Addition of Agricultural Chemistry to Areas in Biological Sciences Offering the Ph

Total Page:16

File Type:pdf, Size:1020Kb

Addition of Agricultural Chemistry to Areas in Biological Sciences Offering the Ph University of Rhode Island DigitalCommons@URI Faculty Senate Bills Faculty Senate 1967 Addition of Agricultural Chemistry to areas in Biological Sciences offering the Ph. D. Degree. 37th Report of Committee on Curricular Affairs -- Addendum Part II A University of Rhode Island Faculty Senate Follow this and additional works at: http://digitalcommons.uri.edu/facsen_bills Recommended Citation University of Rhode Island Faculty Senate, "Addition of Agricultural Chemistry to areas in Biological Sciences offering the Ph. D. Degree. 37th Report of Committee on Curricular Affairs -- Addendum Part II A" (1967). Faculty Senate Bills. Paper 70. http://digitalcommons.uri.edu/facsen_bills/70 This Article is brought to you for free and open access by the Faculty Senate at DigitalCommons@URI. It has been accepted for inclusion in Faculty Senate Bills by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. FACULTY SENATE BILL Adopted by the Faculty Senate TO: President Francis H. Horn !~-=-~-------.J FROM: Chairman of the Faculty Senate I. The Attached BILL, titled Addi tion of Agricultural Chemistry t o areas in Biological Sciences offer ing the Ph. D. Degree. 37 th Report of Committee on Curr icular Af f airs-- Add endum Part II A is forwarded for your consideration. 2. The original and two copies for your use are included~ 3. This BILL was adopted by vote of the Faculty Senate on March 16, 19 67 (date) 4. After considering this bill, will you please indicate your approval or disapproval. Return the original or forward it to the Board of Trustees, completing the appropriate endorsement below. 5. In accordance with Section G, paragraph 2 of the Senate 1 s By-Laws, this b·i 11 \•Ji 11 become effective on Apr i 1 6 . 1967 (date), three weeks after Senate approval, unless: (1) specific dates for implementation are written into the bilt; (2) you return it disapproved; (3) you forward it to the Board of Trustees for their approval; or (4) the University Faculty petitions for a referendum. If the bill is forwarded to the Board of Trustees, it will not become effective until approved by the Board. \2-----::. (date) ~LChairman' ~JQl_"'- of theF_ ..!WJFaculty~;£ ~/s/Senate ENDORSEMENT 1. TO: Chairman of the Faculty Senate FROM: President of the University 1. Returned. · ~' \ ~, ~-... :t~,1- ?1'd..........· l' b(~. ' I ' ~J~~ . r•" . '-{ 'f I , (/fo) · tfiiA 2. Approved _________ Disapproved ~') ~, lr {tp-J.!J :,y.f/ 3. (If approved) In my opinion, transmittal to the Board of Trustees is ~ not necessary. ~~{...tJ~ Q~ L\ ----------~-----------------/s/ (date) President Form approved 11/65 (over) I ALTERNATE ENDORSEMENT 1. TO: Chairman of the Boatd _of Trustees.' FROM: The University President 1. Forwarded. 2. App ~o~e'cr. -·· " ~ i . ' (date) ; I -,_. l ) ' : -' ENDORSEMENT 2. TO: Chairman of the Faculty Senate FROM: Chairman of the Board of Trustees, via the University President. 