Patterns and Predictors of Soil Organic Carbon Storage Across a Continental-Scale Network

Total Page:16

File Type:pdf, Size:1020Kb

Patterns and Predictors of Soil Organic Carbon Storage Across a Continental-Scale Network Biogeochemistry https://doi.org/10.1007/s10533-020-00745-9 (0123456789().,-volV)( 0123456789().,-volV) Patterns and predictors of soil organic carbon storage across a continental-scale network L. E. Nave . M. Bowman . A. Gallo . J. A. Hatten . K. A. Heckman . L. Matosziuk . A. R. Possinger . M. SanClements . J. Sanderman . B. D. Strahm . T. L. Weiglein . C. W. Swanston Received: 20 May 2020 / Accepted: 7 December 2020 Ó The Author(s) 2021 Abstract The rarity of rapid campaigns to charac- the other sampled dozens of pedons across the terize soils across scales limits opportunities to landscape at each site. We demonstrate some consis- investigate variation in soil carbon stocks (SOC) tencies between these distinct designs, while also storage simultaneously at large and small scales, with revealing that within-site replication reveals patterns and without site-level replication. We used data from and predictors of SOC stocks not detectable with non- two complementary campaigns at 40 sites in the replicated designs. Both designs demonstrate that United States across the National Ecological Obser- SOC stocks of whole soil profiles vary across conti- vatory Network (NEON), in which one campaign nental-scale climate gradients. However, broad cli- sampled profiles from closely co-located intensive mate patterns may mask the importance of localized plots and physically composited similar horizons, and variation in soil physicochemical properties, as cap- tured by within-site sampling, especially for SOC stocks of discrete genetic horizons. Within-site repli- To be submitted to Biogeochemistry (special issue ‘‘Multi- scale controls on soil organic matter: leveraging networks, cation also reveals examples in which expectations synthesis, and long-term studies’’). based on readily explained continental-scale patterns do not hold. For example, even wide-ranging drainage Responsible Editor: William R. Wieder. class sequences within landscapes do not duplicate the clear differences in profile SOC stocks across drainage Supplementary Information The online version contains classes at the continental scale, and physicochemical supplementary material available at https://doi.org/10.1007/ s10533-020-00745-9. L. E. Nave (&) A. Gallo Á J. A. Hatten Á L. Matosziuk Biological Station, University of Michigan, Pellston, Forest Engineering, Resources and Management, Oregon MI 49769, USA State University, Corvallis, OR 97331, USA e-mail: [email protected] K. A. Heckman Á C. W. Swanston L. E. Nave Northern Research Station, USDA-Forest Service, Department of Ecology and Evolutionary Biology, Houghton, MI 9931, USA University of Michigan, Ann Arbor, MI 48109, USA A. R. Possinger Á B. D. Strahm Á T. L. Weiglein M. Bowman Á M. SanClements Department of Forest Resources and Environmental Environmental Studies Program, University of Colorado Conservation, Virginia Tech, Blacksburg, Boulder, Boulder, CO 80301, USA VA 24061, USA 123 Biogeochemistry factors associated with increasing B horizon SOC part of the spectrum of spatial scales (e.g., Davidson stocks at continental scales frequently do not follow 1995; Goidts et al. 2009; Huang et al. 2017; Minasny the same patterns within landscapes. Because infer- et al. 2013; Mishra et al. 2010; Patton et al. 2019a; ences from SOC studies are a product of their context Paustian et al. 1997; Schimel et al. 1994; Thompson (where, when, how), this study provides context—in and Kolka 2005; Wynn et al. 2006). The ability to terms of SOC stocks and the factors that influence make inferences across the full range of spatial scales them—for others assessing soils and the C cycle at from global to landscape has largely derived from NEON sites. reviews of this literature, such as Wiesmeier et al. (2019, and references therein), and from multi-site Keywords Soil carbon stocks Á Pedogenesis Á inventories or large data syntheses that have used Climate Á Land use Á Parent material Á National extensively (but not intensively) distributed observa- ecological observatory network tions to assess patterns at regional or larger scales (e.g., Doetterl et al. 2016; Cotrufo et al. 2019). In the context of these approaches to addressing SOC stocks and predictors as a function of scale, large networks Introduction that allow for investigation of patterns across and within sites have much to add, especially when such Most of the factors related to spatial variation in soil networks are sampled expeditiously and according to organic carbon (SOC) stocks have been known for common protocols. some time, as has the reality that their relative Studies that explore processes of SOC and soil influences vary across scales (Wiesmeier et al. organic matter (SOM) stabilization report mechanisms 2019). From