Loss of Neuronal 3D Chromatin Organization Causes Transcriptional and Behavioural Deficits Related to Serotonergic Dysfunction

Total Page:16

File Type:pdf, Size:1020Kb

Loss of Neuronal 3D Chromatin Organization Causes Transcriptional and Behavioural Deficits Related to Serotonergic Dysfunction ARTICLE Received 22 Jan 2014 | Accepted 18 Jun 2014 | Published 18 Jul 2014 DOI: 10.1038/ncomms5450 Loss of neuronal 3D chromatin organization causes transcriptional and behavioural deficits related to serotonergic dysfunction Satomi Ito1,*,w, Adriana Magalska2,*, Manuel Alcaraz-Iborra1, Jose P. Lopez-Atalaya1, Victor Rovira1, Bruno Contreras-Moreira3, Michal Lipinski1, Roman Olivares1, Jose Martinez-Hernandez4, Blazej Ruszczycki2, Rafael Lujan4, Emilio Geijo-Barrientos1, Grzegorz M. Wilczynski2 & Angel Barco1 The interior of the neuronal cell nucleus is a highly organized three-dimensional (3D) structure where regions of the genome that are linearly millions of bases apart establish sub-structures with specialized functions. To investigate neuronal chromatin organization and dynamics in vivo, we generated bitransgenic mice expressing GFP-tagged histone H2B in principal neurons of the forebrain. Surprisingly, the expression of this chimeric histone in mature neurons caused chromocenter declustering and disrupted the association of heterochromatin with the nuclear lamina. The loss of these structures did not affect neuronal viability but was associated with specific transcriptional and behavioural deficits related to serotonergic dysfunction. Overall, our results demonstrate that the 3D organization of chromatin within neuronal cells provides an additional level of epigenetic regulation of gene expression that critically impacts neuronal function. This in turn suggests that some loci associated with neuropsychiatric disorders may be particularly sensitive to changes in chromatin architecture. 1 Instituto de Neurociencias (Universidad Miguel Herna´ndez—Consejo Superior de Investigaciones Cientı´ficas), Avenida Santiago Ramo´n y Cajal s/n, Sant Joan d’Alacant, 03550 Alicante, Spain. 2 Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland. 3 Laboratory of Computational Biology, Estacio´n Experimental de Aula Dei (Consejo Superior de Investigaciones Cientı´ficas) and Fundacio´n ARAID, Avenida Montan˜ana 1.005, 50059 Zaragoza, Spain. 4 Instituto de Investigacio´n en Discapacidades Neurolo´gicas (IDINE), Departamento de Ciencias Me´dicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, C/Almansa, 14, Albacete 02006, Spain. * These authors contributed equally to this work. w Present address: Information Processing Biology Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa 904-049, Japan. Correspondence and requests for materials should be addressed to A.B. (email: [email protected]). NATURE COMMUNICATIONS | 5:4450 | DOI: 10.1038/ncomms5450 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5450 esearch over the last decade indicates that epigenetic specific layers of the cortex and striatum (Fig. 1b). Reverse dysregulation importantly contributes to the aetiology transcription–quantitative PCR (RT–qPCR) and western blot Rof neuropsychiatric disorders1–3. Among the different assays indicated that the chimeric histone is expressed at a epigenetic mechanisms of regulation of gene expression, the comparable level to endogenous histone H2B and is functionally modulation of higher-order chromatin structures is one of the integrated into chromatin (Fig. 1c–e). Nissl staining and least understood. The interior of the eukaryotic cell nucleus is a immunostaining for different neuronal proteins demonstrated highly organized 3D structure in which regions of the genome that H2BGFP did not cause neuronal death nor gross alterations that are millions of bases apart, even belonging to different in brain anatomy (Supplementary Fig. 1). chromosomes, work together and define specialized sub- In the course of these initial experiments, we observed that structures with dedicated functions4,5. Thus, in most interphase H2BGFP accumulated in discrete structures in the interior of the somatic cells, pericentromeric regions are organized in clusters neuronal nucleus that were strongly labelled with the DNA stain referred to as chromocenters that consist of transcriptionally 4’,6-diamidino-2-phenylindole (DAPI). Although DAPI staining silent DNA and exhibit species- and cell type-specific features6–8. in the nucleus of CA1 neurons typically delineates the nuclear Chromatin architecture may have particular importance in envelope and accumulates in a few large chromocenters, in neurons, because these long-living cells are permanently arrested bitransgenic animals DAPI fluorescence overlapped with GFP in interphase and the structures formed during neuronal and provided a distinctive subnuclear pattern with numerous foci differentiation are probably irreversible9–11. During neuronal and without peripheral heterochromatin attached to the nuclear maturation, the nuclear architecture of neural precursors membrane (Fig. 1f). Similar but less pronounced differences were undergoes dramatic changes and passes from a small, also observed in other neuronal types expressing H2BGFP, such heterochromatic nucleus with many small chromocenters to the as granular neurons in the dentate gyrus, and cortical and striatal large euchromatic nucleus with a few large chromocenters neurons (Fig. 1g). Quantitative 3D analysis confirmed the characteristic of mature neurons12. Although the functional increase in the number of intranuclear DAPI-stained foci in consequences of these changes are obscure, the conserved pattern CA1 pyramidal neurons and revealed that these structures were in terminally differentiated neurons suggests that they are larger and more irregular in bitransgenic than in control mice physiologically relevant. For instance, studies in Purkinje (Fig. 1h–j and Supplementary Movies 1 and 2). neurons have revealed a precise assembly process in which To confirm these observations using a different approach that specific chromosomes always cluster together and adjacent provides better spatial resolution, we used electron microscopy neurons have similar spatial distribution of centromeric and (EM). The comparison of EM images corresponding to the telomeric clusters13,14. Furthermore, recent studies have shown stratum pyramidale in the CA1 subfield revealed dramatic that gene mutations associated with intellectual disability in differences between H2BGFP and control littermates. In ultrathin humans affect chromatin compactation and the number and size sections, the nucleus of CA1 pyramidal neurons in control of chromocenters in cortical neurons15,16. The reported changes animals showed none or, at most, one to two heterochromatic in the spatial distribution of satellite DNA and active loci in regions (Fig. 1k), whereas bitransgenic mice exhibited multiple hippocampal neurons after seizures or experimentally induced discrete heteropycnotic regions (Fig. 1l). Moreover, whereas the long-term potentiation also support a role for higher-order nuclei of control neurons show heterochromatin attached to the chromatin structures in neuronal function17–19. Also consistent inner nuclear envelope, in H2BGFP mice this was detached with this view, a recent study has revealed chromosomal (compare Fig. 1m,n). In fact, some neurons in bitransgenic mice conformation changes in the chromatin of the prefrontal cortex exhibited nuclear body-like circular membranous structures that of schizophrenic patients that specifically affected the GAD1 may have originated from invaginations of the nuclear lamina locus20. during heterochromatin detachment. We also observed a Serendipitously, the generation of bitransgenic mice that reorganization of the interchromatin compartment, which express a histone H2B tagged with green fluorescent protein appeared much emptier in H2BGFP mice than in control (H2BGFP) in an inducible manner in principal neurons of the animals (Fig. 1m,n, insets). These changes of nuclear ultra- forebrain provided us with an unexpected and valuable approach structure did not alter the number or structure of synapses to examine the consequences of interfering with 3D chromatin in the stratum radiatum (Fig. 1o,p: Control ¼ 0.285 and organization in neuronal gene expression and physiology. We H2BGFP ¼ 0.272 syn mm À 2). found that the accumulation of H2BGFP causes dramatic changes To characterize the extent of the nuclear disorganization, we in the nuclear architecture of pyramidal neurons, including next conducted co-localization experiments with proteins or chromocenter declustering and