Bioassay Screening of the Ethanolic Extract of Tithonia Diversifolia

Total Page:16

File Type:pdf, Size:1020Kb

Bioassay Screening of the Ethanolic Extract of Tithonia Diversifolia INTERNATIONAL JOURNAL OF BIOASSAYS ISSN: 2278-778X CODEN: IJBNHY ORIGINAL RESEARCH ARTICLE OPEN ACCESS Bioassay screening of the ethanolic extract of Tithonia diversifolia leaves on selected microorganisms 1* 2 1 1 Anthoney Swamy T , Jackie Obey K , Miyogo Edwin and Lasiti T. Timothy 1Department of Chemistry, University of Eastern Africa, Baraton, Eldoret, Kenya. 2Departmentof Medical Lab Science, University of Eastern Africa Baraton, Eldoret, Kenya. Received for publication: September 21, 2015; Revised: October 24, 2015; Accepted: October 27, 2015 Abstract: The study was conducted to analyze the antibacterial activity of Tithonia diversifolia leaves. The plant was extracted using Ethanol and water in the ratio 9:1. From the study the plant Tithonia diversifolia was found to inhibit the growth of Staphilococcus epidermidis (36.80mm), Enterobacter aerogenes (31.20mm), Streptococcus α-hemolytic (29.60mm), Bacillus cereus (26.2mm), Escherichia coli (10.40mm) and Streptococcus γ-hemolytic (0.000mm)The data collected and documented in this paper is a scientifically justification that the plant can be used to treat against various diseases caused by Staphilococcus epidermidis and Enterobacter aerogenes. However, further studies need to be done to identify the mode of action of the active compounds in the plant. Key words: Tithonia diversifolia; Antibacterial; Medicinal herbs; Leaves; Ethanol; Aqua. Introduction In continuation with our interest in the study on knowledge have been passed on from generation to medicinal plants (Anthoney et al., 2013; 2014; generation (Adedapo et al., 2005). Even today, a Anthoney et al., 2015; Obey et al., 2014; Obey et al., significant proportion of the populace, particularly 2015), we take up on antibacterial activity of in the developing world depends on herbal ethanolic-aqua extract of Tithonia diversifolia against medicines. This is particularly evident in the rural selected microorganisms. areas where infectious diseases are endemic and modern health care facilities are few and far In an increasing search of new antimicrobial agent between and where the people nurse their ailments to cope with the microbial resistance to antibiotics, back to health using local herbs. scientists are searching from different sources including plants. Plants from different genera and Tithonia diversifolia is significant in phyto-medicine, species were found to have antimicrobial potentials and it is commonly known as Mexican sunflower. which lead to the discovery and development of It is a shrub belonging to the family Asteraceae, new antimicrobials or drugs (Hammer et al., 1999; Order Asterales, genus Tithonia, and species Sharififar et al., 2009; Ilesanmi and Olawoye, 2011). diversifolia with binominal name as Tithonia diversifolia The detection of the antimicrobial properties of a (Hemsl) A. Gray. It is asucculent (scandent) shrub plant indicates that, such plant could be a good 1, 2-3 meters tall, with leaves opposite or alternate. source for the development of antimicrobial agent. Each mature stem may bear several flowers at the From antiquity, nature has been a rich store of top of the branches. The specific name remedies for relief from various ailments affecting “diversifolia” means “separated leaves” from the mankind. Plants, marine organisms and Latin “diversus” (divergent) and folium. microorganisms produce structurally diverse compounds, which are useful as drugs, lead Tithonia originated from Mexico, and it is now structures or raw materials (Adedapo et al., 2005). widely distributed throughout the humid and sub- Plants have been used for thousands of years in humid tropics in Central and South America, Asia traditional medicine. The earliest written records on and Africa (Sonke, 1997), and it is common in Egyptian, Chinese, Indian, Greek and Roman indigenous fallow systems in Southeast Asia (M. traditional medicine have listed medicinal plants Cairns, personal communication). Tithonia was and prescriptions used in treating various ailments. probably introduced into Africa as an ornamental. It has been reported in Kenya (Niang et al., 1996), In Africa, medicinal recipes from plants have been Malawi (Ganunga et al., 1998), Nigeria (Ayeni et al., passed orally from generation to generation 1997), Rwanda (Drechsel and Reck, 1998) and (Adedapo et al., 2005). In resource poor Zimbabwe (Jiri and Waddington, 1998). It is found