molecular structures and particle sizes that may relate to patterns of SOC storage. This factors at pore to ped scales (Sollins et al. 2006; von literature has particularly focused on soil physico- Lutzow et al. 2006), to topography and moisture at chemical and biogeochemical mechanisms promoting pedon to landscape scales (Doetterl et al. 2016; SOC stability, such as physical protection, mineral or Adhikari et al. 2020), to climate and vegetation at metal association, and molecular complexity (Crow regional to global scales (Jobbagy and Jackson 2000; et al. 2007; Kallenbach et al. 2016; Kramer and Post et al. 1982), a large body of research readily Chadwick 2018; Mao et al. 2000; Preston and Schmidt explains why SOC varies so remarkably from place to 2006; Sollins et al. 2006; Six et al. 2002; von Lutzow place. The strongest studies also acknowledge that et al. 2006). These and other studies have specifically soils are dynamic through time, unique at sites and pointed to extractable metals (e.g., Fe, Al), exchange- scales that cannot be captured by even strong gener- able base cations (e.g., Ca, Mg), and soil fine fraction alizations, and therefore conclude that further inves- contents (especially clays) as having controlling tigations into factors influencing SOC storage will influence over the stability of SOC (Chen et al. continue to refine our understanding of how much is 2019; Heckman et al. 2018a, b; Lawrence et al. 2015; present, where, and why. Rasmussen et al. 2018). If these processes and In the body of research exploring patterns and mechanisms that confer SOM persistence also result predictors of variation in SOC storage, a vast number in larger quantities of SOC being present at a point in of studies have reported factors influencing SOC for time, they may provide a foundation for hypotheses addressing physicochemical predictors of variation in M. SanClements SOC stocks at varying scales. INSTAAR University of Colorado Boulder, Boulder, The literature on pedogenesis and soil taxonomy CO 80303, USA also offers a strong foundation for assessments of SOC M. SanClements patterns and predictors at distinct scales. Genetic soil National Ecological Observatory Network, Boulder, taxonomy uses morphologic and physicochemical CO 80301, USA properties to infer processes of soil formation, many of which involve gains, losses, transfers and transfor- J. Sanderman Woods Hole Research Center, Falmouth, mations of materials which are dominantly comprised MA 02540, USA of, or critically affected by C (Marbut 1921; Simonson 123 Biogeochemistry 1959). In light of the many interacting processes and Ecological Observatory Network (NEON); as such it factors in soils, all of which vary continuously, genetic is intended to provide context for studies at and across soil taxonomy provides a structure for managing this NEON sites, and to test hypotheses related to SOC complexity, creating categorical groups that reflect stocks and their variation as influenced by scale and fundamental differences between soils. This categor- study design. Data for testing these hypotheses derive ical system is also hierarchical, integrating broad from two complementary campaigns, in which one distal (e.g., climatic) and local proximal factors (e.g., sampled profiles from closely adjacent intensive plots physicochemical properties) at steadily increasing and physically composited similar horizons, and the resolution, to describe soils ultimately as unique other sampled dozens of pedons across the landscape bodies, which often differ in SOC stocks (Wills et al. at each site. Owing to the differing levels of replication 2013). As soils are inherently multi-factor, these distal of these two campaigns, they afford opportunities to and proximal factors are not completely independent assess SOC stocks across the entire network and of each other. Nonetheless, this pedogenic framework within sites, i.e., at continental and landscape scales. provides structure for a conceptual model (Fig. 1) that Our (6) hypotheses, enumerated below, are informed can be applied at any number of scales. In this model, by literature reporting predictors of SOC storage distal and proximal controls mediate each other, with across scales, and by the SOM stabilization literature, distal controls dominant in extreme climates (frozen, though it is important to note that they address SOC saturated, or arid conditions) and proximal controls stocks in terms of patterns, not stabilization as a becoming more important in the mesic, temperate mechanistic process. (1) Regarding whole soil pro- middle, and within landscapes where climatic varia- files, we hypothesized that the two designs reveal the tion is narrower. same continental-scale patterns and sources of varia- The present study is based upon this conceptual tion in terms
Recommended publications
  • Dynamics of Carbon 14 in Soils: a Review C
    Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere.
