Original Article Randomized Study of Asunaprevir Plus Pegylated Interferon-Α and Ribavirin for Previously Untreated Genotype 1 Chronic Hepatitis C

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Randomized Study of Asunaprevir Plus Pegylated Interferon-Α and Ribavirin for Previously Untreated Genotype 1 Chronic Hepatitis C Antiviral Therapy 2013; 18:885–893 (doi: 10.3851/IMP2660) Original article Randomized study of asunaprevir plus pegylated interferon-α and ribavirin for previously untreated genotype 1 chronic hepatitis C Jean-Pierre Bronowicki1*, Stanislas Pol2, Paul J Thuluvath3, Dominique Larrey4, Claudia T Martorell5, Vinod K Rustgi6, David W Morris7, Ziad Younes8, Michael W Fried9, Marc Bourlière10, Christophe Hézode11, K Rajender Reddy12, Omar Massoud13, Gary A Abrams14, Vlad Ratziu15, Bing He16, Timothy Eley16, Alaa Ahmad17, David Cohen18, Robert Hindes19, Fiona McPhee18, Bridget Reilly16, Patricia Mendez16, Eric Hughes16 1INSERM 954, Centre Hospitalier Universitaire de Nancy, Université de Lorraine, Vandoeuvre les Nancy, France 2Université Paris Descartes, INSERM U1610 and Liver Unit, Hôpital Cochin, Paris, France 3Mercy Medical Center, Baltimore, MD, USA 4Hôpital Saint Eloi, Service d’Hépato-Gastroentérologie et Transplantation, INSERM 1040-IRB, Montpellier, France 5The Research Institute, Springfield, MA, USA 6Metropolitan Research, Fairfax, VA, USA 7Healthcare Research Consultants, Tulsa, OK, USA 8Gastro One, Germantown, TN, USA 9Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC, USA 10Hôpital Saint Joseph, Service d’Hépato-Gastroentérologie, Marseille, France 11CHU Henri Mondor, Service d’Hépato-Gastroentérologie, Créteil, France 12Division of Gastroenterology, University of Pennsylvania, Philadelphia, PA, USA 13Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, USA 14Alabama Liver & Digestive Specialists, Montgomery, AL, USA 15Groupe Hospitalier Pitié Salpêtrière, Service d’Hépato-Gastroentérologie, Paris, France 16Bristol–Myers Squibb, Princeton, NJ, USA 17Hoffmann–La Roche, Nutley, NJ, USA 18Bristol–Myers Squibb, Wallingford, CT, USA 19BeyondWest Pharmaceuticals, Skillman, NJ, USA *Corresponding author e-mail: [email protected] Background: Asunaprevir is a selective NS3 protease inhib- twice-daily, 600 mg twice-daily and 600 mg once-daily itor with in vitro activity against HCV genotypes 1 and 4. groups, respectively, versus 0% (0/11) in the placebo Methods: In this Phase IIa double-blind study, treatment- group. Corresponding SVR24 rates were 83% (10/12), naive HCV genotype-1-infected patients in the United 83% (10/12) and 92% (11/12) in the asunaprevir groups States and France were randomly assigned 1:1:1:1 to pla- and 46% (5/11) in the placebo group. There was no viro- cebo or asunaprevir 200 mg twice daily, 600 mg twice logical breakthrough in any asunaprevir group. Following daily or 600 mg once daily in combination with pegylated the 12-week analysis, the 600 mg doses were reduced interferon (PEG-IFN)-α2a and ribavirin for 48 weeks. The to 200 mg twice daily because of a greater frequency of primary efficacy end point was undetectable HCV RNA transaminase elevations at the 600 mg dose. The most at weeks 4 and 12 (extended rapid virological response common grade 3–4 laboratory abnormalities were con- [eRVR]). Other end points included safety and undetect- sistent with those reported for PEG-IFN and ribavirin. able HCV RNA at 24 weeks post-treatment (24-week sus- Conclusions: Asunaprevir plus PEG-IFN and ribavirin tained virological response [SVR24]). achieved higher response rates than placebo plus PEG- Results: A total of 47 patients were randomized and IFN and ribavirin, with a tolerable adverse event profile at treated. eRVR was achieved by 75% (9/12), 75% (9/12) the 200 mg twice-daily dose. This dose is being evaluated and 92% (11/12) of patients in the asunaprevir 200 mg in the Phase IIb and Phase III studies. ©2013 International Medical Press 1359-6535 (print) 2040-2058 (online) 885 J-P Bronowicki et