1. Forwarded. (date) ------------------------------~Is/ ' ( (Off ice) - -- - - -- ----- - - -- - -- -- -- - -- - - - - ENDORSEMENT '3. TO: Chairman of the Faculty Senate FROM: The University President 1. Forwarded from the Chairman of the Board of Trustees. (date) ------------------------------~Is/President Original received and forwarded to the Secretary of the Senate and Registrar for filing in the Archives of the University. --~------~~~~~--~----~/5/ (dat~) Chairman of the Faculty Senate UNIVERSITY OF RHODE ISLAND Kingston, Rhode Island FACULTY SENATE CO~~ITTEE ON CURRICULAR AFFAIRS Addendu.'ll to Thirty-Seventh Report (in full) At an additional meeting on March 9t 1967, the Faculty Senate Committee on Curricular Affairs considered several matters pressing the deadline for approval of catalogue material. Some i terns 1vere passed contingent upon approval by the Graduate Council; these items and those reported in the Abbreviated 37th Report with similar contingencies were all considered and approved by the Graudate Council at its meeting March 10. Hence, all requests included in the Report (circulated) and its Addendum (herewith) have the approval of all pertinent agencies and are now presented to the Faculty Senate for information or confirmation. I. ITEMS FOR INFORMATION A. From the College of Agriculture (prerequisite changes) Hort. 6, Nursery Principles and Practice 24, Vegetable Crops 4.5, Landscape Constructions 53, 54, Woody Plants 173, Post-Harvest Physiology of Economic Crops 175, Nutrition of- Greenhouse and Ornamental Crops 276, Advanced· Mineral Nutrition of' Plants B. From the College of Arts and Sciences Dental Hygiene Curriculum for Associate Degree (minor rearrangement) Psych. 71, History · and Systems of Psychology (prerequisite change) Phys. Ed. 22M, Aquatics (number designation change) 23M, Foundations of Health (number designation change) 27M; 28M, Coaching of Track (deleted as a con­ sequence of approval of 62M, Coaching of Track and Field) 32W, Procedures -in Health Instruction (prerequisite change) 721ii, · First Aid (new number, given) Sociology 87, Juvenile Delinquency (ne,;v- time: Sem. II) 108, Seminar InCriminology (new time: Sem. I) 131, Sociology of Politics (ne.w time: Sem. II) c. From the College of' Business Administration (new titles, given) · · · . Management 9 '· Production . Management 157, Advanced Production Management 158, Advanced l>roduc'tion Management ·· D. From the .Coll,ege of' Engineering Ch. E. 11, Introduction to Chemical-En. ineering (Course descript~on . change ·. 25, Process Dy1;1.amics and Control (new time: Sem. II) 64, Industrial Reaction Kinetics (new time{ Sem. I) 225, Automatic Pr;ocess Control (new time: Sem. I} 238 (or Nu. E. 238} Nuclear I-1etallurgy .(new time: Sem. II) 243, Fluid Dynamics (new time: Sem. II) 274, Biochemical En ineering (new time: Sem. I) 284, or Nu. E. 28 . , NuC'I'eir Reactor Heat Transfer ne1v time: Sem. I 364~ Applied Reaction Kinetics. (new time: Sem. II) Nu. E. 238 and 284: See Ch. E. 2J8 and 284 f'or new time. 282 (or Ch. E. 282), Radio.l:ogical Health Physics . !prerequisite change) . 284 or Ch. E. 284), Nuclear Reactor Heat Transfer prerequisite change) 287 (or Ch. E. 287) ' . Nuclear Chemical Engineering (prerequisite . change) ··· · E. From the College o:f . Home ·Ecm:fomics Specification of' requirements in Group I - courses required of' all students (accommodation to the General Education Curriculum ) ' · . .· F. ·· N. 35, Experimental Food (description change) J6, Demonstration Method~ in Food and Equipment (description change) 41, Advanced Nutrition (description and prerequisite change) · 202, Advanced Experimental Foods (description and prerequisite change) F. From the College of' Pharmacy (prerequisite change) Pharm. Chern. 