White Paper: Group State Quorum

Total Page:16

File Type:pdf, Size:1020Kb

White Paper: Group State Quorum WHITE PAPER DELL EMC POWERSCALE ONEFS CLUSTER COMPOSITION, QUORUM, AND GROUP STATE Abstract This paper explores cluster quorum, group state, and the group management protocol on a Dell EMC PowerScale cluster. April 2021 1 | Dell EMC PowerScale OneFS Cluster Composition, Quorum, & Group State ©202 1 Dell Inc. or its subsidiaries. Revisions Version Date Comment 1.0 November 2017 Updated for OneFS 8.1.1 2.0 February 2019 Updated for OneFS 8.1.3 3.0 April 2019 Updated for OneFS 8.2 4.0 August 2019 Updated for OneFS 8.2.1 5.0 December 2019 Updated for OneFS 8.2.2 6.0 June 2020 Updated for OneFS 9.0 7.0 October 2020 Updated for OneFS 9.1 8.0 April 2021 Updated for OneFS 9.2 Acknowledgements This paper was produced by the following: Author: Nick Trimbee The information in this publication is provided “as is.” Dell Inc. makes no representations or warranties of any kind with respect to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular purpose. Use, copying, and distribution of any software described in this publication requires an applicable software license. Copyright © Dell Inc. or its subsidiaries. All Rights Reserved. Dell, EMC, Dell EMC and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. 2 | Dell EMC PowerScale OneFS Cluster Composition, Quorum, & Group State ©202 1 Dell Inc. or its subsidiaries. TABLE OF CONTENTS Intended Audience ............................................................................................................................... 4 Cluster Composition, Quorum and Group State ............................................................................................................ 4 Cluster Composition and Group State ........................................................................................................................... 5 Understanding and Analyzing Group Membership ........................................................................................................ 9 Interpreting Group Changes ........................................................................................................................................ 13 Constructing an event timeline ..................................................................................................................................... 17 Group management considerations ............................................................................................................................. 21 Summary ........................................................................................................................................ 21 3 | Dell EMC PowerScale OneFS Cluster Composition, Quorum, & Group State ©202 1 Dell Inc. or its subsidiaries. Intended Audience This paper explores the topics of cluster composition, quorum and the group management protocol on a Dell EMC PowerScale cluster. It also offers techniques and recommendations to help detect and debug changes in cluster composition. This paper does not intend to provide a comprehensive background to the OneFS architecture. Please refer to the OneFS Technical Overview white paper for further details on the OneFS architecture. The target audience for this white paper is anyone managing a OneFS powered clustered storage environment. It is assumed that the reader has an understanding and working knowledge of the OneFS components, architecture, commands and features. More information on OneFS commands and feature configuration is available in the OneFS Administration Guide. Cluster Composition, Quorum and Group State In order for a cluster to properly function and accept data writes, a quorum or majority of nodes must be active and responding. OneFS uses this notion of a quorum to prevent “split-brain” conditions that could be introduced if a cluster temporarily split into two clusters. OneFS clustering is based on the CAP theorem, which states that it is impossible for a distributed data store to simultaneously provide more than two out of the following three guarantees: OneFS does not compromise on Consistency, and uses a simple quorum to prevent partitioning, or ‘split-brain’ conditions that can be introduced if the cluster should temporarily divide into two clusters. This is a pre-requisite of CAP. The quorum rule guarantees that, regardless of how many nodes fail or come back online, if a write takes place, it can be made consistent with any previous writes that have ever taken place. As such, cluster quorum dictates the number of nodes required in order to move to a given data protection level. For an erasure-code (FEC) based protection-level of N+M, the cluster must contain at least 2 M+1 nodes. For example, a minimum of seven nodes is required for a +3n protection level. This allows for a simultaneous loss of three nodes while still maintaining a quorum of four nodes for the cluster to remain fully operational. If a cluster does drop below quorum, the file system will automatically be placed into a protected, read-only state, denying writes, but still allowing read access to the available data. In this state, it will not accept write requests from any protocols, regardless of any 4 | Dell EMC PowerScale OneFS Cluster Composition, Quorum, & Group State ©202 1 Dell Inc. or its subsidiaries. particular node pool membership issues. In the instances where a protection level is set too high for OneFS to achieve using FEC, the default behavior is to protect that data using mirroring instead. Obviously, this has a negative impact on space utilization. Since OneFS does not compromise on consistency, so a mechanism is required to manage a cluster’s transient state and quorum. As such, the primary role of the OneFS Group Management Protocol (GMP) is to help create and maintain a group of synchronized nodes. A group is a given set of nodes which have synchronized state, and a cluster may form multiple groups as connection state