Lentinula Edodes (Shiitake) – Biological Activity

Total Page:16

File Type:pdf, Size:1020Kb

Lentinula Edodes (Shiitake) – Biological Activity I I MEDICINA INTERNACIA 27-a volumo MIR N-ro 3 (108) Junio 2017 R E V U O LENTINULA EDODES (SHIITAKE) – BIOLOGICAL ACTIVITY MUSZYŃSKA Bożena1, PAZDUR Przemysław2, LAZUR Jan1, SUŁKOWSKA-ZIAJA Katarzyna1 1. Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland 2. Department of Inorganic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland Abstract: Lentinula edodes (Berk.) Pegler (shiitake) is a species with medicinal properties that is used pri- marily in traditional medicine, but also in conventional oncology treatment. The first records of Lentinula edodes cultivation reach back to China under the Song dynast (960-1127). The Japanese adopted the Chinese technique of shiitake cultivation, thus becoming its main produc- er. Currently, shiitake is used in the treatment of lifestyle diseases. Polysaccharides contained in this species strengthen the immune system, eliminate side effects of chemo and radiotherapy and have strong antitumor, antiviral and antibacterial properties. The year 1972 saw a discov- ery of substances with anti-atherosclerotic effects, with the most important being eritadenine (2 (R), 3 (R)-dihydroxy-4 – (9-adanyl) butyric acid) and statin – lovastatin. L. edodes is of interest to researchers due to its content of therapeutic compounds. These substances have an- titumor, antifungal, antibacterial, anti-inflammatory, hypocholesterolemic, antihypertensive, hypoglycaemic and antioxidant effects. Keywords: Lentinula edodes, shiitake, lentinan, eritadenine, immunostimulating effect Corresponding author: Bożena Muszyńska, e-mail: [email protected] Lentinula edodes (Berk.) Pegler – shiitake of the of carbohydrates in the dry matter of Lentinula family Omphalotaceae (Basidiomycota) commonly edodes fruting bodies is 67.5-78.0%, of which called shiitake is an edible mushroom from East simple sugars constitute 15.87%. Among carbo- Asia which is cultivated and eaten in many Asian hydrates, mono-, di-, tri – and polysaccharides countries as well as in Europe. It is a species with can be distinguished. The simple sugars are as medicinal properties, which is used primarily in follows: glucose, mannose, galactose, xylose, ri- traditional medicine, but also in conventional on- bose, fucose and rhamnose. The disaccharides cology treatments [1,2]. include sucrose and maltose. Raffinose trisac- The Japanese name shiitake consists of shii, charide is also present. There is a high percent- derived from the common name of the Castanopsis age of polysaccharides in the content, including cuspidata tree, whose wood is used for the culti- (1→3)-β-D-glucans, which determine therapeu- vation of this species, and take the Japanese term tic properties of this species (antioxidant and for “mushroom”. The generic name edodes comes protecting against UV). Polysaccharides, which from Latin, meaning “edible”[3]. are present both in fungal cell walls and intra- L. edodes grows in groups on decaying decid- cellularly, are soluble (α – and β-glucans, galac- uous trees, particularly on the Castanopsis cuspi- tates, manganates, xyloglucans) and insoluble data species and other species of the following in water (heteroglycans, polyuronids, β-glu- genera: Aesculus sp., Quercus sp., Acer sp., Fagus sp, cans). Polysaccharides contained in this species Eucalyptus sp., Populus sp., Carpinus sp., Morus.sp. It strengthen the immune system, eliminate side grows naturally in the warm and humid climates effects of chemo and radiotherapy and have of Southeast Asia [4]. strong antitumor, antiviral and antibacterial properties. Lentinan is a branched β-D-glucan. Biologically active substances found in Other polysaccharides responsible for immuno- Lentinula edodes fruting bodies