al. Introduction IU/ml. Patients had no prior treatment with any anti- HCV agent or <4 weeks of total exposure to ribavirin Chronic infection with HCV affects up to 170 million or PEG-IFN-based therapy. Patients had to be non- individuals worldwide, including up to 5.2 million in the cirrhotic, documented by liver biopsy obtained within United States [1–3]. Chronic HCV infection is a common 24 months before randomization. Exclusion criteria cause of chronic liver disease, cirrhosis and hepatocellu- included advanced liver disease, coinfection with HBV lar carcinoma [2,4]. Among the seven main HCV geno- or HIV, hepatocellular carcinoma, and other clinically types, genotype 1 is one of the most difficult to treat and relevant comorbidities. Patients were excluded if they the most prevalent globally [1,5]. The genotype 1a sub- had alanine aminotransferase (ALT)≥5× the upper limit type predominates in the United States whereas subtype of normal (ULN), total bilirubin ≥2 mg/dl, albumin ≤3.5 1b predominates in Europe and Japan [1,5–7]. g/dl, international normalized ratio (INR)≥1.7, platelets Current treatment options for patients with chronic ≤90×109 cells/l, or haemoglobin ≤12 g/dl (women) or HCV genotype 1 infection are evolving and include dual ≤13 g/dl (men). therapy with pegylated interferon (PEG-IFN)-a2a or -2b and ribavirin, and triple-therapy regimens including an Study design HCV protease inhibitor. A 24-week sustained virological This Phase IIa double-blind parallel-group study (clini- response (SVR24; undetectable HCV RNA at 24 weeks caltrials.gov identifier NCT01030432) randomized post-treatment) is achieved in only 40–50% of patients patients 1:1:1:1 to placebo plus PEG-IFN-a2a (Pegasys®, treated with dual therapy and 68–75% of patients Roche, Basel, Switzerland) and ribavirin (Copegus®, treated with triple therapy [8–11]. However, these Roche) or oral asunaprevir 200 mg twice daily, 600 mg regimens are limited by adverse events, difficult dosing twice daily or 600 mg once daily plus PEG-IFN and schedules and the potential for viral resistance. A need ribavirin for 48 weeks. PEG-IFN was administered sub- remains for other direct-acting antivirals with improved cutaneously at 180 mg/week, and ribavirin was admin- tolerability and more convenient dosing schedules. New istered orally twice daily and dosed according to body agents will also likely be used in combination with other weight (1,000 mg/day if <75 kg and 1,200 mg/day if classes of direct-acting antivirals, with or without PEG- ≥75 kg). Patients meeting futility criteria – a decrease IFN or ribavirin, to optimize treatment regimens. from baseline in HCV RNA of <2 logs and HCV RNA Asunaprevir is a selective HCV NS3 protease inhibitor ≥ the lower limit of quantitation (LLOQ; 25 IU/ml) at with activity against HCV genotypes 1 and 4 in vitro [12]. week 12; or HCV RNA detectable at week 12 and >50 In single- and multiple-ascending dose studies in patients IU/ml at week 24; or virological breakthrough (defined with HCV genotype 1 infection, asunaprevir produced below) – were required to discontinue treatment. rapid and substantial declines in HCV RNA, with a toler- The asunaprevir dose range was selected based on the able adverse event profile [13]. In HCV genotype 1a- or results of monotherapy studies [13]. After the week 12 1b-infected null responders, asunaprevir plus the NS5A analysis, the asunaprevir 600 mg once daily and twice inhibitor daclatasvir and PEG-IFN/ribavirin achieved daily doses were changed to 200 mg twice daily due to SVR in ≥90% of patients [14,15]. The all-oral regimen elevations in ALT and aspartate aminotransferase (AST). of asunaprevir plus daclatasvir achieved SVR in 91% of The elevations were greater and more frequent at the genotype-1b-infected null responders, and in 64% of gen- 600 mg than the 200 mg dose, and only patients receiv- otype-1b-infected patients intolerant to, or ineligible for, ing the 600 mg doses discontinued due to transaminase