loss of peripheral heterochroma- protein modifications that are known to be enriched in specific tin. These changes are accompanied by highly specific transcrip- nuclear sub-structures. In agreement with EM images, the tional defects and behavioural abnormalities, including alterations nucleolar proteins fibrillarin and nucleolin revealed that nucleoli associated with serotonin (5-HT) dysfunction. Our results suggest were normal in H2BGFP-expressing neurons (Fig. 2a). The a new role for perinuclear heterochromatin and chromocenter spliceosome protein Sam68 and the Cajal body protein coilin also organization in the epigenetic regulation of neuronal gene revealed a normal staining pattern, indicating that these expression that may have relevance in the aetiology of mental structures were preserved in bitransgenic mice (Fig. 2b,c). Lamina illness. staining was also not affected, except for the occasional invaginations reported above (Fig. 2d,e). In contrast, fluorescence in situ hybridization (FISH) using a pancentromeric
Recommended publications
  • Network Assessment of Demethylation Treatment in Melanoma: Differential Transcriptome-Methylome and Antigen Profile Signatures
    RESEARCH ARTICLE Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures Zhijie Jiang1☯, Caterina Cinti2☯, Monia Taranta2, Elisabetta Mattioli3,4, Elisa Schena3,5, Sakshi Singh2, Rimpi Khurana1, Giovanna Lattanzi3,4, Nicholas F. Tsinoremas1,6, 1 Enrico CapobiancoID * a1111111111 1 Center for Computational Science, University of Miami, Miami, FL, United States of America, 2 Institute of Clinical Physiology, CNR, Siena, Italy, 3 CNR Institute of Molecular Genetics, Bologna, Italy, 4 IRCCS Rizzoli a1111111111 Orthopedic Institute, Bologna, Italy, 5 Endocrinology Unit, Department of Medical & Surgical Sciences, Alma a1111111111 Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy, 6 Department of a1111111111 Medicine, University of Miami, Miami, FL, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, et al. (2018) Network assessment of demethylation treatment in Background melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE 13(11): In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met- e0206686. https://doi.org/10.1371/journal. astatic process. These effects are usually measured by changes in both methylome and pone.0206686 transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at Editor: Roger Chammas, Universidade de Sao systems scale the significance of epigenetic treatment in melanoma cells with different met- Paulo, BRAZIL astatic potential. Received: June 20, 2018 Accepted: October 17, 2018 Methods and findings Published: November 28, 2018 Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines Copyright: © 2018 Jiang et al.
    [Show full text]
  • Genome-Wide Screen of Cell-Cycle Regulators in Normal and Tumor Cells
    bioRxiv preprint doi: https://doi.org/10.1101/060350; this version posted June 23, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion Maria Sokolova1, Mikko Turunen1, Oliver Mortusewicz3, Teemu Kivioja1, Patrick Herr3, Anna Vähärautio1, Mikael Björklund1, Minna Taipale2, Thomas Helleday3 and Jussi Taipale1,2,* 1Genome-Scale Biology Program, P.O. Box 63, FI-00014 University of Helsinki, Finland. 2Science for Life laboratory, Department of Biosciences and Nutrition, Karolinska Institutet, SE- 141 83 Stockholm, Sweden. 3Science for Life laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden To identify cell cycle regulators that enable cancer cells to replicate DNA and divide in an unrestricted manner, we performed a parallel genome-wide RNAi screen in normal and cancer cell lines. In addition to many shared regulators, we found that tumor and normal cells are differentially sensitive to loss of the histone genes transcriptional regulator CASP8AP2. In cancer cells, loss of CASP8AP2 leads to a failure to synthesize sufficient amount of histones in the S-phase of the cell cycle, resulting in slowing of individual replication forks. Despite this, DNA replication fails to arrest, and tumor cells progress in an elongated S-phase that lasts several days, finally resulting in death of most of the affected cells.
    [Show full text]
  • A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
    Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context.
