narayan et al. Publication Date 2011-04-01 DOI 10.4056/sigs.1724282 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2011) 4:252-256 DOI:10.4056/sigs.1724282 Meeting report of the RNA Ontology Consortium January 8-9, 2011 Amanda Birmingham1, Jose C. Clemente2, Narayan Desai3, Jack Gilbert3,4, Antonio Gonzalez2, Nikos Kyrpides5, Folker Meyer3,6, Eric Nawrocki7, Peter Sterk8, Jesse Stombaugh2, Zasha Weinberg9,10, Doug Wendel2, Neocles B. Leontis11, Craig Zirbel12, Rob Knight2,13, Alain Laederach14 1 Thermo Fisher Scientific, Lafayette, CO, USA 2 Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA 3 Argonne National Laboratory, Argonne, IL, USA 4 Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA 5 DOE Joint Genome Institute, Walnut Creek, CA, USA 6 Computation Institute, University of Chicago, Chicago, IL, USA 7 Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA 8 Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK 9 Department of Molecular, Cellular and Developmental, Yale University, New Haven, CT, USA 10 Howard Hughes Medical Institute, Yale University, New -
Structural Basis for Substrate Specificity in the Escherichia Coli
Structural basis for substrate specificity in the Escherichia coli maltose transport system Michael L. Oldhama, Shanshuang Chenb, and Jue Chena,b,1 aHoward Hughes Medical Institute and bDepartment of Biological Sciences, Purdue University, West Lafayette, IN 47907 Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved September 27, 2013 (received for review June 14, 2013) ATP-binding cassette (ABC) transporters are molecular pumps that maltose analogs with a modified reducing end are not trans- harness the chemical energy of ATP hydrolysis to translocate sol- ported despite their high-affinity binding to MBP (5, 6). Further utes across the membrane. The substrates transported by different evidence for selectivity through the ABC transporter MalFGK2 ABC transporters are diverse, ranging from small ions to large itself comes from mutant transporters that function independently proteins. Although crystal structures of several ABC transporters of MBP. In the absence of MBP, these mutants constitutively are available, a structural basis for substrate recognition is still hydrolyze ATP and specifically transport maltodextrins (7, 8). lacking. For the Escherichia coli maltose transport system, the se- In this study, we determined the crystal structures of the lectivity of sugar binding to maltose-binding protein (MBP), the maltose transport complex MBP-MalFGK2 bound with large periplasmic binding protein, does not fully account for the selec- maltodextrin in two conformational states. The determination tivity of sugar transport. To obtain a molecular understanding of of these structures, along with previous studies of maltoporin this observation, we determined the crystal structures of the trans- and MBP, allow us to define how overall substrate specificity is porter complex MBP-MalFGK2 bound with large malto-oligosaccha- achieved for the maltose transport system. -
Tools for Simulating Evolution of Aligned Genomic Regions with Integrated Parameter Estimation Avinash Varadarajan*, Robert K Bradley and Ian H Holmes
Open Access Software2008VaradarajanetVolume al. 9, Issue 10, Article R147 Tools for simulating evolution of aligned genomic regions with integrated parameter estimation Avinash Varadarajan*, Robert K Bradley and Ian H Holmes Addresses: *Computer Science Division, University of California, Berkeley, CA 94720-1776, USA. Biophysics Graduate Group, University of California, Berkeley, CA 94720-3200, USA. Department of Bioengineering, University of California, Berkeley, CA 94720-1762, USA. Correspondence: Ian H Holmes. Email: [email protected] Published: 8 October 2008 Received: 20 June 2008 Revised: 21 August 2008 Genome Biology 2008, 9:R147 (doi:10.1186/gb-2008-9-10-r147) Accepted: 8 October 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/10/R147 © 2008 Varadarajan et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Simulation<p>Threefor richly structured tools of genome for simulating syntenic evolution blocks genome of genomeevolution sequence.</p> are presented: for neutrally evolving DNA, for phylogenetic context-free grammars and Abstract Controlled simulations of genome evolution are useful for benchmarking tools. However, many simulators lack extensibility and cannot measure parameters directly from data. These issues are addressed by three new open-source programs: GSIMULATOR (for neutrally evolving DNA), SIMGRAM (for generic structured features) and SIMGENOME (for syntenic genome blocks). Each offers algorithms for parameter measurement and reconstruction of ancestral sequence. -