PEG-IFN/ribavirin therapy [16]. abnormalities. The 48-week treatment duration was This study is the first Phase IIa clinical trial conducted based on health authorities’ recommendation to add to evaluate the safety and efficacy profile of asunaprevir asunaprevir to the previous standard-of-care for geno- at different doses in combination with PEG-IFN/ribavi- type 1 HCV, and allowed data collection on the safety of rin in previously untreated patients with HCV genotype extended asunaprevir treatment. Shorter durations will 1 infection. Based on the results of this exploratory study, be explored in the Phase IIb study. an asunaprevir dose was selected for further evaluation Patients were enrolled at 15 sites in the United States in combination with PEG-IFN/ribavirin in an ongoing and France between 9 February and 29 April 2010; Phase IIb study, and in combination with daclatasvir with follow-up was complete on 9 September 2011. Eligi- or without PEG-IFN/ribavirin in large Phase III studies. ble patients were randomly assigned to a treatment by an interactive voice response system using a computer- Methods generated random allocation sequence. Investigators and patients were blinded to treatment assignment Patients throughout the study. The sponsor was blinded to Eligible patients were adults aged 18–70 years with treatment assignment until the primary end point anal- chronic HCV genotype 1 infection and HCV RNA≥105 ysis. Written informed consent was obtained from all 886 ©2013 International Medical Press Asunaprevir plus PEG-IFN/ribavirin for chronic hepatitis C patients. The study was approved by the institutional a validated pharmacokinetic programme (Kinetica®; review board at each participating site and was con- Letchworth, UK) and included observed maximum ducted in compliance with the Declaration of Helsinki, (Cmax) and minimum (Cmin) plasma concentrations and Good Clinical Practice guidelines, and local regulatory area under the concentration–time curve in one dosing requirements. interval (AUCTAU). End points Statistical analyses The primary efficacy end point was the proportion of It was determined that a target sample size of 12 patients with undetectable HCV RNA at weeks 4 and patients per arm would detect, with 80% probability, a 12 (extended rapid virological response [eRVR]). Safety safety event occurring at an incident rate of 13%.
Recommended publications
  • UNO Template
    26 November 2013 Americas/United States Equity Research Biotechnology Global Biotech & Pharma: The HCV Revolution - Edition 2 Research Analysts COMMENT Ravi Mehrotra PhD 212 325 3487 [email protected] What Is The N Number: Keeping An Eye On Vamil Divan, MD 212 538 5394 Potential Longer Term Pricing Disruption [email protected] Koon Ching PhD ■ No pricing disruption expected in the near-term, but potential exists in 212 325 6286 the medium- to long-term. OK this is somewhat obvious, but bear with us: [email protected] Value/NPV = Price x Mkt Share x Mkt Size x Mkt Longevity. This is the Bruce Nudell PhD second note in our "The HCV Revolution" series. HCV is clearly a highly 212 325 9122 competitive therapeutic area with many players vying for their share of the [email protected] potentially >$15B/year HCV market. We previously addressed immediate- European Pharma Team 44 207 888 0304 term pricing of next-generation regimens, specifically for Sofosbuvir (LINK). [email protected] In this note, we simply highlight the potential number of competing all-oral, Ronak H. Shah, Pharm.D., CFA IFN-free regimens, and timing of key data, in HCV (Exhibits 1-7). The 212 325 9799 number of ultimate competitors has important implications for the HCV [email protected] market. In our view, in a HCV market with up to 4−5 players, we expect Lee Kalowski "normal drug rules" to apply: i.e. the order to market, overall clinical profile of 212 325 9683 drug, and commercial prowess will primarily dictate market share, with price [email protected] used as a tool but not in a "disruptive" way.