43, 44, Organic Pharmaceuticals 48, Drug Assay 341, Detokication Mec~anisms - 2 - Pharmacognosy 132, Pharmaceutical Microscopy 134, Hormones and Glandular Substances 233, Medicinal Plants Pharmacology 343, Advanc~d Pharmacoloe:;x _and Techniques II. MATTERS REQUIRING CONFIRMATION OF THE FACULTY SENATE A. From the College of AJ~ricul ture 1. Authorize the addition of Agricultural Chemistry to the areas in Biological Sciences offering the Ph.D. degree. Supporting information: All general requirements, suc:Q.. as languages, residence etc., contained. in the "Stateme~t of Policies" of the Graduate School, University of Rhode Island, w:i.ll be adhered to. A particular program will be determined by the students committee in such a way as to best :fit the needs of the student. Programs will vary with the student's status as to assistantship, prior deg~ee credits, etc. Below are samples of programs in the Soil Chemistry and Food Biochemistry areas. IN SOIL CHEMISTRY* 1st Semester Crs. 2nd Semester Crs. Ag. Chern. 111 Soil Chern. 3 Ag. Chem~ 112 SoiL Biochem. 3 Biochem. 180-Gen'l. Bioch. 3 Phil. 152 Phil. o:f Science 3 Bact. 241-Phys. of Bact. 3 Biochem. 181-Gen'1. Bioch. 3 Ag. Chern. 291-Seminar l ;Ag. Chern. 292-Seminar 1 10 10 3rd Semester Crs. 4th Semester Crs. Bot. 245 Env. Pl .. Phys. 3 Chern. 216 Ion Exth. & G.L.c. 3 Chern. 217 Intro. Radio Tech.J Chern. 218 Anal. Abs. Meth. 3 Hort. 175 Plant Nutr. - 3 Rort. 2.76 Adv~ - Min. Nutr. 3 Ag. Chern. 121 Pest. Chern. 3 Ocean. 242 Petr. of Mar. Sed. 3 Ag. Chern. 291 Seminar Ag. Chern. 292 Seminar 12 12 5th Semester Crs. 6th Semester Crs. Stat. 111. Stat. Meth. in 3 Stat. 112 Stat. Meth. in 3 Res:earch Research Ag. Chern. 291 Seminar Ag. Chern. 292 Seminar­ Dissertation 12 Dissertation 12 15 15 - 3 - IN FOOD l3IOCHEJ\1ISTRY* 1st Semester Crs. 2nd Semester Crs. th Biocl:lem. 180 G'_nl. Bio_cb.. 3 3 Bact. 111 Food Microb~ol. 3 Ag. Chern. 131 Food Biochem. 3 Ag. Chern. 132 Food Biochem. 3 Ag. Chern. 121 Pest. Chern. 3 Phil. 152 Phil. of Science 3 Ag. Chern. 290 Seminar l Ag. Chern. 291 Seminar 1 10 13 3rd Semester Crs. 4th Semester Crs. Bact. 241 Phys. of Bact. 3 Ag. Chern. 152 Plant Biochem. 3 Biophya. -· 2 21 · -. · _ 3 Chern. 216 Ion Exch. & G.L.c. 3 A·. s. 144 An. Food Prod. · 3 Ag. ·Chern. 291 Seminar Ag·. Chern. _290 Seminar Dissertation 6 Dissertation ...L 15 12 5th sE!tnester 'Crs. 6th Semester Crs. Stat. lll Stat. Methods 3 Stat. 112 Stat. Methods in 3 in Research Research " . Ag. Chern. 291 Seminar Ag. Chern. 291 Seminar Biochem. 302 Enzymes 3 F&N 202 Adv. Exp. Foods 3 Dissertation 6 Diss·ertation 6 12 12 *It is expected that the thesis proposal and introductory and exploratory research will commence during the 1st year • • Gerontology; Add (ne1v): Psy6h. · 182, The psycho aspects of th ging proces Age changes in motiva on, valu.es, and fun ional effici The . psychopa ology of old age. · ec. 3) Psych. , Psych. 32 desirab Sem. I, 3 cr. The physio­ ng. The major social _mpact of si .ficant social trends. hi~ course, togei r with Psych gy 182, Aging and the Individual, cons utes a seque e in Gerontology (Lee. 3) :Prerequisite: c. 1; Soc. 79 esirable. - 4 - u'N'Jvi£RSITY OF RHODE ISLAND • KINGSTON, RHODE ISLAND 02881 ' Office of the President April 26, 1967 Professor William R~ Ferrante Chairman, Faculty Senate Wales Hall, Campus Dear Bill: This is to iildicate that after a very iilteresting, although somewhat stormy sessiP_N· ~ ~~tf.