    [Show full text]
  • Soil Carbon Science for Policy and Practice Soil-Based Initiatives to Mitigate Climate Change and Restore Soil Fertility Both Rely on Rebuilding Soil Organic Carbon
    comment Soil carbon science for policy and practice Soil-based initiatives to mitigate climate change and restore soil fertility both rely on rebuilding soil organic carbon. Controversy about the role soils might play in climate change mitigation is, consequently, undermining actions to restore soils for improved agricultural and environmental outcomes. Mark A. Bradford, Chelsea J. Carey, Lesley Atwood, Deborah Bossio, Eli P. Fenichel, Sasha Gennet, Joseph Fargione, Jonathan R. B. Fisher, Emma Fuller, Daniel A. Kane, Johannes Lehmann, Emily E. Oldfeld, Elsa M. Ordway, Joseph Rudek, Jonathan Sanderman and Stephen A. Wood e argue there is scientific forestry, soil carbon losses via erosion and carbon, vary markedly within a field. Even consensus on the need to decomposition have generally exceeded within seemingly homogenous fields, a Wrebuild soil organic carbon formation rates of soil carbon from plant high spatial density of soil observations is (hereafter, ‘soil carbon’) for sustainable land inputs. Losses associated with these land therefore required to detect the incremental stewardship. Soil carbon concentrations and uses are substantive globally, with a mean ‘signal’ of management effects on soil carbon stocks have been reduced in agricultural estimate to 2-m depth of 133 Pg carbon8, from the local ‘noise’11. Given the time soils following long-term use of practices equivalent to ~63 ppm atmospheric CO2. and expense of acquiring a high density of such as intensive tillage and overgrazing. Losses vary spatially by type and duration observations, most current soil sampling is Adoption of practices such as cover crops of land use, as well as biophysical conditions too limited to reliably quantify management and silvopasture can protect and rebuild such as soil texture, mineralogy, plant effects at field scales9,10.
    [Show full text]
  • Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
    Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund.
    [Show full text]
  • Measuring Soil Carbon Change
    Measuring soil carbon change Peter Donovan version: October 2013 This guide can be freely copied and adapted, with attribution, no commercial use, and derivative works similarly licensed. Contents What this guide is about, and how to use it iv 1 The work of the biosphere 1 1.1 Technology . 1 1.2 The carbon cycle . 2 1.3 Let, not make . 3 1.4 Monitoring: a strategic and creative choice . 4 2 Measuring soil carbon 7 2.1 Purpose, result, and uncertainty . 7 2.2 Change . 9 2.3 Organic and inorganic soil carbon . 11 2.4 Laboratory tests . 12 2.5 Getting started . 14 3 Site selection and sampling design 15 3.1 Mapping your site . 15 3.2 Stratification . 15 3.3 Locating plots . 17 3.4 Sampling tools . 17 3.5 Sampling intensity within the plot . 17 4 Sampling and field procedures 20 4.1 Lay out a transect and mark the plot center . 20 4.2 Soil surface observations . 23 4.3 Lay out the plot . 23 4.4 Use probe to take samples . 24 4.5 Soils with abundant rocks, gravel, or coarse fragments . 24 4.6 Characterize the soil . 25 4.7 Bag the sample . 26 4.8 Going deeper . 26 4.9 Sampling for bulk density . 27 4.10 Resampling . 29 4.11 Correcting for changes in bulk density . 29 ii 5 Getting your samples analyzed 31 5.1 Sample preparation . 31 5.2 Storing samples . 32 5.3 Split sampling to test your lab . 32 5.4 U.S. labs that do elemental analysis or dry combustion test .