    [Show full text]
  • Interplay Between Hepatitis D Virus and the Interferon Response
    viruses Review Interplay between Hepatitis D Virus and the Interferon Response Zhenfeng Zhang 1 and Stephan Urban 1,2,* 1 Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany; [email protected] 2 German Centre for Infection Research (DZIF), Partner Site Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-6221-564-902 Received: 27 October 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Chronic hepatitis D (CHD) is the most severe form of viral hepatitis, with rapid progression of liver-related diseases and high rates of development of hepatocellular carcinoma. The causative agent, hepatitis D virus (HDV), contains a small (approximately 1.7 kb) highly self-pairing single-strand circular RNA genome that assembles with the HDV antigen to form a ribonucleoprotein (RNP) complex. HDV depends on hepatitis B virus (HBV) envelope proteins for envelopment and de novo hepatocyte entry; however, its intracellular RNA replication is autonomous. In addition, HDV can amplify HBV independently through cell division. Cellular innate immune responses, mainly interferon (IFN) response, are crucial for controlling invading viruses, while viruses counteract these responses to favor their propagation. In contrast to HBV, HDV activates profound IFN response through the melanoma differentiation antigen 5 (MDA5) pathway. This cellular response efficiently suppresses cell-division-mediated HDV spread and, to some extent, early stages of HDV de novo infection, but only marginally impairs RNA replication in resting hepatocytes. In this review, we summarize the current knowledge on HDV structure, replication, and persistence and subsequently focus on the interplay between HDV and IFN response, including IFN activation, sensing, antiviral effects, and viral countermeasures.
    [Show full text]
  • Estimating the Long-Term Clinical and Economic Outcomes of Daclatasvir
    VALUE IN HEALTH REGIONAL ISSUES ] ( ]]]]) ]]]– ]]] Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/vhri Estimating the Long-Term Clinical and Economic Outcomes of Daclatasvir Plus Asunaprevir in Difficult-to-Treat Japanese Patients Chronically Infected with Hepatitis C Genotype 1b Phil McEwan, PhD1,2, Thomas Ward, MSc1,*, Samantha Webster, BSc1, Yong Yuan, PhD3, Anupama Kalsekar, MS3, Kristine Broglio, MS4, Isao Kamae, PhD5, Melanie Quintana, PhD4, Scott M. Berry, PhD4, Masahiro Kobayashi, MD6, Sachie Inoue, PhD7, Ann Tang, PhD8, Hiromitsu Kumada, MD6 1Health Economics and Outcomes Research Ltd., Monmouth, UK; 2Centre for Health Economics, Swansea University, Swansea, UK; 3Global Health Economics and Outcomes Research, Princeton, NJ, USA; 4Berry Consultants, LLC, Austin, TX, USA; 5Graduate School of Public Policy, University of Tokyo, Tokyo, Japan; 6Department of Hepatology, Toranomon Hospital, Tokyo, Japan; 7CRECON Research and Consulting, Inc., Tokyo, Japan; 8Health Economics and Outcomes Research, Bristol-Myers K.K., Tokyo, Japan ABSTRACT Objectives: Japan has one of the highest endemic rates of hepatitis C treated with TVR þ pegIFN-α/RBV. Results: Initiating DCV þ ASV virus (HCV) infection. Treatments in Japan are currently limited to treatment in patients in the chronic hepatitis C disease stage resulted interferon-alfa–based regimens, which are associated with tolerability in quality-adjusted life-year gains of 0.96 and 0.77 over TVR þ pegIFN- and efficacy issues. A novel regimen combining two oral HCV α/RBV for NRs and PRs, respectively, and a gain of 2.61 in interferon- therapies, daclatasvir and asunaprevir (DCV þ ASV), has shown alfa–ineligible/intolerant patients over no treatment.
    [Show full text]
  • HCV Eradication with Direct Acting Antivirals (Daas)?