modulation and identified in edible shiitake ex- Fresh Lentinula edodes fruting bodies con- tracts are: KS-2 (mannopeptide), LE (polysaccha- tains 88-92% water. Their calorific value is 387- ride-protein complex), L-II (α-(1→3)-D-glucan) 392 kcal per 100 g of dry matter. The content and JLS-18 (lignin) [1-6]. Article submitted: 09.05.2017, Accepted: 06.06.2017 189 I I MEDICINA INTERNACIA R E V U O 27-a volumo MIR N-ro 3 (108) Junio 2017 The fruting bodies of this species contains all determined in the amount of 679 mg per 100 g of exogenous amino acids. The essential amino acid dry matter of the mushrooms. Ergosterol in the content is 39% of the total amount of all amino fungal cells is present in free form, as peroxides acids. Thanks to their presence, shiitake fruting and esters with higher fatty acids, glycosides or bodies has a nutritional value ranking after meat complexes with polysaccharides. Apart from er- products and before dairy products [2]. gosterol, shiitake fruting bodies also contains its As antioxidant properties of the shiitake ex- derivatives: ergosta-7,22-dienol, ergosta-7,5-dien- tract have been shown to depend on extract con- ol and fungisterol. centration, i.e. the concentration of active ingre- Like other mushroom species, edible shiita- dients, we have also determined the contents of ke fruting bodies are a good source of vitamins, phenolic compounds and flavonoids. Antioxidant especially from group B. The content of vitamin properties have been found to be weaker than B1 is comparable to that of cereal grains and larg- in the case of ascorbic acid. Polyphenols (gallic er than in eggs. Vitamin B2 is present in higher acid, protocatechuic acid, catechin), tocopherols, amounts than in vegetables. It is important to β-carotene, polysaccharide fractions are respon- have vitamin B12, especially for vegetarians. Like sible for antioxidant properties [2,3]. In addition, animals, mushrooms have the ability to biosyn- in 1976, Ac2Ps with strong anti-viral properties thesize vitamin D. In mushrooms, vitamin D2 (er- were isolated from aqueous L. edodes dried fruits. gocalciferol) is produced from ergosterol under Ac2P is a high molecular weight polysaccharide the influence of ultraviolet radiation (sunlight). composed of pentose with the highest activity Studies in rats showed an increase in both serum against smallpox virus [7-9]. 25-hydroxyvitamin D and bone mineral density In addition to polysaccharides, several anti- following Lentinula edodes fruting bodies-based microbial substances have been identified, many diet irradiated with UV light. The results indicate of which have been patented. Edible shiitake is that vitamin D2 from UV-irradiated mushrooms therefore a source of antibacterial and antifun- was well absorbed and metabolized in this ani- gal compounds. The isolated antibiotics include: mal model [10, 11]. Nuclease enzyme with the an- lentin (protein), lenthionine (exobiopolymer con- tithrombotic activity was isolated from this spe- taining sulphur), lentysine (purine compound), cies (eye pouch and anti-cellulite preparations). lentinamycin A and B (polyacetylene derivatives). Like other mushrooms, edible shiitake has a Lentin and lenthionine also exhibit the antifun- high potency to accumulate elements. The con- gal activity. Th protein content in edible shiitake tent of elements in the fruting bodies depends fruting bodies varies from 13.4 to 17.5% of dry on the composition of the cultivation medium. matter [8]. Lentinula edodes contains more calcium than other In 1972, the first anti-atherosclerotic substanc- species of edible mushrooms. It also comprises es such as lentysine were detected in fruiting significant amount of potassium, magnesium, so- bodies of L. edodes. Another one eritadenine (2 (R), dium, zinc and phosphorus [12]. 