Recommended publications
  • Biochemistry
    BIOCHEMISTRY Fig. 1. Agricultural Chem- istry Building from the southeast, just visible at the left of the picture is the 1939 addition. [series 9/3 Biochemistry, x25-6365] Biochemistry was built to alleviate the severe crowding in agriculture hall in 1912. It was added to in 1939, 1957 and 1984. A further addition is planned for 1996. The building is significant for a number of brilliant scientists ( including Babcock, Elvehjem, Steenbock, Link and De Luca) who worked there. The building was placed on the National Register of Historic Places in 1985. y 1910 agriculture hall was on the path previously followed by science hall, that of spawning myriad disciplines and departments needing space and special accommodations outside the Bparent building. Agricultural engineering, horticulture, plant pathology and agronomy, had already left their cradles in Agriculture Hall and moved into specialized facilities nearby. In his report to the regents in 1909-1910, president Van Hise says: "A consideration of the laboratory space in the central agriculture hall leads Dean Russell to conclude that agricultural chemistry and bacteriology cannot possibly be accommodated for three years longer."1 Dean Russell's report (written in October 1910) shows the magnitude of the space problem. In Agriculture Hall for agricultural chemistry and bacteriology there was lab space for 30 students and locker space for 83 for courses which the sophomore class was required to take. Advanced work had facilities for only four or five. Russell proposed the construction of a fireproof central unit for agri- cultural chemistry, to contain offices, classrooms, a large (350-400 seat) auditorium, and a laboratory wing with space for at least 150 students at a time, and including space for special work and research labs.
    [Show full text]
  • Chemistry & Medicinal Chemistry
    2nd Global Expert Meeting on Chemistry & Medicinal Chemistry April 22-23, 2020 Tokyo, Japan Hosting Organization: Pulsus Group 40 Bloomsbury Way | Lower Ground Floor London, United Kingdom | WC1A 2SE | Tel: +1-408-429-2646 https://chemistry.cmesociety.com Invitation Pulsus Group is glad to announce, 2nd Global Expert Meeting on Chemistry & Medicinal Chemistry (Chemistry 2020) which is going to be held during April 22-23, 2020 at Tokyo, Japan, organized around the theme “Innovation and upgradation in the field of Chemistry and Medicinal Chemistry”. As with all past congresses, Chemistry 2020 fosters collaborations among chemical scientists to improve the quality of life throughout the world. Our outstanding technical program truly represents collaborations among scientists from at least three different countries. The result of such collaborations can only bring improvements in technical development and a better quality of life for all people. Regards Deion sanders Chemistry 2020 Organizing Committee Conference Highlights • Advanced Organic & Inorganic Chemistry • Supramolecular Chemistry • Analytical Chemistry • Marine & Geo Chemistry • Applied Chemistry • Industrial Chemistry • Agricultural Chemistry • Materials Chemistry • Biochemistry • Natural Product Chemistry • Organic and Bio-organic Chemistry • Pharmaceutical Chemistry • Chemical Engineering • Physical Chemistry • Computational Chemistry • Polymer Chemistry • Electrochemistry • Nuclear Chemistry • Green and Sustainable ChemistryPULSUS• Theoretical Chemistry About PULSUS Pulsus
    [Show full text]
  • Fall-2020-Print-Axia
    INSIDE THIS SPECIAL FALL 2020 Contents EDITION OF ACS AXIAL axial.acs.org deeper ACS PUBLICATIONS SHANGHAITECH UNIVERSITY NEW ENVIRONMENTAL SCIENCE & WHAT CHEMISTS NEED LAUNCHESdive NEW JOURNALS PARTNERS WITH ACS PUBLICATIONS TO TECHNOLOGY JOURNALS TO KNOW ABOUT Explore the ResearchFOCUSED behind ON theFOOD 2020 AND Journal Citation Reports® LAUNCH ACCOUNTS OF MATERIALS NAME EDITORS AND MACHINE LEARNING AGRICULTURAL CHEMISTRY RESEARCH OPEN FOR SUBMISSIONS The 2020 Journal Citation Reports® (JCR) show the vital role ACS Publications journals play in publishing important, highly cited research. Thanks to the dedication and brilliance of our authors and reviewers, 89% of ACS journals have an Impact Factor greater than 3 this year. Browse this year’s JCR figures, which are based on citations from 2018 to 2019: EXPLORE THE RESEARCH HOW ACS IS SUPPORTING THE LEARN HOW ACS SUPPORTS SCIMEETINGS: PRESENT YOUR RESEARCH BEHIND THE 2020 JOURNAL CHEMISTRY COMMUNITY DURING THE OPEN SCIENCE BEYOND THE ACS FALL 2020 VIRTUAL CITATION REPORTS® COVID-19 PANDEMIC MEETING & EXPO Impact Factor 20.832 Impact Factor 4.473 Impact Factor Impact Factor 4.152 8.758 Impact Factor Impact Factor 4.486 Impact Factor 12.685 12.350 Impact Factor 4.434 Impact Factor Impact Factor 3.381 19.003 Impact Factor 3.418 Impact Factor Impact Factor 3.975 Impact Factor 4.614 6.042 Impact Factor Impact Factor Impact Factor 7.333 14.588 6.864 Impact Factor 2.870 Impact Factor Impact Factor 6.785 4.411 Impact Factor 7.632 Impact Factor 6.092 Impact Factor 2.865 Impact Factor 4.031 pubs.acs.org/acsagscitech ACS PUBLICATIONS LAUNCHES NEW JOURNALS FOCUSED ON FOOD AND AGRICULTURAL CHEMISTRY ournal of Agricultural and Food Chemistry Technical University of Munich and the chair of is growing into a family of journals with the Food Chemistry and Molecular Sensors.