INFERNAL User's Guide
INFERNAL User’s Guide Sequence analysis using profiles of RNA sequence and secondary structure consensus http://eddylab.org/infernal Version 1.1.4; Dec 2020 Eric Nawrocki and Sean Eddy for the INFERNAL development team https://github.com/EddyRivasLab/infernal/ Copyright (C) 2020 Howard Hughes Medical Institute. Infernal and its documentation are freely distributed under the 3-Clause BSD open source license. For a copy of the license, see http://opensource.org/licenses/BSD-3-Clause. Infernal development is supported by the Intramural Research Program of the National Library of Medicine at the US National Institutes of Health, and also by the National Human Genome Research Institute of the US National Institutes of Health under grant number R01HG009116. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. 1 Contents 1 Introduction 6 How to avoid reading this manual . 6 What covariance models are . 6 Applications of covariance models . 7 Infernal and HMMER, CMs and profile HMMs . 7 What’s new in Infernal 1.1 . 8 How to learn more about CMs and profile HMMs . 8 2 Installation 10 Quick installation instructions . 10 System requirements . 10 Multithreaded parallelization for multicores is the default . 11 MPI parallelization for clusters is optional . 11 Using build directories . 12 Makefile targets . 12 Why is the output of ’make’ so clean? . 12 What gets installed by ’make install’, and where? . 12 Staged installations in a buildroot, for a packaging system . 13 Workarounds for some unusual configure/compilation problems . 13 3 Tutorial 15 The programs in Infernal . -
Sequence Databases Enriched with Computationally Designed Protein
D300–D305 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 27 September 2014 doi: 10.1093/nar/gku888 NrichD database: sequence databases enriched with computationally designed protein-like sequences aid in remote homology detection Richa Mudgal1, Sankaran Sandhya2,GayatriKumar3, Ramanathan Sowdhamini4, Nagasuma R. Chandra2 and Narayanaswamy Srinivasan3,* 1IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560 012, Karnataka, India, 2Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India, 3Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India and 4National Centre for Biological Sciences, Gandhi Krishi Vignan Kendra Campus, Bellary road, Bangalore 560 065, Karnataka, India Received August 03, 2014; Revised September 11, 2014; Accepted September 15, 2014 ABSTRACT INTRODUCTION NrichD (http://proline.biochem.iisc.ernet.in/NRICHD/) Efficiency of protein remote homology detection has been is a database of computationally designed protein- dependent on the availability of sequences which can con- like sequences, augmented into natural sequence vincingly connect distantly related proteins (1,2). With im- databases that can perform hops in protein se- provements in homology detection methods, natural linker quence space to assist in the detection of remote sequences often serve as ‘tools’ that facilitate hops be- tween proteins to connect them (3–6). Despite these ad- relationships. Establishing protein relationships vancements, identification -
Biopython Tutorial and Cookbook
Biopython Tutorial and Cookbook Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock, Tiago Antao, Eric Talevich Last Update – 31 August 2010 (Biopython 1.55) Contents 1 Introduction 7 1.1 What is Biopython? ......................................... 7 1.2 What can I find in the Biopython package ............................. 7 1.3 Installing Biopython ......................................... 8 1.4 Frequently Asked Questions (FAQ) ................................. 8 2 Quick Start – What can you do with Biopython? 12 2.1 General overview of what Biopython provides ........................... 12 2.2 Working with sequences ....................................... 12 2.3 A usage example ........................................... 13 2.4 Parsing sequence file formats .................................... 14 2.4.1 Simple FASTA parsing example ............................... 14 2.4.2 Simple GenBank parsing example ............................. 15 2.4.3 I love parsing – please don’t stop talking about it! .................... 15 2.5 Connecting with biological databases ................................ 15 2.6 What to do next ........................................... 16 3 Sequence objects 17 3.1 Sequences and Alphabets ...................................... 17 3.2 Sequences act like strings ...................................... 18 3.3 Slicing a sequence .......................................... 19 3.4 Turning Seq objects into strings ................................... 20 3.5 Concatenating or adding sequences ................................ -
