Studies on the Eggs of the Grasshopper Species Aulocara Elliotti Thos

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Eggs of the Grasshopper Species Aulocara Elliotti Thos Studies on the eggs of the grasshopper species Aulocara elliotti Thos. by George R Roemhild A THESIS Submitted to the Graduate Faculty in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology at Montana State College Montana State University © Copyright by George R Roemhild (1961) Abstract: Various aspects of the biology and physiology of the egg of the grasshopper species, Aulocara elliotti Thos., have been investigated. Eggs from three different populations were used for these studies. Mean weight for all the eggs was 15.4 milligrams. Mean weights for the eggs from the three populations were 16.0, 14.5 and 14.2 milligrams. The mean number of eggs per pod was 8.1 for all pods collected. The mean number of eggs per pod for the three populations were 8.9, 8.3 and 7.1 There was a significant difference in the weights of the eggs from the three populations when adjustments were made for the number of eggs per pod. Respiration of eggs from the three different populations was studied in relation to effects of moisture and temperature. It was found that eggs of this species respire through the entire cuticle. Isolated embryos and yolk respired at a higher rate than did the egg from which they came if the egg was in diapause but respired at a lower rate than the egg from which they came if the egg was not in diapause. The respiration rate of eggs was measured from 5°C to 45°C and characteristic responses to temperature were noted. Reducing materials were measured in the egg during development and were shown to be higher during diapause than during other periods of development. Physiological characteristics of diapause eggs were studied and related to structures within the egg. Studies on respiration show that neither an inhibitor nor lack of water are likely to be factors in maintaining or terminating diapause in this species. STUDIES ON THE EGGS OF THE GRASSHOPPER SPECIES AULOCAfeA ELLIOTTI THOS. by George Roemhild 4 A THESIS Submitted to the Graduate Faculty in. ' partial fulfillment of the requirements for the degree of Doctor of Philosophy in Entomology at Montana State College Approved* Dean, Gradual©/Division Bozeman, Montana June, 1961 ACKNOWLEDGMENT Acknowledgment and thanks are extended to the following < ' • ' for ideas and manuscript help in this studys Dr0 James H 0 Pepper Professor Ellsworth Hastings, Dr0 Donald J0 Reed and D r 0 Graeme Baker, all of Montana State College, and to my wife Mary, for aid in the preparation and typing of the manuscript* , -4- TABLE OF CONTENTS ' ' LIST OF ,TABLES, k...,...;... .. V. 5 LIST OF FIGURES........o.....................y..................... 6 ABSTRACT.. ..;........ ..................................... 8 INTRODUCTION............... ............ ........... 9 PROCEDURE AND RESULTS 17 Egg development. 17 Collection and handling of e g g s . ^ . 18 .Egg. weights and numbers.................. 19 • Egg viability......................... 25 Egg weight changes............................. .. 30 , Respiration of eggs...................... t,........ 34 Method of measuring respiration. 34 Respiration through the cuticle,. 48 E m b r y o rospirstionooeeeoo***#*00000*999**09999990@ 9 #9000000*91 50 Temperature effects on respiration#* *.... .poooeoooo9o0ooio9o9oo 55 Developmental respiration.IOOOOOOOOOOO69OOOO»OOOOO»OOOOOOO0OOO«O 62 Reducing material in egg s * * * * * * *# .* o*************************** 65 A m m o n 1 trbgeri in eggsooo*oo*oooooooooooeo9 oo**oo**ooooo9 *o*oo 67 DiapaUSe99O0OO*9O9O9OO9OOOOOOO9OOO9OOOOO999O9OOO99**99OO99999O 70 DISCUSSION AND CONCLUSIONS 83 LITERATURE CITED*,, O O . 