    [Show full text]
  • Age of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynamics
    April 2000 BELOWGROUND PROCESSES AND GLOBAL CHANGE 399 Ecological Applications, 10(2), 2000, pp. 399±411 q 2000 by the Ecological Society of America AGE OF SOIL ORGANIC MATTER AND SOIL RESPIRATION: RADIOCARBON CONSTRAINTS ON BELOWGROUND C DYNAMICS SUSAN TRUMBORE Department of Earth System Science, University of California, Irvine, California 92697-3100 USA Abstract. Radiocarbon data from soil organic matter and soil respiration provide pow- erful constraints for determining carbon dynamics and thereby the magnitude and timing of soil carbon response to global change. In this paper, data from three sites representing well-drained soils in boreal, temperate, and tropical forests are used to illustrate the methods for using radiocarbon to determine the turnover times of soil organic matter and to partition soil respiration. For these sites, the average age of bulk carbon in detrital and Oh/A-horizon organic carbon ranges from 200 to 1200 yr. In each case, this mass-weighted average includes components such as relatively undecomposed leaf, root, and moss litter with much shorter turnover times, and humi®ed or mineral-associated organic matter with much longer turnover times. The average age of carbon in organic matter is greater than the average age predicted for CO2 produced by its decomposition (30, 8, and 3 yr for boreal, temperate, and tropical soil), or measured in total soil respiration (16, 3, and 1 yr). Most of the CO2 produced during decomposition is derived from relatively short-lived soil organic matter (SOM) components that do not represent a large component of the standing stock of soil organic matter. Estimates of soil carbon turnover obtained by dividing C stocks by hetero- trophic respiration ¯uxes, or from radiocarbon measurements of bulk SOM, are biased to longer time scales of C cycling.
    [Show full text]
  • Interpreting, Measuring, and Modeling Soil Respiration
    Biogeochemistry (2005) 73: 3–27 Ó Springer 2005 DOI 10.1007/s10533-004-5167-7 -1 Interpreting, measuring, and modeling soil respiration MICHAEL G. RYAN1,2,* and BEVERLY E. LAW3 1US Department of Agriculture-Forest Service, Rocky Mountain Research Station, 240 West Pros- pect Street, Fort Collins, CO 80526, USA; 2Affiliate Faculty, Department of Forest, Rangeland and Watershed Stewardship and Graduate Degree Program in Ecology, Colorado State University Fort Collins, CO 80523, USA; 3Department of Forest Science, Oregon State University, 328 Richardson Hall, Corvallis, OR 97331, USA; *Author for correspondence (e-mail: [email protected]) Key words: Belowground carbon allocation, Carbon cycling, Carbon dioxide, CO2, Infrared gas analyzers, Methods, Soil carbon, Terrestrial ecosystems Abstract. This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of ecosystem respiration. Because autotrophic and heterotrophic activity belowground is controlled by substrate availability, soil respiration is strongly linked to plant metabolism, photosynthesis and litterfall. This link dominates both base rates and short-term fluctuations in soil respiration and suggests many roles for soil respiration as an indicator of ecosystem metabolism. However, the strong links between above and belowground processes complicate using soil respiration to understand changes in ecosystem carbon storage. Root and associated mycorrhizal respiration produce roughly half of soil respiration, with much of the remainder derived from decomposition of recently produced root and leaf litter.
    [Show full text]
  • Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems Guidelines for Assessment
    http://www.fao.org/partnerships/leap VERSION 1 Measuring and modelling soil carbon stocks and stock changes in livestock production systems Guidelines for assessment CA000EN/0/00.19 VERSION 1 Measuring and modelling soil carbon stocks and stock changes in livestock production systems Guidelines for assessment FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2019 Recommended Citation FAO. 2019. Measuring and modelling soil carbon stocks and stock changes in livestock production systems: Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome, FAO. 170 pp. Licence: CC BY-NC-SA 3.0 IGO. The LEAP guidelines are subject to continuous updates. Make sure to use the latest version by visiting http://www.fao.org/partnerships/leap/publications/en/ The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-131408-1 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode/legalcode).