    HCV eradication with direct acting antivirals (DAAs)? Emilie Estrabaud Service d’Hépatologie et INSERM UMR1149, AP-HP Hôpital Beaujon, Paris, France. [email protected] HCV eradication with direct acting antivirals (DAAs)? HCV replication HCV genome and DAAs targets NS3 inhibitors NS5A inhibitors NS5B inhibitors Take home messages HCV viral cycle Asselah et al. Liver Int. 2015;35 S1:56-64. Direct acting antivirals 5’NTR Structural proteins Nonstructural proteins 3’NTR Metalloprotease Envelope Serine protease Glycoproteins RNA Capsid RNA helicase Cofactors Polymerase C E1 E2 NS1 NS2 NS3 NS4A NS4B NS5A NS5B Protease Inhibitors NS5A Inhibitors Polymerase Inhibitors Telaprevir Daclatasvir Nucs Non-Nucs Boceprevir Ledipasvir Simeprevir ABT-267 Sofosbuvir ABT-333 Faldaprevir GS-5816 VX-135 Deleobuvir Asunaprevir Direct Acting Antivirals: 2015 Asselah et al. Liver Int. 2015;35 S1:56-64. Genetic barrier for HCV direct acting antivirals High Nucleos(t)ide 1 mutation= high cost to Analog Inhibitors fitness, 2-3 additional mutations to increase fitness 2 st generation Protease Inhibitors n Non Nucleos(t)ide Analog Inhibitors : NS5 A Inhibitors 1 st generation Protease Inhibitors 1 mutation= low cost to fitness Low Halfon et al. J Hepatol 2011. Vol 55(1):192-206. HCV protease inhibitors (PI) Inhibit NS3/NS4A serine protease responsible for the processing of the polyprotein 1st generation 1st generation, 2nd wave 2nd generation Resistance low low high barrier Genotype activity 1: 1 a< 1b All except 3 all Drug drug Important Less Less interaction Drugs Boceprevir Simeprevir (Janssen) MK-5172 Telaprevir Faldaprevir (BI) ACH-2684 Paritaprevir (ABT-450)/r (AbbVie) Vedroprevir (Gilead) Vaniprevir (Merck) Sovaprevir (Achillion) Asunaprevir (BMS) NS3/NS4A structure Repositioning of helicase domain Self cleavage Lipid Bilayer Inactive Insertion of the Active carboxy-terminal tail Bartenschlager et al.
    [Show full text]
  • Diapositiva 1
    Resistencias & Epidemiología Eva Poveda Division of Clinical Virology INIBIC-Complexo Hospitalario Universitario de A Coruña Rapid Evolution of HCV Regimens: Easier to take/tolerate, Short Duration, Pangenotypic, Higher SVR, Eventually Oral for all patients SVR: 70-80% ≥ 90% ≥ 90% 2013 2014 2015 Genotype 2&3 Genotype 2 Genotypes 1-6 P/R SOF+RBV 12 weeks SOF+LPV ± RBV Genotypes 1 Genotype 3 ABT-450+ABT-267+ Telaprevir + P/R SOF+RBV 24 weeks ABT- 333 +RBV Boceprevir + P/R Genotypes 1-4 DCV+ASU SOF+ P/R SOF+DCV Genotypes 1&4 SMV+ P/R HCV Resistance to DAA During DAA-based treatment: ■ Rapid selection of resistance mutation may occur, eventually leading to viral break-through. Kieffer et al. Hepatology 2007; 46:631-9 Pilot-Matias et al. 46th EASL 2011, Abs1107 ■ Several changes at different positions at the NS3 protease, NS5B polymerase, and NS5A protein have been associated with loss of susceptibility to DAAs. Sarrazin et al. Gastroenterology 2010;138:447-62 MainTable 2. Main characteristics characteristics of the genotype of theactivity genotypeand resistance of DAA activity classes. and resistance of DAA classes. Genotype activity Resistance Key resistance mutations NS3 ■ First PI generation: genotypes 1 (1b >1a) Low genetic barrier First PI generation: protease (Telaprevir & Boceprevir) High cross-resistance G1a: R155K, V36M inhibitors G1b: V36M, T54A/S, A156T ■ Second wave and second PI generation: across all but genotype 3 (D168Q) Second wave and second PI generation: (Simeprevir, faldaprevir, vaniprevir, F43S, Q80K, R155K, D168A/E/H/T/V asunaprevir, sovaprevir, MK-5172, ACH-2684) NS5 Across all genotypes High genetic barrier Sofosbuvir*: nucleos(ti)de High cross-resistance G1a: S282T+(I434M) Sofosbuvir displays less antiviral activity G1b: S282T analogues againts genotypes 3 (treatment duration 24 G2a: S282T+(T179A, M289L, I293L, inhibitors weeks of sofosbuvir+RBV).