    [Show full text]
  • A Multiprotein Occupancy Map of the Mrnp on the 3 End of Histone
    Downloaded from rnajournal.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press A multiprotein occupancy map of the mRNP on the 3′ end of histone mRNAs LIONEL BROOKS III,1 SHAWN M. LYONS,2 J. MATTHEW MAHONEY,1 JOSHUA D. WELCH,3 ZHONGLE LIU,1 WILLIAM F. MARZLUFF,2 and MICHAEL L. WHITFIELD1 1Department of Genetics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire 03755, USA 2Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA 3Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina 27599, USA ABSTRACT The animal replication-dependent (RD) histone mRNAs are coordinately regulated with chromosome replication. The RD-histone mRNAs are the only known cellular mRNAs that are not polyadenylated. Instead, the mature transcripts end in a conserved stem– loop (SL) structure. This SL structure interacts with the stem–loop binding protein (SLBP), which is involved in all aspects of RD- histone mRNA metabolism. We used several genomic methods, including high-throughput sequencing of cross-linked immunoprecipitate (HITS-CLIP) to analyze the RNA-binding landscape of SLBP. SLBP was not bound to any RNAs other than histone mRNAs. We performed bioinformatic analyses of the HITS-CLIP data that included (i) clustering genes by sequencing read coverage using CVCA, (ii) mapping the bound RNA fragment termini, and (iii) mapping cross-linking induced mutation sites (CIMS) using CLIP-PyL software. These analyses allowed us to identify specific sites of molecular contact between SLBP and its RD-histone mRNA ligands. We performed in vitro crosslinking assays to refine the CIMS mapping and found that uracils one and three in the loop of the histone mRNA SL preferentially crosslink to SLBP, whereas uracil two in the loop preferentially crosslinks to a separate component, likely the 3′hExo.
    [Show full text]
  • Supplemental Data.Pdf
    Supplementary material -Table of content Supplementary Figures (Fig 1- Fig 6) Supplementary Tables (1-13) Lists of genes belonging to distinct biological processes identified by GREAT analyses to be significantly enriched with UBTF1/2-bound genes Supplementary Table 14 List of the common UBTF1/2 bound genes within +/- 2kb of their TSSs in NIH3T3 and HMECs. Supplementary Table 15 List of gene identified by microarray expression analysis to be differentially regulated following UBTF1/2 knockdown by siRNA Supplementary Table 16 List of UBTF1/2 binding regions overlapping with histone genes in NIH3T3 cells Supplementary Table 17 List of UBTF1/2 binding regions overlapping with histone genes in HMEC Supplementary Table 18 Sequences of short interfering RNA oligonucleotides Supplementary Table 19 qPCR primer sequences for qChIP experiments Supplementary Table 20 qPCR primer sequences for reverse transcription-qPCR Supplementary Table 21 Sequences of primers used in CHART-PCR Supplementary Methods Supplementary Fig 1. (A) ChIP-seq analysis of UBTF1/2 and Pol I (POLR1A) binding across mouse rDNA. UBTF1/2 is enriched at the enhancer and promoter regions and along the entire transcribed portions of rDNA with little if any enrichment in the intergenic spacer (IGS), which separates the rDNA repeats. This enrichment coincides with the distribution of the largest subunit of Pol I (POLR1A) across the rDNA. All sequencing reads were mapped to the published complete sequence of the mouse rDNA repeat (Gene bank accession number: BK000964). The graph represents the frequency of ribosomal sequences enriched in UBTF1/2 and Pol I-ChIPed DNA expressed as fold change over those of input genomic DNA.
    [Show full text]
  • Leveraging Omics Data to Expand the Value and Understanding of Alternative Splicing
    Leveraging Omics Data to Expand the Value and Understanding of Alternative Splicing By ______________________ Nathan T. Johnson A Dissertation Submitted to the Faculty of WORCESTER POLYTECHNIC INSTITUTE In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Bioinformatics & Computational Biology APPROVED: __________________________ __________________________ Dmitry Korkin, Ph.D. Amity L. Manning, Ph.D. Advisor Committee Member Program Director __________________________ __________________________ Zheyang Wu, Ph.D. Scarlet Shell, Ph.D. Committee Member Committee Member __________________________ Ben Raphael, Ph.D. External Committee Member i “Science, my boy, is made up of mistakes, but they are mistakes which it is useful to make, because they lead little by little to the truth.” Jules Verne, Journey to the Center of the Earth ii ABSTRACT Utilizing ‘omics’ data of diverse types such as genomics, proteomics, transcriptomics, epigenomics, and others has largely been attributed as holding great promise for solving the complexity of many health and ecological problems such as complex genetic diseases and parasitic destruction of farming crops. By using bioinformatics, it is possible to take advantage of ‘omics’ data to gain a systems level molecular perspective to achieve insight into possible solutions. One possible solution is understanding and expanding the use of alternative splicing (AS) of mRNA precursors. Typically, genes are considered the focal point as the main players in the molecular world. However, due to recent ‘omics’ analysis across the past decade, AS has been demonstrated to be the main player in causing protein diversity. This is possible as AS rearranges the key components of a gene (exon, intron, and untranslated regions) to generate diverse functionally unique proteins and regulatory RNAs.