3 (R)-dihydroxy-4-(9-adanyl) butyric acid) is one of the most important compounds reducing lip- Lentinula edodes cultivation id levels in the blood and derived from L. edodes Currently cultivated Shitake is used in the fruting bodies. It is an inhibitor of S-adenosyl-L- treatment of lifestyle diseases. The first records homocysteine hydrolase (SAHH). The amino acid of Lentinula edodes cultivation reach back to called lentinacin shows similar activity [9]. China during the reign of the Song dynasty (960- The lipid content in the fruting bodies is low 1127). The Japanese adopted the Chinese tech- and ranges from 4.8 to 8.0% of dry matter. Fats nique of shiitake cultivation, and thus became include fatty acids, mono-, di-, triglycerides, phos- its main producer. The first methods of shiitake pholipids and sterols. Fats with unsaturated fatty cultivation consisted of the inoculation of logs acids comprise a high percentage (78%). Linoleic of oak, chestnut and eucalyptus. Cultivation acid has the highest proportion in the lipid con- techniques were then developed using special tent – about 68%. There is also oleic acid – 5.5%; plastic bags filled with sawdust. Sawdust is among saturated acids – palmitic acid –16% of the the most basic substrate for synthetic mixtures total fat content. Among sterols, ergosterol is the used to produce shiitake, but other substrates highest percentage (83-89%). This compound is may include straw or corn cobs. Regardless of part of the cell membranes of mushrooms. It was the main ingredient, starchy supplements such 190 I I MEDICINA INTERNACIA 27-a volumo MIR N-ro 3 (108) Junio 2017 R E V U O as wheat bran, rice, soybean, millet, rye or corn Antitumor properties may be added to the mixture. Cultivating in Research into the potential uses of antitumor special plastic bags reduces production time, in- substances found in mushrooms began in Japan creases productivity and allows for production in the 1960’s.
Recommended publications
  • Biological Values of Cultivated Mushrooms – a Review
    Acta Alimentaria, Vol. 48 (2), pp. 229–240 (2019) DOI: 10.1556/066.2019.48.2.11 BIOLOGICAL VALUES OF CULTIVATED MUSHROOMS – A REVIEW J. VETTER* Department of Botany, University of Veterinary Sciences, H-1077 Budapest, Rottenbiller u. 50. Hungary (Received: 3 July 2018; accepted: 11 October 2018) Cultivated mushrooms are not only valuable foods of our age (functional foods) but contain certain benefi cial chemical components (high level of K and P, very low content of Na, considerable quantities of some microelements, high and valuable protein but low fat contents). Some cultivated mushrooms have anti-carcinogenic effects caused fi rst of all by polysaccharides (Lentinan: Lentinula edodes) and by triterpenoids (ganoderic acids: Ganoderma lucidum or unsaturated fatty acids: linoleic, linolenic acids); antidiabetic effects, which can improve the sugar metabolism of patients (Coprinus comatus, Ganoderma lucidum, Agaricus bisporus); anti-microbial effects, caused partly by smaller triterpenoids or by higher molecules, i.e. by direct or indirect effects: via stimulation of the immune system. Certain mushrooms have antioxidant effects, provided mostly by higher radical scavenging activity of phenolic (fl avonoid) components. The chemical composition and its biological effects form together the biological values of the cultivated mushrooms. The following review would like to summarize the most important facts of this topic. Keywords: cultivated mushrooms, chemical components, nutritional values, anti-carcinogenic, antidiabetic, antimicrobial, antioxidant effects Mushrooms have been consumed since earliest historical times; Greeks believed that mushrooms provided strength for warriors, the Romans named them as the “Food of the Gods”. In countries of the Orient, certain mushrooms were believed “elixir of life” etc.