communities, ignorance to good hygienic practices, in Kenya on road-sides, crop fields and waste areas. poverty coupled with high cost of synthetic drugs and the circulation of drugs of questionable The tradition of plant collection and plant-based qualities and counterfeit pharmaceuticals combine medication has been handed down from generation to worsen the plight of the less privileged, forcing to generation, usually by words of mouth among many to seek for the medicines of their ancestors. many cultures (Gurib-Fakim, 1996). T. diversifolia Herbs have been used as sources of food and has been used in traditional medicine for the medicinal purposes for centuries and this treatment of various ailments (Obafemi, 2006). The *Corresponding Author: Dr. T. Anthoney Swamy, Ph.D Head, Department of Chemistry, University of Eastern Africa, Baraton, P.O. Box 2500, Eldoret, Kenya. 4794 T. Anthoney Swamy et al., International Journal of Bioassays 5.2 (2016): 4794-4798 hot water extract of aerial parts of this plant is used Standardization of microorganisms for the treatment of malaria in Nigeria and other Culture was standardized according to the methods places (Calzada, 1978). An oral decoction of the described by Baker and Thomsberg (1983) and the leaves and stem is used to cure hepatitis in Taiwan National Committee for Clinical Laboratory and gastro-intestinal disorders in Kenya and Standards (NCCLS, 2002). About 0.2 mL of an 18 Thailand (Johns, 1995) Also, the infusion of the hrs old culture of each bacterium was suspended leaves is used for the treatment of measles in into sterile universal bottles containing 20 ml Cameroon (Kamden, 1986). A decoction of the nutrient broth and incubated for 5 hrs at 37°C to flowers is used for the treatment of skin eczema obtain a logarithm growth phase. Normal saline (Gurib-Fakim, 1996). Extracts of the various parts was gradually added so as to compare its turbidity of the plant have been reported to exhibit anti- to McFarland Standard of 0.5 which corresponds malaria (Madureira, 2002), anti-inflammatory to approximately 1.0 × 108 CFU/mL. (Rungeler, 1998), anti-proliferation (Victor, 2004) insecticidal (Mata-Greenwood, 2002) and anti- Preparation of the extract concentration and bacterial (Hongsbhanich, 1999) activities. Some antibiotic researchers (Bork, 1996) reported its cancer growth Stock solutions of the extracts were prepared by inhibitory property. It has been reported also that dissolving 500mg in 1ml of dimethylsulfoxide T. diversifolia improves glucose metabolism by (DMSO). A serial double dilution was prepared for reducing insulin resistance and so may be useful for each extract to obtain 500mg/ml, 250mg/ml, the treatment of Type II diabetes (Miura, 2005). It 125mg/ml, 62.5mg/ml,31.25mg/ml, 15.63mg/ml, remains a fact that much work has been done with 7.81mg/ml, 3.91mg/ml, and 1.95mg/ml the extract from T. diversifolia and a lot of its respectively. An antibiotic control was made by medicinal importance has been over emphasized. dissolving 1µg of positive control in 1ml of sterile In the race to meet the millennium development distilled water. DMSO served as a negative control. goals, combat increasing drug resistance, tackle emergence of new diseases and high cost of Susceptibility testing of bacteria species orthodox medicine, traditional medicine is Susceptibility was determined using the Agar cup successfully making a rapid scientific come back diffusion technique. (Adeniyi et al., 2004) A 0.1 mL globally. aliquot of logarithmic phase broth culture of each bacterium (optical density equivalent to 107-108 The present study was carried out to evaluate the CFU/mL) was used to seed sterile molten Mueller- antibacterial activity of ethanolic extract of Tithonia Hinton agar (Oxoid) medium. The seeded plates diversifolia leaves against selected pathogenic were allowed to dry in the dryer for 20 min. A organisms. standard cork borer (6 mm diameter) was used to cut uniform wells on the surface of the agar, into Materials and Methods which was added increasing concentrations of Extraction procedures reconstituted test extract. A pre-incubation The fresh leaves of Tithonia diversifolia were air-dried diffusion of the extracts into the seeded medium at room temperature and reduced to powdery form was allowed for 1 hr. Bacteria plates were incubated using a laboratory mortar and pestle, a modification at 37°C in an incubator for 18-24 hours after which of Victor et al (Miura, 2002) technique. One diameters of zones of inhibition (mm) were hundred and eighty grams (180 g) of the powdery measured. Since each of the extracts was form was extracted using ethanol and water in the reconstituted in solvents, those diluents were ratio 9:1. The macerated mixture was carefully included in each plate as controls. filtered through What man filter paper size 0.1 micrometer. The filtrate was evaporated in well Results and discussion regulated water bath maintained at 450C, and the Table 1: Zone of inhibition (mm ± S.E.) of dilutions of the extract yielded a green solid extract Ethanolic extract of Tithonia diversifolia leaves Zone of Inhibition Positive Control