0000900000 *0 0900*0 9' 9**0 O 0009 O O^OObOOOOOOi 89 -5 - • LIST OF TABLES TABLE I Weights of the eggs of A.elliotti from different areas......i..... 24 TABLE II Effect of moisture on egg development and hatching................ 27 TABLE III Respiration rates of A.elliotti eggs before and after covering parts' of them with gas impervious materials....................... 4.9 TABLE. IV Respiration rates of eggs and parts of eggs of A.elliotti^........ 53 — 6- LIST OF FIGURES FIGURE !......Balance constructed for weighing eggs of A.elliotti.... 21 FIGURE 2,.... Calibration of the qudrtz balance shown in Figure I.... 22 FIGURE 3..... Distribution of the weights of eggs of A.elliotti;..... 26 FIGURE 4 Relation between average weights of eggs of A.elliotti and the number of eggs in the .pods from which they came .................................. 28 FIGURE 5 Weight change in viable and nonviable eggs of elliottii..........O..*.. ooee»eoeeeoeeoo 0900000009 FIGURE 6 Weight change in' viable and nonviablh eggs of A.elliotti................................. 33 FIGURE 7 Weight change in eggs of A^elliotti due to water absorption or loss. 0000000000900000001 0000009909 FIGURE 8.. ....Cartesian diver respirometer used to measure respi­ ration of eggs and parts of eggs of A.elliotti......... 38 FIGURE 9 .... .Detail of flotation tube and respirometer vessel used for respiration studies of eggs of A.elliotti. ^ . 41 FIGURE 10.. .. .,Sample sheet to show results of respiration measure­ ments of eggs.......................................... 44 FIGURE 11.. ...Change in respiratory gas pressures in closed tubes containing eggs of A.elliotti. ^ . 47 FIGURE 12.. ...Respiration rates of eggs of A.elliotti at different ■ temperatures.. 56 FIGURE 13.. ...Respiration rates of eggs of A.elliotti at different temperatures ....... ................. 57 FIGURE 14.. ...Respiratiop rates of eggs of A.elliotti at different temperatures .... ........... 58 FIGURE 15.. ...Effect of temperature on eggs of A.elliotti............ 60 FIGURE 16.. ...Determination of the point atjwhich respiration ceases in eggs of . ...o............ .....o.......... 61 ■ i I -7 -- FIGURE 17.,.V.Oxygen consumption of developing post-diapause eggs ' of?A,eliiotti,..,,.;....,:...:....;,;....;.^:i..,,.... 63 FIGURE 18.....Oxygen consumption of developing pbst-diapaUse eggs of' A.eliibtti.............................'...... 64 FIGURE 19.....Reducing materials in the eggs of A.eliiotti during eniloryonic development.68 FIGURE 20.....Amipo nitrogen content of developing eggs of AoelJjliOttl e ........ .....oo.......... o...o.o.a. ........ 69 FIGURE 21.....Relationship of the embryo and membranes of acridid eggs in the diapause state....o....................... 71 FIGURE 22.....Micrpphotograph of hydropylar end of egg of A.elliotti........Q..................a................ 74 FIGURE 23.....Accumulated oxygen consumption of eggs of A.eliiotti and combinations of embryos and yolk-fluid............ 78 FIGURE 24.....Respiration rates of diapause eggs, parts of eggs and parts with w a f e r ..............o........... 81. - 8 - ABSTRACT Various aspects of the biology and physiology of the ggg of the \ grasshopper species0 .Auiocara- eiIiotti Thps., have been investigated; Eggs from three; different populations were used for these studies-. Mean weight for all the eggs'was 15.4;milligrams. Mean weights for the eggs from the three populations_wer.e 16.0, 14.5 and 14.2 milli­ grams. The mean number of eggs per pod was 8.I for all pods collected. The mean number of eggs per pod for„the three populations were 8.9, .8.3 and 7;I There was a significant differ­ ence in the weights of the eggs from the three populations when adjustments were made for the number of eggs per pod. Respiration of eggs from the three different populations was studied in relation to effects of moisture and temperature. It was. found ..that eggs . of