    [Show full text]
  • Shiitake Mushroom: a Tool of Medicine
    REVIEW ARTICLE Shiitake Mushroom: A Tool of Medicine Taufiqur Rahman1, MBK Choudhury2 1National Mushroom Development Project, Savar, Dhaka 2Directorate General of Health Services, Dhaka ABSTRACT Medicinal mushrooms have an established history of use in traditional oriental therapies. Contemporary research has validated and documented much of the ancient knowledge. Over the last three decades, the interdisciplinary fields of science that study medicinal mushrooms has sprung up and has increasingly demonstrated the potent and unique properties of compounds extracted from a range of species. Currently, the field is being developed into a very fruitful area. Modern clinical practice in Japan, China, Korea and other Asian countries rely on mushroom-derived preparations. Mushrooms have been studied for nutritional and medical purposes for its various potential anti-tumoral and immunomodulatory componests like polysaccharides that have been identified. For medical purposes, mushrooms have been consumed to prevent cancer and cardiac diseases, to improve blood circulation and to reduce blood cholesterol level. Some of these mushrooms have also been used for the treatment of physical and emotional stress, osteoporosis, gastric ulcers and chronic hepatitis, for the improvement of the quality of life of patients with diabetes and especially for the stimulation of immunity. Shiitake has a history of medicinal uses. The mushroom is used as anticarcinogenic, anti- inflammatory, antioxidant, antifungal, antibacterial, antiviral as well as antithrombotic in cardiovascular disorders. This article has been written to throw some light on Shiitake mushroom which has many nutritional values. Many Shiitake preparations came in market containing the active ingredients which can replace many other marketed synthetic medicines and may prove to have promising results with fewer side effects.
    [Show full text]
  • Prebiotics: a Novel Approach to Treat Hepatocellular Carcinoma
    Hindawi Canadian Journal of Gastroenterology and Hepatology Volume 2017, Article ID 6238106, 11 pages https://doi.org/10.1155/2017/6238106 Review Article Prebiotics: A Novel Approach to Treat Hepatocellular Carcinoma Naz Fatima,1 Tasleem Akhtar,1 and Nadeem Sheikh1,2 1 Cell and Molecular Biology Lab, Department of Zoology, University of the Punjab, Q-A Campus, Lahore 54590, Pakistan 2Cell and Applied Molecular Biology (CAMB), University of the Punjab, Q-A Campus, Lahore 54590, Pakistan Correspondence should be addressed to Nadeem Sheikh; [email protected] Received 13 February 2017; Accepted 19 April 2017; Published 10 May 2017 Academic Editor: JoseL.Mauriz´ Copyright © 2017 Naz Fatima et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hepatocellular carcinoma is one of the fatal malignancies and is considered as the third leading cause of death. Mutations, genetic modifications, dietary aflatoxins, or impairments in the regulation of oncogenic pathways may bring about liver cancer.An effective barrier against hepatotoxins is offered by gut-liver axis as a change in gut permeability and expanded translocation of lipopolysaccharides triggers the activation of Toll-like receptors which stimulate the process of hepatocarcinogenesis. Prebiotics, nondigestible oligosaccharides, have a pivotal role to play when it comes to inducing an antitumor effect. A healthy gut flora balance is imperative to downregulation of inflammatory cytokines and reducing lipopolysaccharides induced endotoxemia, thus inducing the antitumor effect. 1. Introduction pathway are deregulated as well, but on a marginal scale.
    [Show full text]
  • Inhibitory Effect and Enzymolysis Kinetics of Lentinan on Α-Glucosidase
    Topics in Chemical & Material (TCME) 1(1) (2018 Engineering ) 312-314 Contents List available at VOLKSON PRESS New Materials and Intelligent Manufacturing (NMIM) DOIJournal : http://doi.org/10.26480/icnmim.01.2018. Homepage: https://topicsonchemeng.org.my/ 312.314 ISBN: 978-1-948012-12-6 INHIBITORY EFFECT AND ENZYMOLYSIS KINETICS OF LENTINAN ON Α-GLUCOSIDASE Meifu Wu, Hongli Zhou* School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China. *Corresponding Author Email: [email protected] This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ARTICLE DETAILS ABSTRACT Article History: Objective: To study the inhibitory activity and enzymolysis kinetics of lentinan on α-glucosidase. Methods: The enzyme-agent screening model was used to investigate the optimal conditions of α-glucosidase action. In vitro Received 26 June 2018 enzyme kinetics was studied by changing the substrate concentration, reaction time, pH conditions and Accepted 2 July 2018 temperature. Results: The optimal reaction conditions of α-glucosidase were reaction time 120min, reaction Available online 1 August 2018 temperature 50°C, buffer pH 6.0, concentration of substrate PNPG 0.1089 mol/L. Conclusion: 1g/L concentration of lentinan has good inhibitory activity against α-glucosidase, and the inhibitory effect of lentinan is competitive inhibition. KEYWORDS Lentinan, α-glucosidase, enzymolysis kinetics. 1. INTRODUCTION 3. EXPERIMENTAL METHODS Edible fungi are widely used in folk, and their active substances can promote the secretion of insulin and related hormones, so that the 3.1 Determination of enzyme inhibitory activity and function of liver, pancreas and other organs of diabetic patients can return calculation of inhibition rate of enzyme activity to normal [1].
