Regulating Kinetics and Thermodynamics of Electrochemical Nitrogen Reduction with Metal Single-Atom Catalysts in a Pressurized Electrolyser
Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser Haiyuan Zoua,b, Weifeng Ronga, Shuting Weia, Yongfei Jic,1, and Lele Duana,d,1 aDepartment of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China; bSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China; cSchool of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China; and dShenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved October 8, 2020 (received for review July 17, 2020) Using renewable electricity to synthesize ammonia from nitrogen practical requirements. On the other hand, the improvement of the paves a sustainable route to making value-added chemicals but yet thermodynamic driving force for ammonia production, such as requires further advances in electrocatalyst development and device regulating electrochemical reaction conditions, may offer equally integration. By engineering both electrocatalyst and electrolyzer to positive effects to efficiently promote the N2 reduction process and simultaneously regulate chemical kinetics and thermodynamic driving suppress the unwanted side reactions (22). Conventionally, explo- forces of the electrocatalytic nitrogen reduction reaction (ENRR), we ration of the innovation of electrocatalysts or electrochemical
[Show full text]