changes. Quorum is a property of the GMP group, which helps enforce consistency across node disconnects and other transient events. Having a consistent view of the cluster state is crucial, since initiators need to know which node and drives are available to write to, etc. Cluster Composition and Group State One of the most significant impacts to a cluster’s workflow, particularly at scale, is the effect of group changes resulting from the addition, removal, or rebooting of a node, or other hardware failure or transience. Having the ability to understand a cluster’s group state and changes is an invaluable tool when administering and managing large clusters. It allows you to determine the current health of a cluster, as well as reconstruct the cluster's history when troubleshooting issues that involve cluster stability, network health, etc. The primary role of the OneFS Group Management Protocol (GMP) is to help create and maintain a group of synchronized nodes. A group is a given set of nodes which have synchronized state, and a cluster may form multiple groups as connection state changes. GMP distributes a variety of state information about nodes and drives, from identifiers to usage statistics. The most fundamental of these is the composition of the cluster, or ‘static aspect’ of the group, which is managed by the isi_boot_d daemon and stored in the array.xml file. Similarly, the state of a node’s drives is stored in the drives.xml file, along with a flag indicating whether the drive is an SSD. Whereas GMP manages node states directly, drive states are actually managed by the ‘drv’ module, and broadcast via GMP. A significant difference between nodes and drives is that for nodes, the static aspect is distributed to every node in the array.xml file, whereas drive state is only stored locally on a node. A group change operation, based on GMP, is a coherent way of changing the cluster-wide shared state. Merge is the group change operation for addition of nodes. Merges affect cluster availability due to their need to pause any filesystem operations for the duration of the operation. The array.xml information is needed by every node in order to define the cluster and allow nodes to form connections. In contrast, drives.xml is only stored locally on a node. If a node goes down, other nodes have no method to obtain the drive configuration of that node. Drive information may be cached by the GMP, but it is not available if that cache is cleared. Conversely, ‘dynamic aspect’ refers to the state of nodes and drives which may change. These states indicate the health of nodes and their drives to the various file system modules - plus whether or not components can be used for particular operations. For example, a soft-failed node or drive should not be used for new allocations. These components can be in one of seven states: Component State Description UP Component is responding DOWN Component is not responding DEAD Component is not allowed to come back to the UP state and should be removed STALLED Drive is responding slowly GONE Component has been removed Soft-failed Component is in the process of being removed Read-only This state only applies to nodes Figure 1: OneFS Group Management – Component States 5 | Dell EMC PowerScale OneFS Cluster Composition, Quorum, & Group State ©202 1 Dell Inc. or its subsidiaries. A node or drive may go from ‘down, soft-failed’ to ‘up, soft-failed’ and back. These flags are persistently stored in the array.xml file for nodes and the drives.xml file
Recommended publications
  • Sonexion 1.5 Upgrade Guide ()
    Sonexion 1.5 Upgrade Guide () Contents About Sonexion 1.5 Upgrade Guide..........................................................................................................................3 Sonexion 1.5.0 Upgrade Introduction........................................................................................................................4 Prerequisites..............................................................................................................................................................8 Begin Upgrade.........................................................................................................................................................10 Upgrade Sonexion 1600/900 Software....................................................................................................................17 Post-Installation Steps.............................................................................................................................................28 Troubleshoot from Error Messages.........................................................................................................................33 2 -- () About Sonexion 1.5 Upgrade Guide This document provides instructions to upgrade Sonexion systems running software release 1.4.0 to the 1.5.0 software platform. Audience This publication is intended for use by Cray field technicicans who are trained with Sonexion and familiar wtih the software upgrade process. Typographic Conventions Monospace A Monospace font indicates program code,
    [Show full text]
  • Clustering with Openmosix
    Clustering with openMosix Maurizio Davini (Department of Physics and INFN Pisa) Presented by Enrico Mazzoni (INFN Pisa) Introduction • What is openMosix? – Single-System Image – Preemptive Process Migration – The openMosix File System (MFS) • Application Fields • openMosix vs Beowulf • The people behind openMosix • The openMosix GNU project • Fork of openMosix code 12/06/2003 HTASC 2 The openMosix Project MileStones • Born early 80s on PDP-11/70. One full PDP and disk-less PDP, therefore process migration idea. • First implementation on BSD/pdp as MS.c thesis. • VAX 11/780 implementation (different word size, different memory architecture) • Motorola / VME bus implementation as Ph.D. thesis in 1993 for under contract from IDF (Israeli Defence Forces) • 1994 BSDi version • GNU and Linux since 1997 • Contributed dozens of patches to the standard Linux kernel • Split Mosix / openMosix November 2001 • Mosix standard in Linux 2.5? 12/06/2003 HTASC 3 What is openMOSIX • Linux kernel extension (2.4.20) for clustering • Single System Image - like an SMP, for: – No need to modify applications – Adaptive resource management to dynamic load characteristics (CPU intensive, RAM intensive, I/O etc.) – Linear scalability (unlike SMP) 12/06/2003 HTASC 4 A two tier technology 1. Information gathering and dissemination – Support scalable configurations by probabilistic dissemination algorithms – Same overhead for 16 nodes or 2056 nodes 2. Pre-emptive process migration that can migrate any process, anywhere, anytime - transparently – Supervised by adaptive