    [Show full text]
  • Twelve-Week Ravidasvir Plus Ritonavir-Boosted Danoprevir And
    bs_bs_banner doi:10.1111/jgh.14096 HEPATOLOGY Twelve-week ravidasvir plus ritonavir-boosted danoprevir and ribavirin for non-cirrhotic HCV genotype 1 patients: A phase 2 study Jia-Horng Kao,* Min-Lung Yu,† Chi-Yi Chen,‡ Cheng-Yuan Peng,§ Ming-Yao Chen,¶ Huoling Tang,** Qiaoqiao Chen** and Jinzi J Wu** *Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University College of Medicine and Hospital, ¶Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, †Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, ‡Division of Gastroenterology, Department of Internal Medicine, Chia-Yi Christian Hospital, Chiayi, and §Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; and **Ascletis BioScience Co., Ltd., Hangzhou, China Key words Abstract danoprevir, efficacy, hepatitis C, interferon free, ravidasvir. Background and Aim: The need for all-oral hepatitis C virus (HCV) treatments with higher response rates, improved tolerability, and lower pill burden compared with Accepted for publication 9 January 2018. interferon-inclusive regimen has led to the development of new direct-acting antiviral agents. Ravidasvir (RDV) is a second-generation, pan-genotypic NS5A inhibitor with high Correspondence barrier to resistance. The aim of this phase 2 study (EVEREST study) was to assess the ef- Jia-Horng Kao, Graduate Institute of Clinical ficacy and safety of interferon-free, 12-week RDV plus ritonavir-boosted danoprevir Medicine and Hepatitis Research Center, (DNVr) and ribavirin (RBV) regimen for treatment-naïve Asian HCV genotype 1 (GT1) National Taiwan University College of Medicine patients without cirrhosis. and Hospital, 7 Chung-Shan South Road, Taipei Methods: A total of 38 treatment-naïve, non-cirrhotic adult HCV GT1 patients were en- 10002, Taiwan.
    [Show full text]
  • Caracterización Molecular Del Perfil De Resistencias Del Virus De La
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Programa de doctorado en Medicina Departamento de Medicina Facultad de Medicina Universidad Autónoma de Barcelona TESIS DOCTORAL Caracterización molecular del perfil de resistencias del virus de la hepatitis C después del fallo terapéutico a antivirales de acción directa mediante secuenciación masiva Tesis para optar al grado de doctor de Qian Chen Directores de la Tesis Dr. Josep Quer Sivila Dra. Celia Perales Viejo Dr. Josep Gregori i Font Laboratorio de Enfermedades Hepáticas - Hepatitis Víricas Vall d’Hebron Institut de Recerca (VHIR) Barcelona, 2018 ABREVIACIONES Abreviaciones ADN: Ácido desoxirribonucleico AK: Adenosina quinasa ALT: Alanina aminotransferasa ARN: Ácido ribonucleico ASV: Asunaprevir BOC: Boceprevir CCD: Charge Coupled Device CLDN1: Claudina-1 CHC: Carcinoma hepatocelular DAA: Antiviral de acción directa DC-SIGN: Dendritic cell-specific ICAM-3 grabbing non-integrin DCV: Daclatasvir DSV: Dasabuvir
    [Show full text]
  • Stamp-V3 1..249
    23 March 2016 Volume 23 Supplement 1 S1 Volume 23 Volume Supplement 1 P ages A1–A262 ages EUROPEAN JOURNAL OF HOSPITAL PHARMACY OF HOSPITAL JOURNAL EUROPEAN ABSTRACT BOOK 21st Congress of the EAHP 16-18 March 2016 Vienna, Austria March 2016 March Contents Volume 23 Supplement 1 | EJHP March 2016 Abstracts from the EAHP 2016 Congress A1 Clinical pharmacy A172 Other hospital pharmacy topics A104 Drug distribution A178 Pharmacokinetics and pharmacodynamics A118 Drug information and pharmacotherapy A195 Production and preparation A158 General management A214 Patient safety and risk management A167 International