Recommended publications
  • Involvement of Allelopathy in the Invasive Potential of Tithonia Diversifolia
    plants Review Involvement of Allelopathy in the Invasive Potential of Tithonia diversifolia Hisashi Kato-Noguchi Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan; [email protected]; Tel.: +81-87-891-3086 Received: 26 May 2020; Accepted: 17 June 2020; Published: 19 June 2020 Abstract: Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae) is native to Mexico and Central America. The species is spreading quickly and has naturalized in more than 70 countries. It has often been recorded as a harmful invasive plant that disturbs native plant communities. Phytotoxic chemical interactions such as allelopathy between invasive plants and native plants have been reported to play an important role in the invasion. Evidence for allelopathy of T. diversifolia has accumulated in the literature over 30 years. Thus, the objective of this review was to discuss the possible involvement of allelopathy in the invasive potential of T. diversifolia. The extracts, root exudates, and plant residues of T. diversifolia inhibited the germination and growth of other plant species. The soil water and soil collected from T. diversifolia fields also showed inhibitory growth effects. The decomposition rate of T. diversifolia residues in soil was reported to be high. Phytotoxic substances such as sesquiterpene lactones were isolated and identified in the extracts of T. diversifolia. Some phytotoxic substances in T. diversifolia may be released into the soil through the decomposition of the plant residues and the exudation from living tissues of T. diversifolia, including its root exudates, which act as allelopathic substances. Those allelopathic substances can inhibit the germination and growth of neighboring plants and may enhance the competitive ability of the plants, make them invasive.
    [Show full text]
  • (Hemsl.) A. Grays Yin Yin Khaing1, Myat Myat Moe2, Sann Sann Oo3 Abstract It Is a Flowering Plant Known As Tithonia Diversifolia (Hemsl.) A
    1148 3rd Myanmar Korea Conference Research Journal Volume 3, No. 3 Morphological, Microscopical Characters and Phytochemical tests of Tithonia diversifolia (Hemsl.) A. Grays Yin Yin Khaing1, Myat Myat Moe2, Sann Sann Oo3 Abstract It is a flowering plant known as Tithonia diversifolia (Hemsl.) A. Grays, belonging to the family Asteraceae. These plants wildly found in Loikaw Township were collected and identified. The morphological characters of vegetative and reproductive parts and microscopical characters of leaves were also studied. Morphology and microscopic examination of these plants were conducted to their correct identification. The plant was perennial robust shrubs and sparsely pubescent. Inflorescences were terminal, solitary head and involucre bracts presented. For microscopical studies, lamina, midrib and petiole were examined by preparing free hand sections. The epidermal cells of both surfaces of the lamina were slightly wavy. Stomata present on both surfaces were numerous and anomocytic type. The preliminary phytochemical tests were examined from the powdered inflorescences. Flavonoid, phenolic compound, tannin, saponin, amino acid and steroid were present in this examination. Introduction Medicinal plants are widely used in non-industrialized societies mainly because they are readily available and cheaper than modern medicine. In many countries, there is little regulation of traditional medicine but world health organization coordinates a network to encourage safe and rational usage. Medicinal plants face both general threats such as climate change and habitat destruction and the specific threat of over collection to meet market demand. Medicinal plants are important for pharmacological research and drug development not only when plant constituents are used directly as therapeutic agents but also when they are used as starting materials for the partial synthesis of drugs or as model for pharmacologically active compounds (WHO, 1998).