    [Show full text]
  • Sturm Und Dung: Justus Von Liebig and the Chemistry of Agriculture
    Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture Pat Munday, Montana Tech, Butte, Montana 59701-8997, USA In August of 1990, I completed a PhD dissertadon titled "Sturm und Dung: Justus von Liebig and the Chemistry of Agriculture"1 as a graduate Student with the Program in the History and Philosophy of Science and Technology at Comell University. In this work, I tried to utilize the historical tools I had lear- ned from the members my doctoral committee, Chaired by Professor Dr. L. Pearce Williams; the other two members of my committee were Professor Dr. Isabel V. Hüll and Professor Dr. Margaret W. Rossiter. Briefly, these tools included: a thorough mastery of the secondary literature; utilizadon of primary and manuscript sources, especially manuscript sources neglected by previous historians; and "a radical cridque of central institudons and sacred cows" achieved, in part, through "focussing on eccentricity and contradiction. "2 As mentors for my life and models3 for my work, I thank Professors Williams, Hüll, and Rossiter, and apologize for my shortcomings as their Student. I have published a few articles cannibalized from my dissertadon.4 Since I now am fortunate enough to work with an insdtudon that emphasizes teaching over the publication of obscure books, I have never been pressured to publish my dissertadon as such. Based on my correspondence and rare attendance at Pro- fessional meetings, I thought my work on Liebig had been received lukewannly at best. It therefore came as a great surprise when, because of my dissertadon, I received one of the two 1994 Liebig-Wöhler-Freundschafts Preise sponsored by Wilhelm Lewicki and awarded by the Göttinger Chemische Gesellschaft.
    [Show full text]
  • Chemical Innovation in Plant Nutrition in a Historical Continuum from Ancient Greece and Rome Until Modern Times
    DOI: 10.1515/cdem-2016-0002 CHEM DIDACT ECOL METROL. 2016;21(1-2):29-43 Jacek ANTONKIEWICZ 1* and Jan ŁAB ĘTOWICZ 2 CHEMICAL INNOVATION IN PLANT NUTRITION IN A HISTORICAL CONTINUUM FROM ANCIENT GREECE AND ROME UNTIL MODERN TIMES INNOWACJE CHEMICZNE W OD ŻYWIANIU RO ŚLIN OD STARO ŻYTNEJ GRECJI I RZYMU PO CZASY NAJNOWSZE Abstract: This monograph aims to present how arduously views on plant nutrition shaped over centuries and how the foundation of environmental knowledge concerning these issues was created. This publication also presents current problems and trends in studies concerning plant nutrition, showing their new dimension. This new dimension is determined, on one hand, by the need to feed the world population increasing in geometric progression, and on the other hand by growing environmental problems connected with intensification of agricultural production. Keywords: chemical innovations, plant nutrition Introduction Plant nutrition has been of great interest since time immemorial, at first among philosophers, and later among researchers. The history of environmental discoveries concerning the way plants feed is full of misconceptions and incorrect theories. Learning about the multi-generational effort to find an explanation for this process that is fundamental for agriculture shows us the tenacity and ingenuity of many outstanding personalities and scientists of that time. It also allows for general reflection which shows that present-day knowledge (which often seems obvious and simple) is the fruit of a great collective effort of science. Antiquity Already in ancient Greece people were interested in life processes of plants, the way they feed, and in the conditions that facilitate or inhibit their growth.