    [Show full text]
  • Simulation of Soil Organic Carbon Changes in Vertisols Under Conservation Tillage Using the Rothc Model
    235 Scientia Agricola http://dx.doi.org/10.1590/1678-992X-2015-0487 Simulation of soil organic carbon changes in Vertisols under conservation tillage using the RothC model Lucila González Molina1*, Esaú del C. Moreno Pérez2, Aurelio Baéz Pérez3 1National Institute of Forestry, Agriculture and Livestock ABSTRACT: The purpose of this study was to determine the measured and simulated rates of Research/Valle de México Experimental Station, km 13,5 soil organic carbon (SOC) change in Vertisols in short-term experiments when the tillage system de la Carretera Los Reyes-Texcoco, C.P. 56250 − Texcoco, is changed from traditional tillage (TT) to conservation tillage (CT). The study was conducted in Estado de México − Mexico. plots in four locations in the state of Michoacán and two locations in the state of Guanajuato. In 2Chapingo Autonomous University, km 38,5 Carretera the SOC change simulation, the RothC-26.3 carbon model was evaluated with different C inputs México-Texcoco, C.P. 56230 − Texcoco, Estado de México to the soil (ET1-ET5). ET was the measured shoot biomass (SB) plus estimated rhizodeposition − Mexico. (RI). RI was tested at values of 10, 15, 18, 36 and 50 % total biomass (TB). The SOC changes 3National Institute of Forestry/Agriculture and Livestock were simulated with the best trial where ET3 = SB + (0.18*TB). Values for model efficiency and Research − Bajío Experimental Station, km 6,5 Carretera the coefficient of correlation were in the ranges of 0.56 to 0.75 and 0.79 to 0.92, respectively. Celaya-San Miguel de Allende, C.P. 38010 − Celaya, The average rate of SOC change, measured and simulated, in the study period was 3.0 and Guanajuato − Mexico.
    [Show full text]
  • Soil Organic Carbon in a Changing World
    Pedosphere 27(5): 789{791, 2017 doi:10.1016/S1002-0160(17)60489-2 ISSN 1002-0160/CN 32-1315/P ⃝c 2017 Soil Science Society of China Published by Elsevier B.V. and Science Press Preface Soil Organic Carbon in a Changing World JIA Zhongjun1, Yakov KUZYAKOV2;3, David MYROLD4 and James TIEDJE5 1State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China). E-mail: [email protected] 2Agro-Technology Institute, RUDN University, Moscow 115419 (Russia). E-mail: [email protected] 3Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino 142290 (Russia) 4Department of Crop and Soil Science, Oregon State University, Corvallis OR 97331 (USA). E-mail: [email protected] 5Center for Microbial Ecology, Michigan State University, East Lansing MI 48824-1325 (USA). E-mail: [email protected] Soil contains more than three times as much carbon like compounds. By characterizing soil organic matter (C) as either the atmosphere or terrestrial vegetation. species using solid-state 13C cross polarization magic Soil organic C (SOC) is essentially derived from in- angle spinning (CPMAS) nuclear magnetic resonance puts of plant and animal residues, which are processed (NMR) (13C CPMAS-NMR) spectroscopy of humic by the microbiota (bacteria, archaea, protists, fungi substances and density-based fractions in a forest eco- and viruses) that dominates SOC transformation and system, Ranatunga et al. observed greater fractions of turnover in complex terrestrial environments. A tiny alkyl C, O-alkyl C, and carbohydrate functional gro- change in the SOC pool would have profound impacts ups in response to burning.