    [Show full text]
  • Nutrient Absorption in Tithonia Diversifolia
    Univ. Sci. 24 (1): 33-48, 2019. doi: 10.11144/Javeriana.SC24-1.nait Bogotá ORIGINAL ARTICLE Nutrient absorption in Tithonia Diversifolia Julián Mauricio Botero Londoño1, 2*, Arnulfo Gómez Carabali2, Mónica Andrea Botero Londoño3 Edited by Juan Carlos Salcedo-Reyes Abstract ([email protected]) Tithonia diversifolia is a robust shrub that has high ecological plasticity 1. Universidad Industrial de Santander, Facultad de Zootecnia, Grupo de and adaptability, high capacity of nutrient absorption and high nutrient Investigación GISEL, Campus Málaga, contents. These characteristics make Tithonia diversifolia be considered as a Málaga, Santander, Colombia, Postal Code 682011. multi-purpose plant, such as for animal feed, soil decontamination and soil 2. Universidad Nacional de Colombia, restorer. Likewise, it is a plant with high ecological plasticity and adaptability. Facultad de Ciencias Agropecuarias, The study of the nutrient absorption and the fertilization represent an Departamento de Ciencia Animal, Grupo de Investigación en uso y important advance in the development of productive systems focused on manejo de suelos y aguas con énfasis maximizing forage productivity, which guarantees the soil sustainability. Based en degradación de suelos, on this, a split plot design was conducted to study the effects of different levels Carrera 32 # 12 – 00, Palmira, Valle, Colombia, Postal Code 763533. of fertilization. The results showed an impact of the elements and levels of 3. Universidad Industrial de Santander, fertilization on the nutrient absorption capacity, finding that the elements Facultad de Ingenierías Fisicomecánicas, that were incorporated in the fertilization increase the foliar contents and the Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones, nutrient absorption in the plant.
    [Show full text]
  • 2017 BIOPROSPECTING for EFFECTIVE ANTIBIOTICS from SELECTED KENYAN MEDICINAL PLANTS AGAINST FOUR CLINICAL Salmonella ISOLATES PE
    BIOPROSPECTING FOR EFFECTIVE ANTIBIOTICS FROM SELECTED KENYAN MEDICINAL PLANTS AGAINST FOUR CLINICAL Salmonella ISOLATES 2017 PETER OGOTI MOSE DOCTOR OF PHILISOPHY PhD (Biochemistry) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2017 MOSE P.O. Bioprospecting for Effective Antibiotics from Selected Kenyan Medicinal Plants against four Clinical Salmonella Isolates Peter Ogoti Mose A thesis submitted in fulfillment for the Degree of Doctor of Philosophy in Biochemistry in the Jomo Kenyatta University of Agriculture and Technology 2017 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signature………………………………………………Date…………………………. Mose Peter Ogoti This thesis has been submitted for examination with our approval as University Supervisors: Signature………………………………………………Date…………………………. Prof. Esther Magiri, JKUAT, Kenya Signature……………………………………………...Date…………………………. Prof. Gabriel Magoma, JKUAT, Kenya Signature………………………………………………Date…………………………. Prof. Daniel Kariuki, JKUAT, Kenya Signature………………………………………………Date…………………………. Dr. Christine Bii, KEMRI, Kenya ii DEDICATION This thesis is dedicated to my beloved wife and children for their support and prayers. iii ACKNOWLEGEMENT I am grateful to the almighty God for giving me life and strength to overcome challenges. I appreciate the cordial assistance rendered by my supervisors, Prof. Esther Magiri, Prof. Gabriel Magoma, Prof. Daniel Kariuki, all from the department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology and Dr. Christine Bii, Centre of Microbiology Research-Kenya Medical Research Institute for their keen guidance, supervision and persistent support throughout the course of research and writing up of thesis. I would also like to thank the Deutscher Akademischer Austauschdienst for their financial support, Centre of Microbiology Research-Kenya Medical Research Institute for providing clinical Salmonella isolates and microbiology laboratory.
    [Show full text]
  • Tithonia Diversifolia SCORE: 23.0 RATING: High Risk (Hemsl.) A
    TAXON: Tithonia diversifolia SCORE: 23.0 RATING: High Risk (Hemsl.) A. Gray Taxon: Tithonia diversifolia (Hemsl.) A. Gray Family: Asteraceae Common Name(s): Japanese sunflower Synonym(s): Mirasolia diversifolia Hemsl. Mexican sunflower Mexican sunflower weed shrub sunflower tree marigold Assessor: No Assessor Status: Assessor Approved End Date: 8 Jun 2018 WRA Score: 23.0 Designation: H(HPWRA) Rating: High Risk Keywords: Ornamental Shrub, Crop Weed, Allelopathic, Dense Stands, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) y 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) y 304 Environmental weed 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 y 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans y=1, n=0 n Creation Date: 8 Jun 2018 (Tithonia diversifolia Page 1 of 20 (Hemsl.) A.