    [Show full text]
  • Environmental Chemistry for a Sustainable World
    Environmental Chemistry for a Sustainable World Volume 10 Series editors Eric Lichtfouse, INRA, UMR1347 Agroe´cologie, Dijon, France Jan Schwarzbauer, RWTH Aachen University, Aachen, Germany Didier Robert, CNRS, European Laboratory for Catalysis and Surface Sciences, Saint-Avold, France Other Publications by the Editors Books Scientific Writing for Impact Factor Journals https://www.novapublishers.com/catalog/product_info.php?products_id=42242 http://fr.slideshare.net/lichtfouse/scientific-writing-for-impact-factor-journals Environmental Chemistry http://www.springer.com/978-3-540-22860-8 Organic Contaminants in Riverine and Groundwater Systems http://www.springer.com/978-3-540-31169-0 Sustainable Agriculture Volume 1: http://www.springer.com/978-90-481-2665-1 Volume 2: http://www.springer.com/978-94-007-0393-3 Book series Environmental Chemistry for a Sustainable World http://www.springer.com/series/11480 Sustainable Agriculture Reviews http://www.springer.com/series/8380 Journals Environmental Chemistry Letters http://www.springer.com/10311 Agronomy for Sustainable Development http://www.springer.com/13593 Publier La Science https://listes.inra.fr/sympa/d_read/veillecaps (in French and English) More information about this series at http://www.springer.com/series/11480 Jayanta K. Saha • Rajendiran Selladurai M. Vassanda Coumar • M.L. Dotaniya Samaresh Kundu • Ashok K. Patra Soil Pollution - An Emerging Threat to Agriculture Jayanta K. Saha Rajendiran Selladurai Division of Environmental Soil Science Division of Environmental Soil Science Indian Institute of Soil Science Indian Institute of Soil Science Bhopal, Madhya Pradesh Bhopal, Madhya Pradesh India India M. Vassanda Coumar M.L. Dotaniya Division of Environmental Soil Science Division of Environmental Soil Science Indian Institute of Soil Science Indian Institute of Soil Science Bhopal, Madhya Pradesh Bhopal, Madhya Pradesh India India Samaresh Kundu Ashok K.
    [Show full text]
  • Marald, Erland. "Everything Circulates: Agricultural Chemistry and Recycling Theories in the Second Half of the Nineteenth Century." Environment and History 8, No
    The White Horse Press Full citation: Marald, Erland. "Everything Circulates: Agricultural Chemistry and Recycling Theories in the Second Half of the Nineteenth Century." Environment and History 8, no. 1 (February 2002): 65–84. http://www.environmentandsociety.org/node/3111. Rights: All rights reserved. © The White Horse Press 2002. Except for the quotation of short passages for the purpose of criticism or review, no part of this article may be reprinted or reproduced or utilised in any form or by any electronic, mechanical or other means, including photocopying or recording, or in any information storage or retrieval system, without permission from the publishers. For further information please see http://www.whpress.co.uk. Everything Circulates: Agricultural Chemistry and Recycling Theories in the Second Half of the Nineteenth Century ERLAND MÅRALD Department of Historical Studies, Umeå University S-901 87 Umeå, Sweden Email: [email protected] ABSTRACT This paper analyses the arguments in favour of recycling put forth by agricultural chemists in the mid nineteenth century. In this context the study emphasises how agricultural chemical theories, mainly developed by Justus Liebig, were con- nected to larger issues outside the scientific domain. The study also investigates how agricultural chemists argued for different kinds if recycling systems in a more practical way. By way of conclusion, some reasons for the ultimate abandonment of the recycling discourse at the end of the nineteenth century will be discussed. KEY WORDS Justus Liebig, agricultural chemistry, chemico-theology, recycling, sewage, Alexander Müller, nineteenth century Paris casts twenty-five millions yearly into the water. And this without meta- phors.