    [Show full text]
  • International Soil Radiocarbon Database (Israd) Version 1.0
    Earth Syst. Sci. Data, 12, 61–76, 2020 https://doi.org/10.5194/essd-12-61-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An open-source database for the synthesis of soil radiocarbon data: International Soil Radiocarbon Database (ISRaD) version 1.0 Corey R. Lawrence1, Jeffrey Beem-Miller2, Alison M. Hoyt2,3, Grey Monroe4, Carlos A. Sierra2, Shane Stoner2, Katherine Heckman5, Joseph C. Blankinship6, Susan E. Crow7, Gavin McNicol8, Susan Trumbore2, Paul A. Levine9, Olga Vindušková8, Katherine Todd-Brown10, Craig Rasmussen6, Caitlin E. Hicks Pries11, Christina Schädel12, Karis McFarlane13, Sebastian Doetterl14, Christine Hatté15, Yujie He9, Claire Treat16, Jennifer W. Harden7,17, Margaret S. Torn3, Cristian Estop-Aragonés18, Asmeret Asefaw Berhe19, Marco Keiluweit20, Ágatha Della Rosa Kuhnen2, Erika Marin-Spiotta21, Alain F. Plante22, Aaron Thompson23, Zheng Shi24, Joshua P. Schimel25, Lydia J. S. Vaughn3,26, Sophie F. von Fromm2, and Rota Wagai27 1US Geological Survey, Geosciences and Environmental Change Science Center, Denver, CO, USA 2Max Planck Institute for Biogeochemistry, Jena, Germany 3Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 4Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA 5US Forest Service Northern Research Station, Houghton, MI, USA 6Department of Environmental Science, University of Arizona, Tucson, AZ, USA 7Department of Natural Resources and Environmental Management, University
    [Show full text]
  • The Soil Story Curricular Guide
    THE SOIL STORY CURRICULUM Rebuilding Healthy Soil for Carbon Cycle Balance Earth’s Systems Photosynthesis Healthy Soil Lead Authors: Whitney Cohen | Education Director, Life Lab Food & Farming Carrie Strohl, PhD | Educational Consultant Taking Action Contributors: Annie Martin | Business Program, Kiss the Ground Arlae Castellanos | Sustainability Tracking Program Manager, Green Schools Alliance Craig Macmillan, PhD | Technical Program Manager, Vinyard Team Didi Pershouse | Director, Learning Resources Don Smith | Storytelling Team, Kiss the Ground Emily Harris, PhD | Research Scientist, BSCS Science Learning Finian Makepeace | Co-Founder, Kiss the Ground Ilana Lowe | 5th Grade Lead Science Teacher, Main Street Elementary Jessica Handy, RDN | Education Program, Kiss the Ground Karen Rodriguez | Former Operations Manager, Kiss the Ground A Middle School Lauren Tucker | Executive Director, Kiss the Ground Curriculum by Leslie Rogers | Director of Education, Atlas Organics Liz Henry | Senior Consultant, Crecer Strategies Markos Major | Director, Climate Action Now Paul Hawken | Author and Environmentalist Designer: Michelle Uyeda | Graphic Designer, Kiss the Ground + Thank you to our sponsors: About 1 THE SOIL STORY CURRICULAR GUIDE The Soil Story Curricular Guide was created through a collaborative partnership between Kiss the Ground and Life Lab. It serves as a supplemental material for teaching middle schoolers Next Generation Science Standards. Kiss the Ground (KTG) is a nonprofit with a mission to inspire participation in the regeneration of the planet, beginning with soil. The organization creates educational curriculum, campaigns, and media to raise awareness and empower individuals to purchase food that supports health soils and a balanced climate. KTG also works with farmers, educators, non government organizations, scientists, students, and policymakers to advocate for regenerative agriculture, raise funds to train farmers, and help brands and businesses to invest in healthy soils.
    [Show full text]
  • Soil Carbon & Biochar
    SOIL CARBON & BIOCHAR WHAT IS SOIL CARBON? Soil carbon sequestration, also known as “carbon farming” or “regenerative agriculture,” includes various ways of managing land, especially farmland, so that soils absorb and hold more carbon. Increasing soil carbon is accomplished in three key ways: (1) switching to low- till or no-till practices; (2) using cover crops and leaving crop residues to decay; and (3) us- ing species or varieties with greater root mass. Double-cropping systems, where a second crop is grown after a food or feed crop, also keep more carbon in the soil. WHAT IS BIOCHAR? Biochar is another way of getting carbon into soils. Biochar is a kind of charcoal created when biomass from crop residues, grass, trees, or other plants is combusted at tempera- tures of 300–600°C without oxygen. This process, known as pyrolysis, enables the carbon in the biomass to resist decay. The biochar is then introduced into soils, where, under cer- tain conditions, it might sequester carbon for many hundreds of years. CO-BENEFITS AND CONCERNS + Improved soil quality: soil carbon − Reversibility: the carbon captured sequestration and biochar help restore via soil carbon sequestration and degraded soils, which can improve biochar can be released if the soils agricultural productivity and help soils are disturbed; societies would need to retain water. maintain appropriate soil management practices indefinitely. − Saturation: soils can only hold a finite amount of carbon; once they are − Difficulty of measurement: monitoring saturated, societies will no longer be and verifying carbon removal, especially able to sequester more carbon using via soil carbon sequestration is currently soil carbon sequestration.
    [Show full text]