    [Show full text]
  • (GC-MS/FTIR) Spectral Analyses of Tithonia Diversifolia (Hemsl.) A
    Vol. 11(19), pp. 345-350, 17 May, 2017 DOI: 10.5897/JMPR2017.6391 Article Number: 5760CAC64585 ISSN 1996-0875 Journal of Medicinal Plants Research Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JMPR Full Length Research Paper Gas chromatography mass spectrometry/Fourier transform infrared (GC-MS/FTIR) spectral analyses of Tithonia diversifolia (Hemsl.) A. Gray leaves Okereke Stanley C.1, Arunsi Uche O1*, Nosiri Chidi I1 and Nwadike Constance2 1Department of Biochemistry, Faculty of Biological and Physical Sciences, Abia State University, Uturu, Nigeria. 2 Department of Medical Laboratory Science, Imo State University, Owerri, Nigeria. Received 13 April, 2017; Accepted 15 May, 2017 Medicinal plants and its products remain the best therapeutic agents for the management of diseases and infections that affect the health of man. Owing to the recorded ethnomedicinal potentials of Tithonia diversifolia (Hemsl.) A. Gray, this study was aimed at investigating the gas chromatography combined with mass spectrometry (GC-MS) and Fourier transform infrared (FT-IR) spectral analyses of methanolic extract of leaves of T. diversifolia (Hemsl.) A. Gray using standard analytical methods. Results of the GC-MS spectral analysis of methanolic leaf extract of T. diversifolia (Hemsl.) A. Gray showed the existence of the following twenty nine (29) bioactive compounds: Ethylene oxide (2.04%), 1- Butanamine, 3-methyl- (0.71%), N-(3-Methylbutyl) acetamide (3.11%), Cyclopentane, 2-n-octyl- (3.33%), Cyclobutanol (0.73%),
    [Show full text]
  • Redalyc.Tithonia Diversifolia (Hemsl.) A. Gray
    Pastos y Forrajes ISSN: 0864-0394 [email protected] Estación Experimental de Pastos y Forrajes "Indio Hatuey" Cuba Pérez, A.; Montejo, I.; Iglesias, J.M.; López, O.; Martín, G.J.; García, D.E.; Milián, Idolkis; Hernández, A. Tithonia diversifolia (Hemsl.) A. Gray Pastos y Forrajes, vol. 32, núm. 1, marzo, 2009, pp. 1-15 Estación Experimental de Pastos y Forrajes "Indio Hatuey" Matanzas, Cuba Disponible en: http://www.redalyc.org/articulo.oa?id=269119696001 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Pastos y Forrajes, Vol. 32, No. 1, 2009 1 Tithonia diversifolia (Hemsl.) A. Gray Tithonia diversifolia (Hemsl.) A. Gray A. Pérez 1, I. Montejo1, J.M. Iglesias1, O. López 1, G.J. Martín1, D.E. García2, Idolkis Milián1 y A. Hernández1 1Estación Experimental de Pastos y Forrajes “Indio Hatuey” Central España Republicana, CP 44280, Matanzas, Cuba E-mail: [email protected] 2Instituto Nacional de Investigaciones Agrícolas, Estado Trujillo, Venezuela Resumen El genero Tithonia, con más de 10 especies, es originario de Centroamérica pero se encuentra ampliamente distribuido en el área tropical de diferentes continentes, lo que le confiere una gran plasticidad ecológica. Tithonia diversifolia es una planta herbácea o arbustiva robusta, conocida con diversos nombres comunes que identifican o manifiestan su amplitud de usos benéficos o características parecidas a otras plantas como son árbol maravilla, falso girasol y árnica de la tierra, entre otros.