posters A250 Author index POSTER AWARD NOMINEES Presentations on Wednesday, 16 March, 14:00–15:30, Room 93 Time Poster number Poster nominee oral presentations Author 14:00 DD-021 Medicine supply chain of a central pharmacy: risk mapping F Charra shortage 14:10 PP-001 Contamination with cytotoxic drugs in the workplace – E Korczowska ESOP pilot study 14:20 PP-039 Double checking manipulations for complex and/or high A Alcobia Martins risk preparations 14:30 CP-055 The clinical pharmacist resolves medication related E Tudela-Lopez problems in cranio, maxillofacial and oral surgery patients 14:40 CP-085 The impact of pharmacist interventions on safety M Tovar Pozo and cost savings 14:50 CP-219 Effectiveness and safety of switching to dual antiretroviral J Luis Revuelta therapy in a treatment experienced HIV cohort 15:00 DD-027 Implementation and evaluation of an appointment based F J Alvarez Manceñido model for outpatients attended in
    [Show full text]
  • S Sofosbuvir (Sovaldi )
    Sofosbuvir (Sovaldi ™) UTILIZATION MANAGEMENT CRITERIA DRUG CLASS: Nucleotide Analog NS5B Polymerase Inhibitor BRAND (generic) NAME: Sovaldi (sofosbuvir ) 400 mg strength tablet FDA -APPROVED INDICATIONS Sovaldi is a hepatitis C virus (HCV) nucleotide analog NS5B polymerase inhibitor indicated for the treatment of chronic hepatitis C (CHC) infection as a component of a combination antiviral treatment regimen. • Sovaldi efficacy has been established in subjects with HCV genotype 1, 2, 3 or 4 infection, including those with hepatocellular carcinoma meeting Milan criteria (awaiting liver transplantation) and those with HCV/HIV -1 co-infection. COVERAGE AUTHORIZATION CRITE RIA Sofosbuvir (Sovaldi) is cover ed for the following condition and situations: • Diagnosis of chronic hepatitis C (CHC) infection with c onfirmed genotype 1, 2, 3, or 4, OR • CHC infection with hepatocellular carcinoma awaiting liver transplant, AND • Sofosbuvir is prescribed in combination with ribavirin and pegylated interferon alfa for genotypes 1 and 4, OR • Sofosbuvir is prescribed in combination with ribavirin for p atients with genotype 1 who are peginterferon-ineligible* (medical record documentation of ineligibility for peginterferon therapy must be submitted for review), OR • Sofosbuvir is prescribed in combination with simeprevir, with or without ribavirin, for 12 weeks duration of therapy, for patients with genotype 1 that have advanced fi brosis (METAVIR score 2, 3, 4, OR cirrhosis secondary to Hepatitis C ), and are peginterferon - ineligible* (medical record
    [Show full text]
  • Pegasys®) Peginterferon Alfa-2B (Peg-Intron®
    Peginterferon alfa-2a (Pegasys®) Peginterferon alfa-2b (Peg-Intron®) UTILIZATION MANAGEMENT CRITERIA DRUG CLASS: Pegylated Interferons BRAND (generic) NAME: Pegasys (peginterferon alfa-2a) Single-use vial 180 mcg/1.0 mL; Prefilled syringe 180 mcg/0.5 mL Peg-Intron (peginterferon alfa-2b) Single-use vial (with 1.25 mL diluent) and REDIPEN®: 50 mcg, 80 mcg, 120 mcg, 150 mcg per 0.5 mL. FDA-APPROVED INDICATIONS PEG-Intron (peginterferon alfa-2b): Combination therapy with ribavirin: • Chronic Hepatitis C (CHC) in patients 3 years of age and older with compensated liver disease. • Patients with the following characteristics are less likely to benefit from re-treatment after failing a course of therapy: previous nonresponse, previous pegylated interferon treatment, significant bridging fibrosis or cirrhosis, and genotype 1 infection. Monotherapy: CHC in patients (18 years of age and older) with compensated liver disease previously untreated