    [Show full text]
  • Biochemistry & Pharmacology
    Biochemistry & Pharmacology Past Conference Report Past Conference Report of 12th World Congress on Chemistry and Medicinal Chemistry Milanese Chiara • Physical Chemistry & Theoretical Chemistry Past conference report • Mass Spectroscopy & Chromatography We would like to thank all of our magnificent keynotes, speakers, conference attendees, students, associations, media • Nano science & Material Chemistry partners and guests for making Chemistry 2020 a successful • Analytical and Bio analytical Chemistry and splendid event. • Food Chemistry & Agricultural Chemistry Allied Academies hosted an event of “10th World Congress on Chemistry and Medicinal Chemistry” on February 28-29, • Environmental & Green Chemistry 2020 at Rome, Italy with the theme “Role of Chemistry and Medicinal Chemistry in the Global Challenges to come”. • Oil and Petroleum Chemistry Benevolent response and active participation was received The conference proceedings were carried out through various from the Editorial Board Members of supporting International Scientific-sessions and plenary lectures. The conference was Journals as well as from the leading academic scientists, embarked with an opening ceremony followed by a series of researchers, research scholars, students and leaders from the lectures delivered by both Honourable Guests and members of field of Chemistry who made this event successful. the Keynote forum. The adepts who promulgated the theme The conference was marked by the attendance of young and with their exquisite talk were brilliant researchers, business
    [Show full text]
  • Environmental Performance of Agricultural Chemistry: the Role of FIFRA
    Staff Paper #228 September 1992 Environmental Performance of Agricultural Chemistry: The Role of FIFRA Robert D. Weaver Staff papers are circulated without formal review by the Agricultural Economics and Rural Sociology Department. Content is the sole responsibility of the authors. The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. The Pennsylvania State University does not discriminate against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, or veteran status. Direct all affirmative action inquiries to the Affirmative Action Office, The Pennsylvania State University, 201 Willard Building, University Park, PA 16802-2801. WAITE MEMORIAL BOOK COLLECTION DEPT. OF AG. AND APPLIED ECONOMICS 1994 BUFORD AVE. • 232 COS UNIVERSITY OF MINNESOTA ST. PAUL. MN 55108 U.S.A. 37f?, 7t.//7 () 3V(; Environmental Performance of Agricultural Chemistry: ;2,;zf The Role of FIFRA Introduction By any definition, regulation of economic activity constrains and directs that activity toward chosen goals. As an alternative, tinkering with market incentives can also redirect economic activity by redefining what is profitable. Either approach incurs indirect costs in both the short- and long-run. As has become increasingly apparent in many of the world's economies, these costs may be substantial. As profitability is redefined, the mix of the supply of goods from current technologies will shift, redefining employment of labor and other resources as well as the incomes and returns to those inputs and technologies.
    [Show full text]
  • Department of Agricultural Chemistry BAU, Mymensingh
    Department of Agricultural Chemistry BAU, Mymensingh COURSE PROFILE OF COURSES OFFERED BY THE DEPARTMENT OF AGRICULTURAL CHEMISTRY For the degree of B.Sc. Ag. (Hons.) Course Schedule: Level Semester Course No. & Title Credit hour 1 1 ACHEM 1101: Agroanalytical, Physical and Organic Chemistry (T) 3 1 1 ACHEM 1102: Agroanalytical, Physical and Organic Chemistry (P) 2 2 2 ACHEM 2201: Agroindustrial and Nuclear Chemistry (T) 2 2 2 ACHEM 2202: Agroindustrial and Nuclear Chemistry (P) 2 3 1 ACHEM 3101: Plant Nutrition, Pesticide and Environmental Chemistry (T) 3 3 1 ACHEM 3102: Plant Nutrition, Pesticide and Environmental Chemistry (P) 2 4 1 *ACHEM 4101: Bioenergy-Principles and Practices (T) 2 4 1 *ACHEM 4102: Bioenergy-Principles and Practices (P) 2 4 2 *ACHEM 4201: Micronutrients in Agriculture (T) 2 4 2 *ACHEM 4202: Micronutrients in Agriculture (P) 2 * Elective Courses 1 Department of Agricultural Chemistry Course Code: ACHEM 1101 Course Title: Agroanalytical, Physical and Organic Chemistry Credit: 3 Contact Hours: 3 Level: 1 Semester: 1 Rationale: This course is designed to impart knowledge and skills on analytical, physical and organic chemistry. Objectives: Provide knowledge on analytical methods to apply in different fields of agriculture. Acquaint students with theoretical and applied knowledge on physical and organic chemistry. Explain the chemistry, extraction, isolation and purification technologies of natural products. Intended Learning Outcomes (ILOs): 1. Describe solubility products and chemical equilibrium, and solve electrochemical problems. 2. Explain pH, EC, buffer solutions, units of concentration and standard solutions. 3. List properties of solution and colloids, and solve relevant problems. 4. Describe volumetric methods for analysis.