this species respire through the entire cuticle. Isolated embryos and yolk respired at a higher rate than did the egg from which they came if.the egg was in diapause but respired at a lower rate than the egg from which they came if the egg Was not.ip diapause. The respiration rate of eggs was measured from 5°C to 459C and characteristic responses to temperature were noted. Reducing materials were measured in the egg during development and were shown to be higher during diapause than during other periods of development. Physiological characteristics of diapause eggs were, studied and related to structures within the egg. Studies on.respiration show that neither an inhibitor nor lack of water are likely to be factors in maintaining or terminating diapause in this species. INTBODUQnON , , The big-headed grasshopper, Aulocara elliotti Thos.', is one of the most abundant grasshoppers on Montana rangelands and is non-migratory in habit. The distribution and food habits of this species have been described by Pfadt (1949), Griddle (1933), and Apderson and .Wright (1952); There are no published studies concerning the egg stage of A.elliotti. The studies reported in this paper had as their objective the elucidation of various aspects of the biology of the egg stage of this species. It was desirable to obtain information on the physical characteristics of the eggs such as size, weight, apd number of eggs per pod. It was likewisejdesirAble tb study the.physiological charac­ teristics tif' the egg stage such as respiratory activity during develop- , ment, characteristics of diapause, and water absorptioh, Three populations were used fpr comparison to determine the extent of variation in the factors measured. Most of the studies concerned with grasshopper eggs have beep confined to single physiological systems and have beep carried out on species which do pot Undergo an obligatory diapause as does A.elliotti. Tuck and Smith (1939) have described the chorionic sculpturing of the eggs of forty-eight species of mid-western
Recommended publications
  • Diet-Mixing in a Generalist Herbivore: Trade-Offs Between Nutrient And
    DIET-MIXING IN A GENERALIST HERBIVORE: TRADE-OFFS BETWEEN NUTRIENT AND ALLELOCHEMICAL REGULATION A Dissertation by MARION LE GALL Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Spencer Behmer Committee Members, Micky Eubanks Keyan Zhu-Salzman Gil Rosenthal Jon Harrison Head of Department, David Ragsdale May 2014 Major Subject: Entomology Copyright 2014 Marion Le Gall ABSTRACT Despite decades of research, many key aspects related to the physiological processes and mechanisms insect herbivores use to build themselves remain poorly understood, and we especially know very little about how interactions among nutrients and allelochemicals drive insect herbivore growth processes. Understanding the physiological effects of these interactions on generalist herbivores is a critical step to a better understanding and evaluation of the different hypothesis that have been emitted regarding the benefits of polyphagy. I used both lab and field experiments to disentangle the respective effect of protein, carbohydrates and allelochemicals on a generalist herbivore, the grasshopper Melanoplus differentialis. The effect of protein and carbohydrates alone were examined using artificial diets in choice and no-choice experiments. Results were plotted using a fitness landscape approach to evaluate how protein-carbohydrate ratio and/or concentration affected performance and consumption. Growth was best near the self-selected ratio obtained from the choice experiment, most likely due to the fact that the amount of food digested was also higher on that ratio. By contrast, development time was not best near the preferred ratio most likely due to the trade-off existing between size and development time.