    [Show full text]
  • Sonexion Administrator Guide
    Sonexion Administrator Guide S2537 Contents Contents About Sonexion Administrator Guide.........................................................................................................................5 Hardware Architecture...............................................................................................................................................7 Software Architecture..............................................................................................................................................10 What Is and Is Not Supported in Sonexion 2.0.0.....................................................................................................12 Log In to CSSM.......................................................................................................................................................14 Change Network Settings........................................................................................................................................16 Create Custom LNET Configuration..............................................................................................................16 Change DNS Resolver Configuration............................................................................................................18 Change Externally Facing IP Addresses.......................................................................................................18 Change LDAP Settings in Daily Mode...........................................................................................................19
    [Show full text]
  • Linux Based Diskless System Using RSYNC Algorithm
    International Journal of Computer Applications (0975 – 8887) Volume 155 – No 3, December 2016 Linux based Diskless System using RSYNC Algorithm August Anthony N. Balute Dennis B. Gonzales, PhD CAP College Foundation Inc. University of the East Makati, Philippines Manila, Philippines Mateo D. Macalaguing Jr., Ed.D Caroline J. Aga-ab CAP College Foundation Inc. AMA University Makati Philippines Quezon City, Philippines ABSTRACT Centers, Offices, Cybercafe, Karaoke, and can likewise be The objective of this venture is to give a cost effective open utilized as a part of bunch registering. Diskless workstation is source Remote Desktop based registering environment to a PC framework with no plate drives introduced locally along clients by utilizing Virtualization Technology and existing these lines booting it's working framework from a server in open source programming and apparatuses. In this venture, we the neighborhood. Now and then when a PC framework is have utilized LTSP (Linux Terminal Server Project) to get to having a circle drive yet don't utilizing it that framework is Remote Desktop and Xen hypervisor to give virtual desktop additionally called a diskless workstation. Diskless environment at server. A client gets a customized desktop as a Workstations give less expensive however more secure VM (Virtual Machine) running over remote server. It is not systems administration answers for undertakings. Qualities of the same as the old Remote Desktop arrangements in a route diskless workstations are, the working framework is stacked that rather than a login session on single OS remote server, from the server when booting up. Clearly the various client will get a completely fledged desktop with fancied OS.
    [Show full text]
  • Automated Virtual Machine Replication and Transparent Machine Switch Support for an Individual Personal Computer User by Beom He
    Automated Virtual Machine Replication and Transparent Machine Switch Support for An Individual Personal Computer User by Beom Heyn Kim A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2011 by Beom Heyn Kim Abstract Automated Virtual Machine Replication and Transparent Machine Switch Support for An Individual Personal Computer User Beom Heyn Kim Master of Science Graduate Department of Computer Science University of Toronto 2011 As the price of computing devices drops, the number of machines managed by an in- dividual PC user has been increased. In many cases, a user with multiple computers wants to use an exact desktop environment across machines. For personal data replica- tion, there are several tools like DropBox, Live Mesh and Tonido. However, these tools can not provide software environment replication. Without a tool to replicate software environment, users have to manage each device's desktop environment separately which is hassling and difficult task to do manually. In this work, we explore the solution to help modern day PC users to perceive the consistent view of not only personal data but also a whole desktop environment. Our approach automatically replicates modifications made on the desktop environment of one machine to other devices using different replication policies for different network properties. Moreover, users can switch machines instantly and still see the exact environment. ii Acknowledgements First and foremost, I would really appreciate to Professor David Lie for his patient men- toring, invaluable advice, financial support, and large amount of time spent on discussions for this research.