    [Show full text]
  • Autohydrolysis of Lentinus Edodes for Obtaining Extracts with Antiradical Properties
    foods Article Autohydrolysis of Lentinus edodes for Obtaining Extracts with Antiradical Properties Liceth Rocío Huamán-Leandro 1 , María Jesús González-Muñoz 1,2 , Catalina Fernández-de-Ana 3, Arturo Rodríguez-Blanco 3, María Dolores Torres 1,2,* and Herminia Domínguez 1,2 1 Departamento de Enxeñería Química, Universidade de Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004 Ourense, Spain; [email protected] (L.R.H.-L.); [email protected] (M.J.G.-M.); [email protected] (H.D.) 2 CITI-Universidade de Vigo, Tecnopole, San Cibrao das Viñas, 32901 Ourense, Spain 3 Hifas da Terra SL, Portamuiños,7, 36154 Bora Pontevedra, Spain; [email protected] (C.F.-d.-A.); [email protected] (A.R.-B.) * Correspondence: [email protected]; Tel.: +34-988-387-075 Received: 7 November 2019; Accepted: 3 January 2020; Published: 9 January 2020 Abstract: The autohydrolysis of Lentinus edodes was proposed for the extraction of components with antioxidant properties. Operation under non-isothermal conditions was evaluated and compared with isothermal heating. The influence of process severity was assessed in the range of 0.18 to 4.89 (temperature between 50 and 250 ◦C), up to 80% (d.b.) The influence of process severity during the autohydrolysis of Lentinus edodes was assessed in the range 0.3 to 4.89 (temperature between 50 and − 250 ◦C). Up to 80% (d.b.) of the initial raw material could be solubilized at 210 ◦C. The different behavior of the saccharide and phenolic fractions was observed with the treatment temperature. Whereas the highest concentration of the saccharide components (mainly glucooligosaccharides) was found at 210 ◦C, the maximum phenolic yield was identified at 250 ◦C.
    [Show full text]
  • Lentinula Edodes Biotechnology – from Lentinan to Lectins
    230 V.E. NIKITINA et al.: Lentinula edodes Biotechnology, Food Technol. Biotechnol. 45 (3) 230–237 (2007) ISSN 1330-9862 review (FTB-1921) Lentinula edodes Biotechnology – From Lentinan to Lectins Valentina E. Nikitina1, Olga M. Tsivileva1*, Alexei N. Pankratov2 and Nikolai A. Bychkov1 1Laboratory of Microbiology and Mycology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Entuziastov Avenue, 410049 Saratov, Russia 2Department of Chemistry, N. G. Chernyshevskii Saratov State University, 83 Astrakhanskaya Street, 410012 Saratov, Russia Received: September 27, 2006 Revised version: March 20, 2007 Accepted: May 18, 2007 Summary Lentinula edodes was the first medicinal macrofungus to enter the realm of modern bio- technology. The present paper briefly reviews the history of the modern biotechnology of this mushroom starting with the production of the polysaccharide preparation lentinan, and ending with an overview of our own work regarding the production of lectins. Our work with lectins has involved studies of the effect of initial pH, carbon and nitrogen sources and the C:N ratio on lectin production in both the mycelium and culture medium. We have shown that lectin activity is related to morphological development, with the ac- tivity being highest in extracts of the pigmented mycelial films that precede fruiting body production. Key words: submerged culture, Lentinula, lectins of higher fungi, brown mycelial film, mo- lecular structure, quantum chemical study both mushroom crops and mushroom derivatives should Introduction have a positive global impact on long-term food nutri- tion, health care, environmental conservation and regen- The production volume of mushrooms has increased eration, and economic and social change (4).