    [Show full text]
  • What Can I Do with My Chemistry/Biochemistry Degree?
    WHAT CAN I DO WITH MY CHEMISTRY/BIOCHEMISTRY DEGREE? Using the Major Sheet: • Large headings indicate industry area and subheadings indicate employers within that area. • Use the titles to search for careers and related careers in order to explore your options within different areas of industry. Note that some career titles have multiple names for similar positions. • An asterisk (*) notes that additional training (certification, graduate school, high level of experience) may be needed in order to obtain this career. Make sure to thoroughly research career pathways. RESEARCH / MANUFACTURING Pharmaceutical Co., Government/University Labs, Biotechnology Firms, Agricultural Chemical Co., Materials/Polymer Development Co., Oil Co., Textile Manufacturers, Food Co. • Lab Research Assistant • Quality Control Technician • Lab Technician • Associate Chemist • Analytical Chemist • Clinical Technician • Research Technician • Fiber Technologist • Drug Application Reviewer • Crime Lab Assistant • Patent Examiner • Petroleum Research Asst. • Product Developer • Biotechnologist • Materials Scientist PUBLISHING / INFORMATION Corp. Libraries, Publishing Co. Technical Division, Chemical Co., Newspapers • Technical Information Specialist • Assistant Editor • Promotions Assistant • Scientific Journalist • Technical Writer • Document Analyst • Indexer of Periodicals • Science Text Sales Rep. • Copy Editor • Medial Reference Editorial Assistant • Abstractor • Researcher • Scientific Illustrator • Information Specialist MARKETING / SALES • Herbicide/Pesticides
    [Show full text]
  • CURRICULUM of AGRICULTURAL CHEMISTRY BS/B.Sc (Hons.)
    CURRICULUM OF AGRICULTURAL CHEMISTRY BS/B.Sc (Hons.) 2010 HIG HER EDUC ATION COMMISSION HIGHER EDUCATION COMMISSION H-9, ISLAMABAD CURRICULUM DIVISION, HEC Dr. Syed Sohail H. Naqvi Executive Director Prof. Dr. Altaf Ali G. Shaikh Member (Acad) Mr. Muhammad Javed Khan Adviser (Academic) Ms. Ghayyur Fatima Director (Curri) Dr. M. Tahir Ali Shah Deputy Director (Curri) Composed by: Mr. Zulfiqar Ali, HEC, Islamabad 2 CONTENTS 1. Introduction 6 2. Standardized Template for BS/BSc (Hons) 10 in Agriculture 3. Scheme of Studies for 4-year 11 BS/BSc (Hons) in Agriculture Chemistry 4. Details of Courses for BS/BSc (Hons) in 13 Agriculture Chemistry 5. Compulsory Courses 35 6. Recommendations 52 3 PREFACE The curriculum of subject is described as a throbbing pulse of a nation. By viewing curriculum one can judge the stage of development and its pace of socio-economic development of a nation. With the advent of new technology, the world has turned into a global village. In view of tremendous research taking place world over new ideas and information pours in like of a stream of fresh water, making it imperative to update the curricula after regular intervals, for introducing latest development and innovation in the relevant field of knowledge. In exercise of the powers conferred under Section 3 Sub-Section 2 (ii) of Act of Parliament No. X of 1976 titled “Supervision of Curricula and Textbooks and Maintenance of Standard of Education” the erstwhile University Grants Commission was designated as competent authority to develop review and revise curricula beyond Class-XII. With the repeal of UGC Act, the same function was assigned to the Higher Education Commission under its Ordinance of 2002 Section 10 Sub-Section 1 (v).
    [Show full text]