    [Show full text]
  • Sonexion™ 2000 Administration Guide (2.0.0)
    Sonexion™ 2000 Administration Guide (2.0.0) S-2537 Rev C Contents Contents 1 About the Sonexion™ 2000 Administration Guide.................................................................................................. 5 2 Hardware Architecture............................................................................................................................................ 7 3 Software Architecture........................................................................................................................................... 10 4 What Is and Is Not Supported in Sonexion 2.0.0..................................................................................................12 5 Log In to CSM.......................................................................................................................................................14 6 SSA.......................................................................................................................................................................16 6.1 SSA Introduction......................................................................................................................................16 6.2 Configure SSA for Sonexion....................................................................................................................16 6.2.1 SSA Prerequisites...................................................................................................................... 17 6.2.2 Install the Sonexion SSA RPM Packages.................................................................................
    [Show full text]
  • Downloads the Boot Server
    CHEP 2003, La Jolla, California, March 24-28 2003 1 OpenMosix approach to build scalable HPC farms with an easy management infrastructure R. Esposito, P. Mastroserio, G. Tortone INFN, Napoli, I-80126, Italy F. M. Taurino INFM, Napoli, I-80126, Italy The OpenMosix approach is a good solution to build powerful and scalable computing farms. Furthermore an easy management infrastructure is implemented using diskless nodes and network boot procedures. In HENP environment, the choice of OpenMosix has been proven to be an optimal solution to give a general performance boost on implemented systems thanks to its load balancing and process migration features. In this poster we give an overview of the activities, carried out by our computing center, concerning the installation, management, monitoring, and usage of HPC Linux clusters running OpenMosix. sharing, load balancing algorithms and, in particular, the 1. INTRODUCTION individual load of the single nodes and the network speed. Each process has a Unique Home-Node (UHN) where it This document is a short report of the activities carried was created. Normally this is the node to which the user out by the computing centre of INFN, INFM and Dept. of has logged-in. The single system image model of Physics at University of Naples “Federico II”, concerning OpenMosix is a CC (cache coherent) cluster, in which the installation, management and usage of HPC Linux every process seems to run at its UHN, and all the clusters running OpenMosix [1]. processes of a user's session share the execution These activities started on small clusters, running a local environment of the UHN.
    [Show full text]
  • Electra VS User Manual V05.10
    ELECTRA VS Convergent Video System Version 05.10 User Manual Rev. A Copyright © 2017 Harmonic Inc. All rights reserved.. Contents Preface ............................................................ 15 Chapter 1 Overview ......................................................... 21 Purpose .................................................................................. 22 Main Features ........................................................................ 24 Hardware Delivery................................................................. 25 Chassis ........................................................................................ 25 Overview ................................................................................ 25 Front Panel ............................................................................. 25 Rear Panel .............................................................................. 26 Software Only Delivery ......................................................... 29 Overview ..................................................................................... 29 Virtualization Delivery ........................................................... 30 Overview ..................................................................................... 30 Virtualization Technologies ....................................................... 30 Chapter 2 Installation and Startup .................................. 31 Hardware Delivery................................................................. 32 Chassis Overview
    [Show full text]
  • Fully Automated Diskless Deployment for University's
    104 Kasem Bundit Engineering Journal Vol.8 No.2 May-August 2018 FULLY AUTOMATED DISKLESS DEPLOYMENT FOR UNIVERSITY’S LAB Suphanchai Punthawanunt1, Sutapat Sappajak2 and Yusaku FUJII3 1Dean for Faculty of Science and Technology, Kasem Bundit University 1761 Pattanakarn Rd., SuanLuang, Bangkok, 10250, Thailand, [email protected] 2Associate Dean for Faculty of Science and Technology, Kasem Bundit University 1761 Pattanakarn Rd, SuanLuang, Bangkok, 10250, Thailand, [email protected] 3Director for School of Science and Technology, Gunma University Kiryu, Tenjin-cho 1-5-1, 376-8515, Japan, [email protected] ABSTRACT In universities, the computer machine and computer lab seem to be very necessary for learning and studying in terms of practical skills. It was found that 1) There are more and more students who are in need of such computers for their computer-related study. 2) More budgets are needed for hard disk drive maintenance caused by electricity problem and incorrect usage. 3) Incorrect way of data editing. 4) No virus-protection program is set up or no program updated. 5) Too complicated way of hard disk drive’s management in computing center. 6) New developed software is not supported by old original operation system. 7) Too complicated way of software selection is the purpose of learning and study. So this research offers how to resolve problem by introducing the Diskless System for Computer Laboratory (DSCL) which is the new standard of storing the data which enable the computer and network center to save, retrieve and send-receive the data with high-speed network.