    [Show full text]
  • SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES in LUNA COUNTY, NEW MEXICO Niccole D
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 10, No 4, 2021, 105 – 115 2277-663X (P) SEVEN PREVIOUSLY UNDOCUMENTED ORTHOPTERAN SPECIES IN LUNA COUNTY, NEW MEXICO Niccole D. Rech1*, Brianda Alirez2 and Lauren Paulk2 1Western New Mexico University, Deming, New Mexico 2Early College High School, Deming, New Mexico E-mail: [email protected] (*Corresponding Author) Abstract: The Chihuahua Desert is the largest hot desert (BWh) in North America. Orthopterans are an integral part of desert ecosystems. They include grasshoppers, katydids and crickets. A large section of the Northern Chihuahua Desert is in Luna County, New Mexico. There is a dearth of information on the Orthopterans in this area. Between May and October of 2020, sixty adult grasshoppers, two katydids and one camel cricket were captured from a 5-hectare (ha) area at base of the Florida Mountains, which is the extreme southern portion of Luna County. Luna County was in a severe drought during 2020. The insects were identified using several taxonomic keys (Cigliano, Braun, Eades & Otte, 2018; Guala & Doring, 2019; Triplehorn & Johnson, 2005; Richman, Lightfoot, Sutherland & Fergurson, 1993, Otte, 1984, 1981; Tinkham, 1944). A previous New Mexico State University (NMSU) survey from 1993 had only documented grasshoppers in the Acrididae and Romaleidae families. The objective of this continuing study is to identify and document all species of Orthopterans found in Luna County, and correlate the populations with changing weather patterns. In this portion of the study, the majority of Orthopterans captured were Leprus wheeleri (Thomas), a previously documented specie. However, seven undocumented species were also captured.
    [Show full text]
  • Table of Contents: Vol
    Journal of Range Management, Volume 49, Number 6 (November 1996) Item Type Journal; text Publisher Society for Range Management Journal Journal of Range Management Rights Copyright © Society for Range Management. Download date 24/09/2021 04:32:42 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/650560 TABLE OF CONTENTS: VOL. 49, NO. 6, November 1996 ARTICLES Animal Ecology 482 Cattle distribution, habitats, and diets in the Sierra Nevada of California by John G. Kie and Brian B. Boroski 489 Wildlife numbers on excellent and good condition Chihuahuan Desert rangelands: An observation by Gretchen Smith, Jerry L. Holechek, and Manual Cardenas 494 Importance of grasshopper defoliation period on southwestern blue grama- dominated rangeland by David C. Thompson, and Kevin T Gardner Plant Animal 499 Mule deer and elk foraging preference for 4 sagebrush taxa by Carl L. wambdt Plant Ecology 504 Perennial grass establishment in relationship to seeding dates in the Northern Great Plains by R.E. Ries and L. Hofmann 509 Emergence and seedling survival of Lotus tenuis in Festuca arundinacea pastures by G.H. Sevilla, O.N. Fernandez, RR Miiion, and L. Montcs 512 Sahelian rangeland development; a catastrophe? by Max Rietkerk, Pie&r Ketner, Leo Stroosnijder, and Herbert H.T. Prins 520 Buffaloberry [Shepherdia canadensis (L.) Nutt.] fruit production in fire- successional bear feeding sites by David Hamer 530 Shifts in botanical composition of flatwoods following fertilization by Rob Kalmbacher and Frank Martin Grazing Management 535 I&rea&g utilization efficiency of continuously stocked Old World bluestem pasture by W.R.
    [Show full text]
  • Modeling and Popula
    IV.6 Melanoplus sanguinipes Phenology North–South Across the Western United States J. R. Fisher, W. P. Kemp, and J. S. Berry Distribution and abundance of an insect species are A. elliotti hatchlings typically appear earlier in the spring affected by its habitat requirements, such as food and/or than M. sanguinipes hatchlings (Kemp and Sanchez climatic resources. As requirements become more spe- 1987), mainly because the pods of A. elliotti are nearer cific, distribution and abundance become more limited. the surface of the soil and are generally laid in areas de- For instance, Melanoplus bowditchi, a grasshopper found void of vegetation. Heat reaches the A. elliotti eggs ear- in many Western States, is limited to the range of its pri- lier in the spring, and thus they begin to develop earlier mary host plants, silver sagebrush and sand sagebrush than M. sanguinipes eggs, which are placed 0.4 inch (1 (Pfadt 1994). In fact, the relative abundance of these cm) deeper in the soil and among grass clumps (in areas plants will determine if you can even find M. bowditchi. cooler than bare areas) (Fisher 1993, Kemp and Sanchez Distribution of the bigheaded grasshopper, Aulocara 1987). elliotti, appears to be limited by climatic conditions. It feeds mainly on grasses and sedges but is restricted to M. sanguinipes and most other economically important States west of longitude 95° W, where it is particularly grasshopper species on rangeland have an embryonic dia- abundant in the more arid areas (Pfadt 1994). But M. pause. Diapause can be defined as a genetically con- femurrubrum, a general feeder (polyphagous), is distrib- trolled physiological state of suspended animation that uted throughout North America from coast to coast and will revert to normal working physiological processes from northern British Columbia to northern Guatemala and growth only after occurrence of a specific event or a (Pfadt 1994).