    [Show full text]
  • Lentinan Administration Alleviates Diarrhea of Rotavirus-Infected
    Fan et al. Journal of Animal Science and Biotechnology (2021) 12:43 https://doi.org/10.1186/s40104-021-00562-6 RESEARCH Open Access Lentinan administration alleviates diarrhea of rotavirus-infected weaned pigs via regulating intestinal immunity Xiangqi Fan1†, Haiyan Hu1†, Daiwen Chen1, Bing Yu1, Jun He1, Jie Yu1, Junqiu Luo1, Erik Eckhardt2, Yuheng Luo1, Jianping Wang1, Hui Yan1 and Xiangbing Mao1* Abstract Background: Lentinan (LNT) may regulate many important physiological functions of human and animals. This study aimed to verify whether LNT administration could relieve diarrhea via improving gut immunity in rotavirus (RV)-challenged weaned pigs. Methods: Twenty-eight weaned pigs were randomly fed 2 diets containing 0 or 84 mg/kg LNT product for 19 d (n = 14). RV infection was executed on d 15. After extracting polysaccharides from LNT product, its major monosaccharides were analyzed. Then, LNT polysaccharide was used to administrate RV-infected IPEC-J2 cells. Results: Dietary LNT supplementation supported normal function of piglets even when infected with RV, as reflected by reduced growth performance loss and diarrhea prevalence, and maintained gut immunity (P < 0.05). The polysaccharide was isolated from LNT product, which molecular weight was 5303 Da, and major monosaccharides included glucose, arabinose and galactose. In RV-infected IPEC-J2 cells, this polysaccharide significantly increased cell viability (P < 0.05), and significantly increased anti-virus immunity via regulating pattern recognition receptors and host defense peptides (P < 0.05). Conclusion: Those results suggest that LNT administration increases the piglets’ resistance to RV-induced stress, likely by supporting intestinal immunity. Keywords: Gut immunity, IPEC-J2 cells, Lentinan, Rotavirus, Weaned pigs Background compounds purified from this mushroom [2].
    [Show full text]
  • Stimulatory Effect of Β-Glucans on Immune Cells
    http://dx.doi.org/10.4110/in.2011.11.4.191 REVIEW ARTICLE pISSN 1598-2629 eISSN 2092-6685 Stimulatory Effect of β-glucans on Immune Cells Hyung Sook Kim, Jin Tae Hong, Youngsoo Kim and Sang-Bae Han* College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea β-Glucans are naturally occurring polysaccharides that are ery five residues (4). β-Glucan from oat and barley are linear produced by bacteria, yeast, fungi, and many plants. Although with β-(1-4) linkage with shorter stretches of β-(1-3) (3). their pharmacological activities, such as immunomodulatory, Biologically active β-glucans usually have a large molec- anti-infective and anti-cancer effects, have been well stud- ular weight. However, it is unclear whether β-glucans hav- ied, it is still unclear how β-glucans exert their activities. ing intermediate or small molecular weight have biological However, recent studies on the β-glucan receptors shed activities, although some of them are active in vivo. Short β- some light on their mechanism of action. Since β-glucans glucans below 5,000-10,000 Da of molecular weight are gen- have large molecular weights, they must bind surface re- erally inactive (5). The optimal branching frequency is sug- ceptors to activate immune cells. In this review, we summa- rize the immunopharmacological activities and the potential gested as 0.2 (1 in 5 backbone residues) to 0.33. Although receptors of β-glucans in immune cells. unbranched β-glucan curdlan showed proper biological ac- [Immune Network 2011;11(4):191-195] tivity, chemical addition of β-(1-6) glucose residues to the curdlan backbone led to an increase in anti-tumor activity (6), as highly branched β-glucan has higher affinity for cognate CHEMISTRY OF β-GLUCANS receptors (7).