    [Show full text]
  • Characteristics of Tithonia Diversifolia: an Alien Invasive Plant in Yunnan, South-West China
    Characteristics of Tithonia diversifolia Sun et al. Characteristics of Tithonia diversifolia: an alien invasive plant in Yunnan, south-west China Wei-Bang Sun, Gao Chen, Si-Hai Wang Kunming Botanical Garden, Kunming Institute of Botany, Kunming, Yunnan, China Tithonia diversifolia, an alien ornamental plant introduced from Central America, has being naturalized in tropical, southern and central sub-tropical regions in the Yunnan Province of China (Wang et al. 2004). In order to evaluate this ominous alien species, our team has carried out a comprehensive study on its current geographical distribution, natural communities, vegetative proliferation and karyomorphology in Yunnan Province since 2001. The current distribution of T. diversifolia in Yunnan Road-networks and rivers may play an important role in expanding species populations in different regions, especially for invasive species (Mühlenbach 1979; Xie et al. 2001; Imaizumi et al. 2006). Based on what Wang and Sun (2004) described as its distribution in Yunnan Province (Fig.1:A), its distribution region has been further explored, with special attention to the populations along road-networks (Fig.1:B). Tithonia diversifolia probably first escaped to become naturalized in the 1930s (Wang & Sun, 2004), and it is currently distributed in at least 64 counties in Yunnan Province. The whole extent of its geographic distribution in Yunnan is ca. 234,673 km2 (about 60 % of Yunnan’s total territory). Ominously, the populations have expanded northward to a latitude of 25º45´N in Yunnan (Fig. 1), where they are now commonly established at altitudes of 76–2000 m. Fig.1 Current distribution of Tithonia diversifolia in Yunnan, China.
    [Show full text]
  • Stomatal CO2 Responsiveness and Photosynthetic Capacity of Tropical Woody Species in Relation to Taxonomy and Functional Traits
    Oecologia DOI 10.1007/s00442-017-3829-0 PHYSIOLOGICAL ECOLOGY - ORIGINAL RESEARCH Stomatal CO2 responsiveness and photosynthetic capacity of tropical woody species in relation to taxonomy and functional traits Thomas B. Hasper1 · Mirindi E. Dusenge1,2 · Friederike Breuer1 · Félicien K. Uwizeye2 · Göran Wallin1 · Johan Uddling1 Received: 27 November 2015 / Accepted: 22 January 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Stomatal CO2 responsiveness and photosynthetic rather than to area-based total leaf N content. Within-leaf capacity vary greatly among plant species, but the factors N allocation and water use were strongly co-ordinated controlling these physiological leaf traits are often poorly (r2 0.67), such that species with high fractional N invest- = understood. To explore if these traits are linked to taxo- ments into compounds maximizing photosynthetic capac- nomic group identity and/or to other plant functional traits, ity also had high stomatal conductance. We conclude that we investigated the short-term stomatal CO2 responses and while stomatal CO2 responsiveness of tropical woody spe- the maximum rates of photosynthetic carboxylation (Vcmax) cies seems poorly related to other plant functional traits, and electron transport (Jmax) in an evolutionary broad photosynthetic capacity is linked to fractional within-leaf N range of tropical woody plant species. The study included allocation rather than total leaf N content and is closely co- 21 species representing four major seed plant taxa: gym- ordinated with leaf water use. nosperms, monocots, rosids and asterids. We found that stomatal closure responses to increased CO2 were stronger Keywords Carbon dioxide · Transpiration · Leaf traits · in angiosperms than in gymnosperms, and in monocots Stomatal patterning · Tropical trees compared to dicots.
    [Show full text]
  • PESTICIDAL PLANT LEAFLET Tithonia Diversifolia (Hemsley) A
    PESTICIDAL PLANT LEAFLET Tithonia diversifolia (Hemsley) A. Gray ROYAL BOTANIC GARDENS Taxonomy and nomenclature Family: Asteraceae Synonym: Mirasolia diversifolia Hemsl. Vernacular/ common names: (English): Mexican sunflower, tithonia, tree marigold (Kisii): Amaua maroro (Kikuyu): Maruru (Kamba): Ilaa (Luo): Maua makech, akech, maua madungo (Luhya): Maua amalulu Distribution and habitat It is a common shrub on field boundaries, grasslands and disturbed lands in East Africa. Initially introduced into Kenya from Central America as an ornamental plant, it is Botanical description now found in Western and Central provinces, in coastal T. diversifolia is a woody herb or succulent shrub, 1.2-3 regions and parts of Rift Valley. It grows in regions of m tall. Opposite leaves (3-5), attenuate base, acute apex, crenate margin. Leaf size is 5-17 x 5-12 cm, densely 550-1950o m altitude and mean annual temperature of 15-31 C and mean annual rainfall of 100-2000 mm. pubescent beneath, palmate venation. Occasionally upper leaves are unloaded. Flowers are yellow, their ray size is 306 cm x 5-18 mm. Uses The flower heads are solitary on a peduncle 6-13 cm Pesticidal - Tithonia spp. are well known for long. Each mature stem may bear several flowers at the sesquiterpene lactones and diterpenoids – some of top of branches. which have biological activities against insects. Most The plant flowers and produces seeds throughout the bioassays have been conducted using extracts so are year. The light weight seeds can be dispersed by wind, not specific about which compounds are responsible for water and animals. effects. In Uganda, farmers use it in field and storage pest management although there is no published work Note: Always verify your plant specimen and deposit a to report evidence for these effects.