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • President's Message
    ISSN 2372-2517 (Online), ISSN 2372-2479 (Print) METALEPTEAMETALEPTEA THE NEWSLETTER OF THE ORTHOPTERISTS’ SOCIETY * Table of Contents is now clickable, which will President’s Message take you to a desired page. By MICHAEL SAMWAYS President [1] PRESIDENT’S MESSAGE [email protected] [2] SOCIETY NEWS n this age of decline of biodi- [2] New Editor’s Vision for JOR by versity worldwide, it is es- CORINNA S. BAZELET [3] Orthopteroids set to steal the spot- sential that we have in place light once again at ESA, 2015 by sentinels of change. We require DEREK A. WOLLER organisms to measure deterio- [4] Open Call for Proposals for Sympo- I ration of landscapes, but also sia, Workshops, Information Sessions at I ICO 2016 by MARCOS LHANO their improvement. Improvement can [5] Announcing the publication of be through land sparing (the setting “Jago’s Grasshoppers & Locusts of aside of land for the conservation of East Africa: An Identification Hand- biodiversity in an agricultural produc- book” by HUGH ROWELL focal species varies with area, but the tion landscape) and land sharing (the cross section of life history types is [8] REGIONAL REPORTS combining of production and conser- remarkably similar. [8] India by ROHINI BALAKRISHNAN vation within agricultural fields). We What this means, apart from the also need to measure optimal stocking [9] T.J. COHN GRANT REPORTS enormous practical value of grasshop- rates for domestic livestock. [9] Evaluating call variation and female pers, is that we need to keep abreast decisions in a lekking cricket by KIT It is fascinating how researchers of taxonomy, simply because we must KEANE around the world are finding that have actual identities.
    [Show full text]
  • Preliminary Checklist of the Orthopteroid Insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2001 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham Garland, TX Thomas A. Stidham University of California, Berkeley, CA Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Stidham, John A. and Stidham, Thomas A., "Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas" (2001). Insecta Mundi. 180. https://digitalcommons.unl.edu/insectamundi/180 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 15, No. 1, March, 2001 35 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham 301 Pebble Creek Dr., Garland, TX 75040 and Thomas A. Stidham Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, Abstract: Texas has one of the most diverse orthopteroid assemblages of any state in the United States, reflecting the varied habitats found in the state. Three hundred and eighty-nine species and 78 subspecies of orthopteroid insects (Blattodea, Mantodea, Phasmatodea, and Orthoptera) have published records for the state of Texas. This is the first such comprehensive checklist for Texas and should aid future work on these groups in this area. Introduction (Flook and Rowell, 1997).