    [Show full text]
  • Setd1 Histone 3 Lysine 4 Methyltransferase Complex Components in Epigenetic Regulation
    SETD1 HISTONE 3 LYSINE 4 METHYLTRANSFERASE COMPLEX COMPONENTS IN EPIGENETIC REGULATION Patricia A. Pick-Franke Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Master of Science in the Department of Biochemistry and Molecular Biology Indiana University December 2010 Accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science. _____________________________________ David Skalnik, Ph.D., Chair _____________________________________ Kristin Chun, Ph.D. Master’s Thesis Committee _____________________________________ Simon Rhodes, Ph.D. ii DEDICATION This thesis is dedicated to my sons, Zachary and Zephaniah who give me great joy, hope and continuous inspiration. I can only hope that I successfully set a good example demonstrating that one can truly accomplish anything, if you never give up and reach for your dreams. iii ACKNOWLEDGEMENTS I would like to thank my committee members Dr. Skalnik, Dr. Chun and Dr. Rhodes for allowing me to complete this dissertation. They have been incredibly generous with their flexibility. I must make a special thank you to Jeanette McClintock, who willingly gave her expertise in statistical analysis with the Cfp1 microarray data along with encouragement, support and guidance to complete this work. I would like to thank Courtney Tate for her ceaseless willingness to share ideas, and her methods and materials, and Erika Dolbrota for her generous instruction as well as the name of a good doctor. I would also like to acknowledge the superb mentorship of Dr. Jeon Heong Lee, PhD and the contagious passion and excitement for the life of science of Dr.
    [Show full text]
  • Datasheet: VPA00384K Product Details
    Datasheet: VPA00384K Description: HISTONE H2BJ ANTIBODY WITH CONTROL LYSATE Specificity: HISTONE H2BJ Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 10 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 100μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin Immunogen KLH-conjugated synthetic peptide corresponding to aa 98-126 of human histone H2BJ External Database Links UniProt: P06899 Related reagents Entrez Gene: 8970 HIST1H2BJ Related reagents Synonyms H2BFR Page 1 of 3 Specificity Rabbit anti Human histone H2BJ antibody recognizes Histone H2B type 1J, also known as histone H2B.1 and histone H2B/r. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes.
    [Show full text]
  • Title: a Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic
    bioRxiv preprint doi: https://doi.org/10.1101/517490; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title Page: 2 3 Title: A yeast phenomic model for the influence of Warburg metabolism on genetic 4 buffering of doxorubicin 5 6 Authors: Sean M. Santos1 and John L. Hartman IV1 7 1. University of Alabama at Birmingham, Department of Genetics, Birmingham, AL 8 Email: [email protected], [email protected] 9 Corresponding author: [email protected] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/517490; this version posted January 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 26 Abstract: 27 Background: 28 Saccharomyces cerevisiae represses respiration in the presence of adequate glucose, 29 mimicking the Warburg effect, termed aerobic glycolysis. We conducted yeast phenomic 30 experiments to characterize differential doxorubicin-gene interaction, in the context of 31 respiration vs. glycolysis. The resulting systems level biology about doxorubicin 32 cytotoxicity, including the influence of the Warburg effect, was integrated with cancer 33 pharmacogenomics data to identify potentially causal correlations between differential 34 gene expression and anti-cancer efficacy.
    [Show full text]
  • Datasheet: VPA00384 Product Details
    Datasheet: VPA00384 Description: RABBIT ANTI HISTONE H2BJ Specificity: HISTONE H2BJ Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin Immunogen KLH-conjugated synthetic peptide corresponding to aa 98-126 of human histone H2BJ External Database Links UniProt: P06899 Related reagents Entrez Gene: 8970 HIST1H2BJ Related reagents Synonyms H2BFR Page 1 of 2 Specificity Rabbit anti Human histone H2BJ antibody recognizes Histone H2B type 1J, also known as histone H2B.1 and histone H2B/r. Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Two molecules of each of the four core histones (H2A, H2B, H3, and H4) form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, called nucleosomes.