    [Show full text]
  • Lentinus Edodes: a Macrofungus with Pharmacological Activities P.S
    Current Medicinal Chemistry, 2010, 17, 2419-2430 2419 Lentinus edodes: A Macrofungus with Pharmacological Activities P.S. Bisen*,1,2,3, R.K. Baghel2, B.S. Sanodiya2,3, G.S. Thakur2 and G.B.K.S. Prasad1 1School of Studies in Biotechnology, Jiwaji University, Gwalior-474011 (M.P.) India 2Research and Development Centre, Bisen Biotech and Biopharma Pvt. Ltd., Biotech Research Park, M-7, Laxmipuram, Transport Nagar, Gwalior-474010 (M.P.) India 3Tropilite Foods Pvt. Ltd., Davar Campus, Tansen Road, Gwalior-474002 (M.P.) India Abstract: Lentinus edodes is the first medicinal macrofungus to enter the realm of modern biotechnology. It is the second most popular edible mushroom in the global market which is attributed not only to its nutritional value but also to possible potential for therapeutic applications. Lentinus edodes is used medicinally for diseases involving depressed immune func- tion (including AIDS), cancer, environmental allergies, fungal infection, frequent flu and colds, bronchial inflammation, heart disease, hyperlipidemia (including high blood cholesterol), hypertension, infectious disease, diabetes, hepatitis and regulating urinary inconsistancies. It is the source of several well-studied preparations with proven pharmacological prop- erties, especially the polysaccharide lentinan, eritadenine, shiitake mushroom mycelium, and culture media extracts (LEM, LAP and KS-2). Antibiotic, anti-carcinogenic and antiviral compounds have been isolated intracellularly (fruiting body and mycelia) and extracellularly (culture media). Some of these substances were lentinan, lectins and eritadenine. The aim of this review is to discuss the therapeutic applications of this macrofungus. The potential of this macrofungus is unquestionable in the most important areas of applied biotechnology. Keywords: Anti-cancer, eritadenine, immunomodulation, lentinan, Lentinus edodes, polysaccharide.
    [Show full text]
  • Production of Microbial Polysaccharides for Use in Food
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260201214 Production of microbial polysaccharides for use in food Chapter · March 2013 DOI: 10.1533/9780857093547.2.413 CITATIONS READS 17 3,663 1 author: Ioannis Giavasis Technological Educational Institute of Thessaly 34 PUBLICATIONS 501 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biovalorization of olive mill waste View project Phytochemicals and beneficial to human health associated in goji berry fruits from Thessaly region. View project All content following this page was uploaded by Ioannis Giavasis on 30 April 2018. The user has requested enhancement of the downloaded file. 1 2 3 4 5 6 16 7 8 9 Production of microbial polysaccharides 10 11 for use in food 12 Ioannis Giavasis, Technological Educational Institute of Larissa, Greece 13 14 DOI: 15 16 Abstract: Microbial polysaccharides comprise a large number of versatile 17 biopolymers produced by several bacteria, yeast and fungi. Microbial fermentation has enabled the use of these ingredients in modern food and 18 delivered polysaccharides with controlled and modifiable properties, which can be 19 utilized as thickeners/viscosifiers, gelling agents, encapsulation and film-making 20 agents or stabilizers. Recently, some of these biopolymers have gained special 21 interest owing to their immunostimulating/therapeutic properties and may lead to 22 the formation of novel functional foods and nutraceuticals. This chapter describes the origin and chemical identity, the biosynthesis and production process, and the 23 properties and applications of the most important microbial polysaccharides. 24 25 Key words: biosynthesis, food biopolymers, functional foods and nutraceuticals, 26 microbial polysaccharides, structure–function relationships.