    [Show full text]
  • Rangeland Grasshoppers of Concern to Management of The
    Rangeland Grasshoppers (Orthoptera: Acrididae) of Concern to Management of the Columbia River Basin 30 December 1994 William P. Kemp USDA/ARS Rangeland insect Laboratory Bozeman, MT 59717-0366 Voice: 406-994-6473 Facsimile: 406-994-3566 Internet: [email protected] 1 Biogeography and habitat associations of grasshoppers as a functional group RANGELAND GRASSHOPPERS (Orthoptera: Acrididae) represent a very complex collection of herbivores that interact in space and time. Of the hundreds of grasshopper species present in North America, roughly 200 inhabit grasslands. Further, at a given location, it is not uncommon to find as many as 15 or more grasshopper species over the course of the spring and summer months. Although some species are separated to an extent by differences in phenology, there is considerable overlap of species at a given site during the course of the summer. In spite of the volume of studies conducted on individual species of Acrididae (e.g., Uvarov 1966, 1977; Chapman & Joern 1990), little work has been done on macroscale grasshopper species associations (see Joern [1982] for microhabitat selection). There has been much historical debate in ecology concerning the organization of communities, and arguments have focused on two divergent concepts. Following the work of Clements (1916), a number of studies have argued that communities are highly integrated and that species are interdependent (e.g., MacArthur 1972, Diamond 1986, Grant 1986). Alternatively, there are a number of studies that follow the general model developed by Gleason (1917, 1926), which suggest that communities are merely a facultative mix of unrelated, yet coexisting, species (e.g., Whittaker 1956, 1960).
    [Show full text]
  • Arizona Wildlife Notebook
    ARIZONA WILDLIFE CONSERVATION ARIZONA WILDLIFE NOTEBOOK GARRY ROGERS Praise for Arizona Wildlife Notebook “Arizona Wildlife Notebook” by Garry Rogers is a comprehensive checklist of wildlife species existing in the State of Arizona. This notebook provides a brief description for each of eleven (11) groups of wildlife, conservation status of all extant species within that group in Arizona, alphabetical listing of species by common name, scientific names, and room for notes. “The Notebook is a statewide checklist, intended for use by wildlife watchers all over the state. As various individuals keep track of their personal observations of wildlife in their specific locality, the result will be a more selective checklist specific to that locale. Such information would be vitally useful to the State Wildlife Conservation Department, as well as to other local agencies and private wildlife watching groups. “This is a very well-documented snapshot of the status of wildlife species – from bugs to bats – in the State of Arizona. Much of it should be relevant to neighboring states, as well, with a bit of fine-tuning to accommodate additions and deletions to the list. “As a retired Wildlife Biologist, I have to say Rogers’ book is perhaps the simplest to understand, yet most comprehensive in terms of factual information, that I have ever had occasion to peruse. This book should become the default checklist for Arizona’s various state, federal and local conservation agencies, and the basis for developing accurate local inventories by private enthusiasts as well as public agencies. "Arizona Wildlife Notebook" provides a superb starting point for neighboring states who may wish to emulate Garry Rogers’ excellent handiwork.
    [Show full text]
  • Plant Protection and Quarantine USDA, APHIS PPQ Mission
    Rosebud/Treasure Counties 04/19/21 USDA, APHIS, PPQ Rangeland Grasshopper Suppression Program, 2021. Plant Protection Gary D. Adams State Plant Health Director and (406) 657-6282 Quarantine [email protected] 12 USDA, APHIS PPQ Mission VS: Veterinary Services WS: Wildlife Services Safeguard Agriculture & Natural Resources AC: Animal Care Ensure High Quality, Abundant & Varied Food Supply IES: Investigative & Enforcement Services Strengthen Marketability of U.S. Agriculture BRS: Biotechnology Regulatory Services PPQ: Plant Protection and Quarantine Contribute to Preservation of Global Environment 34 Domestic Programs Grasshopper and Mormon Cricket ► Exotic Pest Surveys ► Survey ► Quarantine and eradication ► Technical Assistance ► Gypsy