with interferon alpha. Pegasys (Peginterferon alfa-2a): • Treatment of Chronic Hepatitis C (CHC) in adults with compensated liver disease not previously treated with interferon alpha, in patients with histological evidence of cirrhosis and compensated liver disease, and in adults with CHC/HIV coinfection and CD4 count > 100 cells/mm3. o Combination therapy with ribavirin is recommended unless patient has contraindication to or significant intolerance to ribavirin. Pegasys monotherapy is indicated for: • Treatment of adult patients with HBeAg positive and HBeAg negative chronic hepatitis B who have compensated
    [Show full text]
  • Combination of Entecavir Or Tenofovir with Pegylated Interferon
    International Journal of Molecular Sciences Review Combination of Entecavir or Tenofovir with Pegylated Interferon-α for Long-Term Reduction in Hepatitis B Surface Antigen Levels: Simultaneous, Sequential, or Add-on Combination Therapy Kanako Yoshida 1, Masaru Enomoto 1,*, Akihiro Tamori 1 , Shuhei Nishiguchi 2,3 and Norifumi Kawada 1 1 Department of Hepatology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; [email protected] (K.Y.); [email protected] (A.T.); [email protected] (N.K.) 2 Division of Medical Science of Regional Cooperation for Liver Diseases, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; [email protected] 3 Department of Internal Medicine, Kano General Hospital, Osaka 531-0041, Japan * Correspondence: [email protected]; Tel.: +81-666-453-811 Abstract: Seroclearance of hepatitis B surface antigen (HBsAg) (“functional cure”) is the optimal endpoint of antiviral therapy for chronic hepatitis B virus (HBV) infection. Currently available anti-HBV therapy includes nucleoside/nucleotide analogs (NAs) and peginterferon-α (Peg-IFNα). Combination of NAs and Peg-IFNα, each with different mechanisms of action, is an attractive approach for treating chronic HBV infection. In earlier studies, compared with monotherapy using IFNα, combination therapy showed greater on-treatment HBV DNA suppression but no difference in the sustained response. However, responses to the combination of non-pegylated IFNα with Citation: Yoshida, K.; Enomoto, M.; lamivudine or adefovir were not assessed based on HBsAg quantification but were defined by Tamori, A.; Nishiguchi, S.; Kawada, normal alanine aminotransferase levels, testing negative for hepatitis B e-antigen, and low HBV DNA N.
    [Show full text]
  • WO 2014/120981 Al 7 August 2014 (07.08.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/120981 Al 7 August 2014 (07.08.2014) P O P C T (51) International Patent Classification: Gilead Pharmasset LLC, 333 Lakeside Drive, Foster City, A61K 9/16 (2006.01) A61K 31/501 (2006.01) California 94404 (US). A61K 9/20 (2006.01) A61K 31/513 (2006.01) (74) Agents: TANNER, Lorna L. et al; Sheppard Mullin (21) International Application Number: Richter & Hampton Lip, 379 Lytton Avenue, Palo Alto, PCT/US2014/013953 California 94301-1479 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 30 January 2014 (30.01 .2014) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (26) Publication Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/759,320 31 January 2013 (3 1.01.2013) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/772,292 4 March 2013 (04.03.2013) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/828,899 30 May 2013 (30.05.2013) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/870,729 27 August 2013 (27.08.2013) US TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/897,793 30 October 20 13 (30.
    [Show full text]