    [Show full text]
  • Free PDF Download
    WCRJ P.M. # 4308 WCRJ 2016; 3 (1): e652 POLYSACCHARIDE FROM LENTINUS EDODES FOR INTEGRATIVE CANCER TREATMENT: IMMUNOMODULATORY EFFECTS ON LYMPHOCYTE POPULATION A. DEL BUONO1, M. BONUCCI2, S. PUGLIESE3, A. D’ORTA4, M. FIORANELLI5 1MMG ASL CE, Caserta, Italy 2Integrative Oncology, Casa di Cura San Feliciano, Rome, Italy 3CETAC, Research Center, Caserta, Italy 4DD Clinic, Caserta, Italy 5Integrative Oncology, Università degli Studi “Guglielmo Marconi”, Rome, Italy Abstract – Background: Fungal alpha and β-glucans have been used as therapeutic support for thousands of years in Eastern culture. Lentinan, the backbone of β-(1, 3)-glucan with β-(1, 6) branch es, is the main ingredient purified from Shiitake mushrooms and has been approved as a biological response modifier for the treatment of gastric cancer in Japan. Active Hexose Correlated Compound (AHCC) is an alpha-glucan rich nutritional supplement derived from the mycelia of shii- take (Lentinula edodes) of the basidiomycete family of mushrooms, a popular integrative medicine in Japan. Lentinan may exert a synergistic action with anti-cancer monoclonal antibodies to modu- late complement systems activity through the way of antibody-dependent cellular cytotoxicity and complement dependent cytotoxicity. Patients and Methods: Seven subjects with adenocarcinoma diagnosis (pancreatic, lung, colorectal) were recruited, and treated with AHCC (3 g/die). Lymphocyte typing assays were performed by cytofluorometry (Abbott CELL-DYN Ruby) at start (T0) and after one month from AHCC administration (T1). Results: After one month, neutrophils increased from 41% to 54%; lymphocytes and monocytes decreased, respectively, from 45% to 30% and 10% to 1%; lymphocyte population relationships variations: CD3/CD4 increased from 16% to 30%, CD3/CD8 (suppressor) decreased from 53% to 24%; CD4/CD8 increased from 0.3% to 1.3%; CD3+/CD16+/CD56 Natural Killer (NK) cells increased from 113% to 151%; CD8/CD3 (suppressor/cytotoxic) increased from 3% to 5%.
    [Show full text]
  • Pdf Amino Acid Surface Decoration on the Anticancer Efficacy of Selenium Nanoparticles
    Theranostics 2020, Vol. 10, Issue 20 9083 Ivyspring International Publisher Theranostics 2020; 10(20): 9083-9099. doi: 10.7150/thno.46467 Research Paper Lentinan-functionalized Selenium Nanoparticles target Tumor Cell Mitochondria via TLR4/TRAF3/MFN1 pathway Hui-Juan Liu1,2*, Yuan Qin1,2*, Zi-Han Zhao1,2*, Yang Zhang4*, Jia-Huan Yang1,2, Deng-Hui Zhai1,2, Fang Cui1,2, Ce Luo1, Man-Xi Lu1, Piao-Piao Liu1, Heng-Wei Xu1,2, Kun Li1,2, Bo Sun2, Shuang Chen2, Hong-Gang Zhou1, Cheng Yang1,2 and Tao Sun1,2,3 1. State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China. 2. Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China. 3. Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin Institute of Digestive Disease, Tianjin, China. 4. Department of Anesthesiology, Tianjin Fourth Central Hospital, Tianjin, China. *These authors have contributed equally to this work. Corresponding authors: Tao Sun, E-mail: [email protected]; Cheng Yang, E-mail: [email protected]; Hong-gang Zhou, E-mail: [email protected]; Hui-juan Liu, E-mail: [email protected]. © The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2020.03.29; Accepted: 2020.06.26; Published: 2020.07.11 Abstract Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time.
    [Show full text]