    [Show full text]
  • Extremely Low Nucleotide Diversity Among Thirty-Six New Chloroplast Genome Sequences from Aldama (Heliantheae, Asteraceae) and C
    Extremely low nucleotide diversity among thirty-six new chloroplast genome sequences from Aldama (Heliantheae, Asteraceae) and comparative chloroplast genomics analyses with closely related genera Benoit Loeuille1,*, Verônica Thode2,*, Carolina Siniscalchi3, Sonia Andrade4, Magdalena Rossi5 and José Rubens Pirani5 1 Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil 2 Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil 3 Department of Biological Sciences, Mississippi State University, Mississippi State, MS, United States of America 4 Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, São Paulo, Brazil 5 Departamento de Botânica, Universidade de São Paulo, São Paulo, São Paulo, Brazil * These authors contributed equally to this work. ABSTRACT Aldama (Heliantheae, Asteraceae) is a diverse genus in the sunflower family. To date, nearly 200 Asteraceae chloroplast genomes have been sequenced, but the plastomes of Aldama remain undescribed. Plastomes in Asteraceae usually show little sequence divergence, consequently, our hypothesis is that species of Aldama will be overall conserved. In this study, we newly sequenced 36 plastomes of Aldama and of five species belonging to other Heliantheae genera selected as outgroups (i.e., Dimerostemma asperatum, Helianthus tuberosus, Iostephane heterophylla, Pappobolus lanatus var. lana- tus, and Tithonia diversifolia). We analyzed the structure and gene content of the Submitted 29 July 2020 assembled plastomes and performed comparative analyses within Aldama and with Accepted 12 January 2021 Published 24 February 2021 other closely related genera. As expected, Aldama plastomes are very conserved, with the overall gene content and orientation being similar in all studied species.
    [Show full text]
  • (GISD) 2021. Species Profile Tithonia Diversifolia. Pag
    FULL ACCOUNT FOR: Tithonia diversifolia Tithonia diversifolia System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Asterales Asteraceae Common name Synonym Mirasolia diversifolia , Hemsl Similar species Summary Tithonia diversifolia is an herbaceous stoloniferous perennial which can reach 2 to 3m high. Originally from Mexico and Central America, it is planted and cultivated in many countries for its beautiful tall flowers. Tithonia diversifolia tolerates heat and drought and can rapidly form large herbaceous shrubs. Naturalised in some Pacific islands, it is found along roadsides and in disturbed areas. Rapid vegetative reproduction and significant production of lightweight seeds allow Tithonia diversifolia to quickly invade disturbed habitats. In forming dense stands, it prevents the growth of young native plants. Tithonia diversifolia is invasive in some parts of Africa and Australia and in many Pacific islands. view this species on IUCN Red List Principal source: Compiler: Comité français de l'UICN (IUCN French Committee) & IUCN SSC Invasive Species Specialist Group (ISSG) Review: Pubblication date: 2008-03-18 ALIEN RANGE [1] BERMUDA [1] FRENCH POLYNESIA [1] MAYOTTE [1] NEW CALEDONIA [1] REUNION BIBLIOGRAPHY 12 references found for Tithonia diversifolia Global Invasive Species Database (GISD) 2021. Species profile Tithonia diversifolia. Pag. 1 Available from: http://www.iucngisd.org/gisd/species.php?sc=1320 [Accessed 06 October 2021] FULL ACCOUNT FOR: Tithonia diversifolia Managment information Varnham, K. 2006. Non-native species in UK Overseas Territories: a review. JNCC Report 372. Peterborough: United Kingdom. Summary: This database compiles information on alien species from British Overseas Territories. Available from: http://www.jncc.gov.uk/page-3660 [Accessed 10 November 2009] General information Barthelat, F.
    [Show full text]