    [Show full text]
  • Supplementary Table 3. Genes Specifically Regulated by Zol (Non-Significant for Fluva)
    Supplementary Table 3. Genes specifically regulated by Zol (non-significant for Fluva). log2 Genes Probe Genes Symbol Genes Title Zol100 vs Zol vs Set ID Control (24h) Control (48h) 8065412 CST1 cystatin SN 2,168 1,772 7928308 DDIT4 DNA-damage-inducible transcript 4 2,066 0,349 8154100 VLDLR very low density lipoprotein 1,99 0,413 receptor 8149749 TNFRSF10D tumor necrosis factor receptor 1,973 0,659 superfamily, member 10d, decoy with truncated death domain 8006531 SLFN5 schlafen family member 5 1,692 0,183 8147145 ATP6V0D2 ATPase, H+ transporting, lysosomal 1,689 0,71 38kDa, V0 subunit d2 8013660 ALDOC aldolase C, fructose-bisphosphate 1,649 0,871 8140967 SAMD9 sterile alpha motif domain 1,611 0,66 containing 9 8113709 LOX lysyl oxidase 1,566 0,524 7934278 P4HA1 prolyl 4-hydroxylase, alpha 1,527 0,428 polypeptide I 8027002 GDF15 growth differentiation factor 15 1,415 0,201 7961175 KLRC3 killer cell lectin-like receptor 1,403 1,038 subfamily C, member 3 8081288 TMEM45A transmembrane protein 45A 1,342 0,401 8012126 CLDN7 claudin 7 1,339 0,415 7993588 TMC7 transmembrane channel-like 7 1,318 0,3 8073088 APOBEC3G apolipoprotein B mRNA editing 1,302 0,174 enzyme, catalytic polypeptide-like 3G 8046408 PDK1 pyruvate dehydrogenase kinase, 1,287 0,382 isozyme 1 8161174 GNE glucosamine (UDP-N-acetyl)-2- 1,283 0,562 epimerase/N-acetylmannosamine kinase 7937079 BNIP3 BCL2/adenovirus E1B 19kDa 1,278 0,5 interacting protein 3 8043283 KDM3A lysine (K)-specific demethylase 3A 1,274 0,453 7923991 PLXNA2 plexin A2 1,252 0,481 8163618 TNFSF15 tumor necrosis
    [Show full text]
  • Identification of a Histone Family Gene Signature for Predicting The
    www.nature.com/scientificreports OPEN Identifcation of a histone family gene signature for predicting the prognosis of cervical cancer Received: 21 August 2017 Accepted: 13 November 2017 patients Published: xx xx xxxx Xiaofang Li1, Run Tian2, Hugh Gao 3,4, Yongkang Yang1, Bryan R. G. Williams 3,4, Michael P. Gantier 3,4, Nigel A. J. McMillan5, Dakang Xu3,4,6, Yiqun Hu6 & Yan’e Gao1 Heterogeneity in terms of tumor characteristics, prognosis, and survival among cancer patients is an unsolved issue. Here, we systematically analyzed the aberrant expression patterns of cervical cancer using RNA-Seq data from The Cancer Genome Atlas (TCGA). We incorporated gene profling, molecular signatures, functional and pathway information with gene set enrichment and protein- protein interaction (PPI) network analysis, to identify sub-networks of genes. Those identifed genes relating to DNA replication and DNA repair-mediated signaling pathways associated with systemic lupus erythematosus (SLE). Next, we combined cross-validated prognostic scores to build an integrated prognostic model for survival prediction. The combined approach revealed that the DNA repair- mediated including the functional interaction module of 18 histone genes (Histone cluster 1 H2A, B and H4), were signifcantly correlated with the survival rate. Furthermore, fve of these histone genes were highly expressed in three cervical cancer cohorts from the Oncomine database. Comparison of high and low histone variant-expressing human cervical cancer cell lines revealed diferent responses to DNA damage, suggesting protective functions of histone genes against DNA damage. Collectively, we provide evidence that two SLE-associated gene sets (HIST1H2BD and HIST1H2BJ; and HIST1H2BD, HIST1H2BJ, HIST1H2BH, HIST1H2AM and HIST1H4K) can be used as prognostic factors for survival prediction among cervical cancer patients.
    [Show full text]