    [Show full text]
  • Cty ATVA05 System and Performance Monitoring on Diskless PC Clusters
    System and Performance Monitoring on Diskless PC Clusters Chao-Tung Yang and Ping-I Chen High-Performance Computing Laboratory Department of Computer Science and Information Engineering Tunghai University, Taichung City, 40704 Taiwan, R.O.C. [email protected] [email protected] Abstract. In this paper, we introduce the experiments of monitoring on SLIM and DRBL diskless PC clusters. We constructed the performance experimentations by using 16 computing nodes and only one hard disk. We used LAM/MPI and PVM to run the matrix multiplication program in order to evaluate their performance. We also used spm2 and ntop to monitoring the system status during performance evaluation. As the result, we can find that the network loading of SLIM is less than DRBL even though the performance result of DRBL is better than SLIM. Maybe this is because the DRBL use NFS to mount everything which the nodes needed. We can realize that if we want to construct a high-performance diskless Linux cluster. We should take care of the free space of main memory and the mounting method of file systems. Keywords: Diskless, System monitoring, Performance monitoring, PC clusters, DBRL, SLIM. 1 Introduction The use of loosely coupled, powerful and low-cost commodity components (PCs or workstations, typically), especially without any hard disk drive, connected by high- speed networks has resulted in the widespread usage of a technology popularly called diskless cluster. Strictly speaking, it consists of one or more servers which provide not only bootstrap service but also related network services (such as DHCP, NIS, NFS servers, and etc) and many clients with no hard disk drive requesting for booting from the network.
    [Show full text]
  • (Open)Mosix Experience in Naples
    (Open)Mosix Experience in Naples Rosario Esposito1, Francesco M. Taurino1,2, Gennaro Tortone1 1 (Istituto Nazionale di Fisica Nucleare, via Cintia – 80126 Napoli, Italy) 2 (Istituto Nazionale di Fisica Nucleare – UdR di Napoli, via Cintia – 80126 Napoli, Italy) This document is a short report of the activities carried out by the computing centre of INFN, INFM and Dept. of Physics at University of Naples “Federico II”, concerning the installation, management and usage of HPC Linux clusters running (open)Mosix [1][2]. These activities started on small clusters, running a local copy of the operating system and evolved through the years to a configuration of computing farms based on a diskless architecture, simplifying installation and management tasks. Introduction Thanks to high performances offered by low cost systems (common personal computers) and availability of operating systems like Linux, we were able to implement HPC clusters using standard PCs, connected to an efficient LAN. This solution offers several advantages: - lower costs than monolithic systems; - common technologies and components available trough the retailers (COTS, Components Off The Shelf); - high scalability. Mosix in Naples Our first test cluster was configured in January 2000. At that time we had 10 PCs running Linux Mandrake 6.1, acting as public Xterminals. They were used by our students to open Xsessions on a DEC-Unix AlphaServer to compile and execute simple simulation programs. Those machines had the following hardware configuration: - Pentium 200 Mhz - 64 MB RAM - 4 GB hard disk Each computer, with the operating system installed on the local disk, was connected to a 100 Mb/s Fast Ethernet switch.
    [Show full text]
  • HPE Insight Cluster Management Utility V8.0 User Guide
    HPE Insight Cluster Management Utility v8.0 User Guide Abstract This guide describes how to install, configure, and use HPE Insight Cluster Management Utility (Insight CMU) v8.0 on Hewlett Packard Enterprise systems. Insight CMU is software dedicated to the administration of HPC and large Linux clusters. This guide is intended primarily for administrators who install and manage a large collection of systems. This document assumes you have access to the documentation that comes with the hardware platform where the Insight CMU cluster will be installed, and you are familiar with installing and administering Linux operating systems. Part Number: 5900-4408 Published: April 2016 Edition: 1 © Copyright 2016 Hewlett Packard Enterprise Development LP The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein. Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard Enterprise has no control over and is not responsible for information outside the Hewlett Packard Enterprise website. Oracle Java® are registered trademarks of Oracle and/or its affiliates.
    [Show full text]