Structural Basis for Substrate Specificity in the Escherichia Coli
Structural basis for substrate specificity in the Escherichia coli maltose transport system Michael L. Oldhama, Shanshuang Chenb, and Jue Chena,b,1 aHoward Hughes Medical Institute and bDepartment of Biological Sciences, Purdue University, West Lafayette, IN 47907 Edited by Christopher Miller, Howard Hughes Medical Institute, Brandeis University, Waltham, MA, and approved September 27, 2013 (received for review June 14, 2013) ATP-binding cassette (ABC) transporters are molecular pumps that maltose analogs with a modified reducing end are not trans- harness the chemical energy of ATP hydrolysis to translocate sol- ported despite their high-affinity binding to MBP (5, 6). Further utes across the membrane. The substrates transported by different evidence for selectivity through the ABC transporter MalFGK2 ABC transporters are diverse, ranging from small ions to large itself comes from mutant transporters that function independently proteins. Although crystal structures of several ABC transporters of MBP. In the absence of MBP, these mutants constitutively are available, a structural basis for substrate recognition is still hydrolyze ATP and specifically transport maltodextrins (7, 8). lacking. For the Escherichia coli maltose transport system, the se- In this study, we determined the crystal structures of the lectivity of sugar binding to maltose-binding protein (MBP), the maltose transport complex MBP-MalFGK2 bound with large periplasmic binding protein, does not fully account for the selec- maltodextrin in two conformational states. The determination tivity of sugar transport. To obtain a molecular understanding of of these structures, along with previous studies of maltoporin this observation, we determined the crystal structures of the trans- and MBP, allow us to define how overall substrate specificity is porter complex MBP-MalFGK2 bound with large malto-oligosaccha- achieved for the maltose transport system. -
Time-Resolved Interaction of Single Antibiotic Molecules with Bacterial Pores
Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores Ekaterina M. Nestorovich*, Christophe Danelon†, Mathias Winterhalter†, and Sergey M. Bezrukov*‡§ *Laboratory of Physical and Structural Biology, National Institute of Child Health and Human Development, National Institutes of Health, Building 9, Room 1E-122, Bethesda, MD 20892-0924; †Institut Pharmacologie et Biologie Structurale, 31 077 Toulouse, France; and ‡St. Petersburg Nuclear Physics Institute, Gatchina 188350, Russia Edited by Charles F. Stevens, The Salk Institute for Biological Studies, La Jolla, CA, and approved May 28, 2002 (received for review April 3, 2002) Membrane permeability barriers are among the factors contribut- ing to the intrinsic resistance of bacteria to antibiotics. We have been able to resolve single ampicillin molecules moving through a channel of the general bacterial porin, OmpF (outer membrane protein F), believed to be the principal pathway for the -lactam antibiotics. With ion channel reconstitution and high-resolution conductance recording, we find that ampicillin and several other efficient penicillins and cephalosporins strongly interact with the residues of the constriction zone of the OmpF channel. Therefore, we hypothesize that, in analogy to substrate-specific channels that evolved to bind certain metabolite molecules, antibiotics have ‘‘evolved’’ to be channel-specific. Molecular modeling suggests that the charge distribution of the ampicillin molecule comple- ments the charge distribution at the narrowest part of the bacterial porin. Interaction of these charges creates a region of attraction inside the channel that facilitates drug translocation through the constriction zone and results in higher permeability rates. lthough the mechanisms of antibiotic action on organisms Fig.