Moth/Japanese Beetle ► Biological Control ► Biotechnology ► Grasshopper & Mormon Cricket ► Suppression Programs – Border Protection treatments – Rangeland Protection treatments . Cost Share . RAATs 56 1 Life Stages Life cycle ► Eggs 78 1st Instar 2nd Instar 4-6 mm 6-8 mm 910 3rd Instar 4th Instar 8-11mm (1 cm) 11-16 mm 11 12 2 5th Instar Clearwinged grasshopper 16-23 mm 1 2 3 4 Nymphal development: 26-40 days (~1 wk/instar) Adult 5 13 14 Adults Melanoplus sanguinipes Melanoplus dawsoni Migratory Grasshopper Dawson Grasshopper Male Female Male Female 14-19mm 17-22 mm 20-26 mm 20-29 mm 15 16 Dissosteira carolina (Linnaeus) Boopedon nubilum (Say) Carolina Grasshopper Ebony Grasshopper Male Female 29-32 mm 36-39 mm Male Female 22-22.5 mm 36-38 mm 17 18 3 Free USDA grasshopper identification app Identification
    [Show full text]
  • Whitecrossed Grasshopper Aulocara Femoratum Scudder
    Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet September 1994 Whitecrossed Grasshopper Aulocara femoratum Scudder Distribution and Habitat the site had been exploited for food (Table 1). Only the senescent annual grasses, such as downy brome, were The whitecrossed grasshopper is an inhabitant of western lacking in the crop contents. The greatest utilization was grasslands. Although widely spread, its distribution includes only made of western wheatgrass and needleleaf sedge. This study 60 percent of that of its congener, the bigheaded grasshopper, also revealed a remarkable difference in the diets of adult Aulocara elliotti. The whitecrossed grasshopper occurs most males and females. The males ingested much larger amounts frequently in vegetation types of the mixedgrass prairie in which of short grasses and sedge, while the females ingested more the mid grasses, western wheatgrass and needleandthread, are of the mid grasses. These results appear to be due to abundant as well as the short grass, blue grama. The species also differences in behavior. The males walk extensively on the occurs in the bunchgrass, shortgrass, and desert prairies, but no ground, presumably to find and court females, and thereby descriptions of specific habitats in these prairies have been make contact with short grasses more often than the females, published. which are more sedentary and usually climb mid grasses close by in order to feed. Economic Importance The majority of crops contained two to three species of Because the whitecrossed grasshopper feeds on valuable grasses and sedge, but a relatively large number contained forage grasses and increases to high densities in certain habitats only one species.
    [Show full text]
  • Orthoptera: Acrididae: Gomphocerinae) and Notes on Wing Polymorphism and Geographic Distribution
    Zootaxa 4838 (4): 515–524 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4838.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:D79B4CEF-7E88-4941-8682-1FCE0C85EE3B A new discovery of a long-winged form of Mexican endemic grasshopper Melanotettix dibelonius Bruner, 1904 (Orthoptera: Acrididae: Gomphocerinae) and notes on wing polymorphism and geographic distribution RICARDO MARIÑO-PÉREZ1, SALOMÓN SANABRIA-URBÁN2*, BERT FOQUET3, MARTINA E. POCCO4 & HOJUN SONG3 1Department of Ecology and Evolutionary Biology, University of Michigan, 3600 Varsity Drive, 48108 Ann Arbor, MI, USA. �[email protected]; https://orcid.org/0000-0002-0566-1372 2Laboratory of Ecology, UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios #1, Tlalnepantla, México 54090, México. �[email protected]; https://orcid.org/0000-0002-4079-498X 3Department of Entomology, Texas A&M University, 2475 TAMU, 77843-2475 College Station, TX, USA. �[email protected]; https://orcid.org/0000-0003-1643-6522 �[email protected]; https://orcid.org/0000-0001-6115-0473 4Centro de Estudios Parasitológicos y de Vectores (CEPAVE), CONICET-UNLP, Boulevard 120 s/n entre av. 60 y calle 64, (1900), La Plata, Argentina and División Entomología, Museo de La Plata, Universidad Nacional de La Plata, (1900) La Plata, Argentina. �[email protected]; https://orcid.org/0000-0002-3966-4053 *Corresponding author. Abstract The species Melanotettix dibelonius Bruner, 1904 was previously recorded from Michoacán and Guerrero states in Mexico. This species is characterized by its tegmina, which are always shorter than head and pronotum together and sometimes shorter than the pronotum.
    [Show full text]